MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfull2 Structured version   Visualization version   GIF version

Theorem isfull2 17862
Description: Equivalent condition for a full functor. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
isfull.b 𝐵 = (Base‘𝐶)
isfull.j 𝐽 = (Hom ‘𝐷)
isfull.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
isfull2 (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦

Proof of Theorem isfull2
StepHypRef Expression
1 isfull.b . . 3 𝐵 = (Base‘𝐶)
2 isfull.j . . 3 𝐽 = (Hom ‘𝐷)
31, 2isfull 17861 . 2 (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦))))
4 isfull.h . . . . . . 7 𝐻 = (Hom ‘𝐶)
5 simpll 766 . . . . . . 7 (((𝐹(𝐶 Func 𝐷)𝐺𝑥𝐵) ∧ 𝑦𝐵) → 𝐹(𝐶 Func 𝐷)𝐺)
6 simplr 768 . . . . . . 7 (((𝐹(𝐶 Func 𝐷)𝐺𝑥𝐵) ∧ 𝑦𝐵) → 𝑥𝐵)
7 simpr 486 . . . . . . 7 (((𝐹(𝐶 Func 𝐷)𝐺𝑥𝐵) ∧ 𝑦𝐵) → 𝑦𝐵)
81, 4, 2, 5, 6, 7funcf2 17818 . . . . . 6 (((𝐹(𝐶 Func 𝐷)𝐺𝑥𝐵) ∧ 𝑦𝐵) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)))
9 ffn 6718 . . . . . 6 ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) → (𝑥𝐺𝑦) Fn (𝑥𝐻𝑦))
10 df-fo 6550 . . . . . . 7 ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ ((𝑥𝐺𝑦) Fn (𝑥𝐻𝑦) ∧ ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦))))
1110baib 537 . . . . . 6 ((𝑥𝐺𝑦) Fn (𝑥𝐻𝑦) → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦))))
128, 9, 113syl 18 . . . . 5 (((𝐹(𝐶 Func 𝐷)𝐺𝑥𝐵) ∧ 𝑦𝐵) → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦))))
1312ralbidva 3176 . . . 4 ((𝐹(𝐶 Func 𝐷)𝐺𝑥𝐵) → (∀𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ ∀𝑦𝐵 ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦))))
1413ralbidva 3176 . . 3 (𝐹(𝐶 Func 𝐷)𝐺 → (∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦))))
1514pm5.32i 576 . 2 ((𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))) ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦))))
163, 15bitr4i 278 1 (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3062   class class class wbr 5149  ran crn 5678   Fn wfn 6539  wf 6540  ontowfo 6542  cfv 6544  (class class class)co 7409  Basecbs 17144  Hom chom 17208   Func cfunc 17804   Full cful 17853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fo 6550  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-map 8822  df-ixp 8892  df-func 17808  df-full 17855
This theorem is referenced by:  fullfo  17863  isffth2  17867  cofull  17885  fullestrcsetc  18103  fullsetcestrc  18118  fullthinc  47666
  Copyright terms: Public domain W3C validator