MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfull2 Structured version   Visualization version   GIF version

Theorem isfull2 17803
Description: Equivalent condition for a full functor. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
isfull.b 𝐵 = (Base‘𝐶)
isfull.j 𝐽 = (Hom ‘𝐷)
isfull.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
isfull2 (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦

Proof of Theorem isfull2
StepHypRef Expression
1 isfull.b . . 3 𝐵 = (Base‘𝐶)
2 isfull.j . . 3 𝐽 = (Hom ‘𝐷)
31, 2isfull 17802 . 2 (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦))))
4 isfull.h . . . . . . 7 𝐻 = (Hom ‘𝐶)
5 simpll 766 . . . . . . 7 (((𝐹(𝐶 Func 𝐷)𝐺𝑥𝐵) ∧ 𝑦𝐵) → 𝐹(𝐶 Func 𝐷)𝐺)
6 simplr 768 . . . . . . 7 (((𝐹(𝐶 Func 𝐷)𝐺𝑥𝐵) ∧ 𝑦𝐵) → 𝑥𝐵)
7 simpr 486 . . . . . . 7 (((𝐹(𝐶 Func 𝐷)𝐺𝑥𝐵) ∧ 𝑦𝐵) → 𝑦𝐵)
81, 4, 2, 5, 6, 7funcf2 17759 . . . . . 6 (((𝐹(𝐶 Func 𝐷)𝐺𝑥𝐵) ∧ 𝑦𝐵) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)))
9 ffn 6669 . . . . . 6 ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) → (𝑥𝐺𝑦) Fn (𝑥𝐻𝑦))
10 df-fo 6503 . . . . . . 7 ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ ((𝑥𝐺𝑦) Fn (𝑥𝐻𝑦) ∧ ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦))))
1110baib 537 . . . . . 6 ((𝑥𝐺𝑦) Fn (𝑥𝐻𝑦) → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦))))
128, 9, 113syl 18 . . . . 5 (((𝐹(𝐶 Func 𝐷)𝐺𝑥𝐵) ∧ 𝑦𝐵) → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦))))
1312ralbidva 3169 . . . 4 ((𝐹(𝐶 Func 𝐷)𝐺𝑥𝐵) → (∀𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ ∀𝑦𝐵 ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦))))
1413ralbidva 3169 . . 3 (𝐹(𝐶 Func 𝐷)𝐺 → (∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦))))
1514pm5.32i 576 . 2 ((𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))) ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦))))
163, 15bitr4i 278 1 (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3061   class class class wbr 5106  ran crn 5635   Fn wfn 6492  wf 6493  ontowfo 6495  cfv 6497  (class class class)co 7358  Basecbs 17088  Hom chom 17149   Func cfunc 17745   Full cful 17794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-fo 6503  df-fv 6505  df-ov 7361  df-oprab 7362  df-mpo 7363  df-1st 7922  df-2nd 7923  df-map 8770  df-ixp 8839  df-func 17749  df-full 17796
This theorem is referenced by:  fullfo  17804  isffth2  17808  cofull  17826  fullestrcsetc  18044  fullsetcestrc  18059  fullthinc  47152
  Copyright terms: Public domain W3C validator