| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfull2 | Structured version Visualization version GIF version | ||
| Description: Equivalent condition for a full functor. (Contributed by Mario Carneiro, 27-Jan-2017.) |
| Ref | Expression |
|---|---|
| isfull.b | ⊢ 𝐵 = (Base‘𝐶) |
| isfull.j | ⊢ 𝐽 = (Hom ‘𝐷) |
| isfull.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| Ref | Expression |
|---|---|
| isfull2 | ⊢ (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfull.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | isfull.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 3 | 1, 2 | isfull 17837 | . 2 ⊢ (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
| 4 | isfull.h | . . . . . . 7 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 5 | simpll 766 | . . . . . . 7 ⊢ (((𝐹(𝐶 Func 𝐷)𝐺 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝐹(𝐶 Func 𝐷)𝐺) | |
| 6 | simplr 768 | . . . . . . 7 ⊢ (((𝐹(𝐶 Func 𝐷)𝐺 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 7 | simpr 484 | . . . . . . 7 ⊢ (((𝐹(𝐶 Func 𝐷)𝐺 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) | |
| 8 | 1, 4, 2, 5, 6, 7 | funcf2 17793 | . . . . . 6 ⊢ (((𝐹(𝐶 Func 𝐷)𝐺 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦))) |
| 9 | ffn 6656 | . . . . . 6 ⊢ ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦)) → (𝑥𝐺𝑦) Fn (𝑥𝐻𝑦)) | |
| 10 | df-fo 6492 | . . . . . . 7 ⊢ ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ↔ ((𝑥𝐺𝑦) Fn (𝑥𝐻𝑦) ∧ ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) | |
| 11 | 10 | baib 535 | . . . . . 6 ⊢ ((𝑥𝐺𝑦) Fn (𝑥𝐻𝑦) → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ↔ ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
| 12 | 8, 9, 11 | 3syl 18 | . . . . 5 ⊢ (((𝐹(𝐶 Func 𝐷)𝐺 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ↔ ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
| 13 | 12 | ralbidva 3150 | . . . 4 ⊢ ((𝐹(𝐶 Func 𝐷)𝐺 ∧ 𝑥 ∈ 𝐵) → (∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ↔ ∀𝑦 ∈ 𝐵 ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
| 14 | 13 | ralbidva 3150 | . . 3 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
| 15 | 14 | pm5.32i 574 | . 2 ⊢ ((𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹‘𝑥)𝐽(𝐹‘𝑦))) ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
| 16 | 3, 15 | bitr4i 278 | 1 ⊢ (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 class class class wbr 5095 ran crn 5624 Fn wfn 6481 ⟶wf 6482 –onto→wfo 6484 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 Hom chom 17190 Func cfunc 17779 Full cful 17829 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fo 6492 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-map 8762 df-ixp 8832 df-func 17783 df-full 17831 |
| This theorem is referenced by: fullfo 17839 isffth2 17843 cofull 17861 fullestrcsetc 18075 fullsetcestrc 18090 fullthinc 49439 |
| Copyright terms: Public domain | W3C validator |