![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfull2 | Structured version Visualization version GIF version |
Description: Equivalent condition for a full functor. (Contributed by Mario Carneiro, 27-Jan-2017.) |
Ref | Expression |
---|---|
isfull.b | ⊢ 𝐵 = (Base‘𝐶) |
isfull.j | ⊢ 𝐽 = (Hom ‘𝐷) |
isfull.h | ⊢ 𝐻 = (Hom ‘𝐶) |
Ref | Expression |
---|---|
isfull2 | ⊢ (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfull.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
2 | isfull.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
3 | 1, 2 | isfull 17977 | . 2 ⊢ (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
4 | isfull.h | . . . . . . 7 ⊢ 𝐻 = (Hom ‘𝐶) | |
5 | simpll 766 | . . . . . . 7 ⊢ (((𝐹(𝐶 Func 𝐷)𝐺 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝐹(𝐶 Func 𝐷)𝐺) | |
6 | simplr 768 | . . . . . . 7 ⊢ (((𝐹(𝐶 Func 𝐷)𝐺 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
7 | simpr 484 | . . . . . . 7 ⊢ (((𝐹(𝐶 Func 𝐷)𝐺 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) | |
8 | 1, 4, 2, 5, 6, 7 | funcf2 17932 | . . . . . 6 ⊢ (((𝐹(𝐶 Func 𝐷)𝐺 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦))) |
9 | ffn 6747 | . . . . . 6 ⊢ ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦)) → (𝑥𝐺𝑦) Fn (𝑥𝐻𝑦)) | |
10 | df-fo 6579 | . . . . . . 7 ⊢ ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ↔ ((𝑥𝐺𝑦) Fn (𝑥𝐻𝑦) ∧ ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) | |
11 | 10 | baib 535 | . . . . . 6 ⊢ ((𝑥𝐺𝑦) Fn (𝑥𝐻𝑦) → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ↔ ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
12 | 8, 9, 11 | 3syl 18 | . . . . 5 ⊢ (((𝐹(𝐶 Func 𝐷)𝐺 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ↔ ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
13 | 12 | ralbidva 3182 | . . . 4 ⊢ ((𝐹(𝐶 Func 𝐷)𝐺 ∧ 𝑥 ∈ 𝐵) → (∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ↔ ∀𝑦 ∈ 𝐵 ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
14 | 13 | ralbidva 3182 | . . 3 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
15 | 14 | pm5.32i 574 | . 2 ⊢ ((𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹‘𝑥)𝐽(𝐹‘𝑦))) ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
16 | 3, 15 | bitr4i 278 | 1 ⊢ (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 class class class wbr 5166 ran crn 5701 Fn wfn 6568 ⟶wf 6569 –onto→wfo 6571 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Hom chom 17322 Func cfunc 17918 Full cful 17969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-map 8886 df-ixp 8956 df-func 17922 df-full 17971 |
This theorem is referenced by: fullfo 17979 isffth2 17983 cofull 18001 fullestrcsetc 18220 fullsetcestrc 18235 fullthinc 48713 |
Copyright terms: Public domain | W3C validator |