| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfull2 | Structured version Visualization version GIF version | ||
| Description: Equivalent condition for a full functor. (Contributed by Mario Carneiro, 27-Jan-2017.) |
| Ref | Expression |
|---|---|
| isfull.b | ⊢ 𝐵 = (Base‘𝐶) |
| isfull.j | ⊢ 𝐽 = (Hom ‘𝐷) |
| isfull.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| Ref | Expression |
|---|---|
| isfull2 | ⊢ (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfull.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | isfull.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 3 | 1, 2 | isfull 17933 | . 2 ⊢ (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
| 4 | isfull.h | . . . . . . 7 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 5 | simpll 766 | . . . . . . 7 ⊢ (((𝐹(𝐶 Func 𝐷)𝐺 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝐹(𝐶 Func 𝐷)𝐺) | |
| 6 | simplr 768 | . . . . . . 7 ⊢ (((𝐹(𝐶 Func 𝐷)𝐺 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 7 | simpr 484 | . . . . . . 7 ⊢ (((𝐹(𝐶 Func 𝐷)𝐺 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) | |
| 8 | 1, 4, 2, 5, 6, 7 | funcf2 17889 | . . . . . 6 ⊢ (((𝐹(𝐶 Func 𝐷)𝐺 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦))) |
| 9 | ffn 6717 | . . . . . 6 ⊢ ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦)) → (𝑥𝐺𝑦) Fn (𝑥𝐻𝑦)) | |
| 10 | df-fo 6548 | . . . . . . 7 ⊢ ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ↔ ((𝑥𝐺𝑦) Fn (𝑥𝐻𝑦) ∧ ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) | |
| 11 | 10 | baib 535 | . . . . . 6 ⊢ ((𝑥𝐺𝑦) Fn (𝑥𝐻𝑦) → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ↔ ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
| 12 | 8, 9, 11 | 3syl 18 | . . . . 5 ⊢ (((𝐹(𝐶 Func 𝐷)𝐺 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ↔ ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
| 13 | 12 | ralbidva 3163 | . . . 4 ⊢ ((𝐹(𝐶 Func 𝐷)𝐺 ∧ 𝑥 ∈ 𝐵) → (∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ↔ ∀𝑦 ∈ 𝐵 ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
| 14 | 13 | ralbidva 3163 | . . 3 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
| 15 | 14 | pm5.32i 574 | . 2 ⊢ ((𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹‘𝑥)𝐽(𝐹‘𝑦))) ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
| 16 | 3, 15 | bitr4i 278 | 1 ⊢ (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 class class class wbr 5125 ran crn 5668 Fn wfn 6537 ⟶wf 6538 –onto→wfo 6540 ‘cfv 6542 (class class class)co 7414 Basecbs 17230 Hom chom 17288 Func cfunc 17875 Full cful 17925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-fo 6548 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7997 df-2nd 7998 df-map 8851 df-ixp 8921 df-func 17879 df-full 17927 |
| This theorem is referenced by: fullfo 17935 isffth2 17939 cofull 17957 fullestrcsetc 18171 fullsetcestrc 18186 fullthinc 49065 |
| Copyright terms: Public domain | W3C validator |