![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efifo | Structured version Visualization version GIF version |
Description: The exponential function of an imaginary number maps the reals onto the unit circle. (Contributed by Mario Carneiro, 13-May-2014.) |
Ref | Expression |
---|---|
efifo.1 | ⊢ 𝐹 = (𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) |
efifo.2 | ⊢ 𝐶 = (◡abs “ {1}) |
Ref | Expression |
---|---|
efifo | ⊢ 𝐹:ℝ–onto→𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efifo.1 | . . . 4 ⊢ 𝐹 = (𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) | |
2 | ax-icn 11110 | . . . . . . . 8 ⊢ i ∈ ℂ | |
3 | recn 11141 | . . . . . . . 8 ⊢ (𝑧 ∈ ℝ → 𝑧 ∈ ℂ) | |
4 | mulcl 11135 | . . . . . . . 8 ⊢ ((i ∈ ℂ ∧ 𝑧 ∈ ℂ) → (i · 𝑧) ∈ ℂ) | |
5 | 2, 3, 4 | sylancr 587 | . . . . . . 7 ⊢ (𝑧 ∈ ℝ → (i · 𝑧) ∈ ℂ) |
6 | efcl 15965 | . . . . . . 7 ⊢ ((i · 𝑧) ∈ ℂ → (exp‘(i · 𝑧)) ∈ ℂ) | |
7 | 5, 6 | syl 17 | . . . . . 6 ⊢ (𝑧 ∈ ℝ → (exp‘(i · 𝑧)) ∈ ℂ) |
8 | absefi 16078 | . . . . . 6 ⊢ (𝑧 ∈ ℝ → (abs‘(exp‘(i · 𝑧))) = 1) | |
9 | absf 15222 | . . . . . . 7 ⊢ abs:ℂ⟶ℝ | |
10 | ffn 6668 | . . . . . . 7 ⊢ (abs:ℂ⟶ℝ → abs Fn ℂ) | |
11 | fniniseg 7010 | . . . . . . 7 ⊢ (abs Fn ℂ → ((exp‘(i · 𝑧)) ∈ (◡abs “ {1}) ↔ ((exp‘(i · 𝑧)) ∈ ℂ ∧ (abs‘(exp‘(i · 𝑧))) = 1))) | |
12 | 9, 10, 11 | mp2b 10 | . . . . . 6 ⊢ ((exp‘(i · 𝑧)) ∈ (◡abs “ {1}) ↔ ((exp‘(i · 𝑧)) ∈ ℂ ∧ (abs‘(exp‘(i · 𝑧))) = 1)) |
13 | 7, 8, 12 | sylanbrc 583 | . . . . 5 ⊢ (𝑧 ∈ ℝ → (exp‘(i · 𝑧)) ∈ (◡abs “ {1})) |
14 | efifo.2 | . . . . 5 ⊢ 𝐶 = (◡abs “ {1}) | |
15 | 13, 14 | eleqtrrdi 2849 | . . . 4 ⊢ (𝑧 ∈ ℝ → (exp‘(i · 𝑧)) ∈ 𝐶) |
16 | 1, 15 | fmpti 7060 | . . 3 ⊢ 𝐹:ℝ⟶𝐶 |
17 | ffn 6668 | . . 3 ⊢ (𝐹:ℝ⟶𝐶 → 𝐹 Fn ℝ) | |
18 | 16, 17 | ax-mp 5 | . 2 ⊢ 𝐹 Fn ℝ |
19 | frn 6675 | . . . 4 ⊢ (𝐹:ℝ⟶𝐶 → ran 𝐹 ⊆ 𝐶) | |
20 | 16, 19 | ax-mp 5 | . . 3 ⊢ ran 𝐹 ⊆ 𝐶 |
21 | df-ima 5646 | . . . . 5 ⊢ (𝐹 “ (0(,](2 · π))) = ran (𝐹 ↾ (0(,](2 · π))) | |
22 | 1 | reseq1i 5933 | . . . . . . . 8 ⊢ (𝐹 ↾ (0(,](2 · π))) = ((𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) ↾ (0(,](2 · π))) |
23 | 0xr 11202 | . . . . . . . . . . . 12 ⊢ 0 ∈ ℝ* | |
24 | 2re 12227 | . . . . . . . . . . . . 13 ⊢ 2 ∈ ℝ | |
25 | pire 25815 | . . . . . . . . . . . . 13 ⊢ π ∈ ℝ | |
26 | 24, 25 | remulcli 11171 | . . . . . . . . . . . 12 ⊢ (2 · π) ∈ ℝ |
27 | elioc2 13327 | . . . . . . . . . . . 12 ⊢ ((0 ∈ ℝ* ∧ (2 · π) ∈ ℝ) → (𝑧 ∈ (0(,](2 · π)) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧 ∧ 𝑧 ≤ (2 · π)))) | |
28 | 23, 26, 27 | mp2an 690 | . . . . . . . . . . 11 ⊢ (𝑧 ∈ (0(,](2 · π)) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧 ∧ 𝑧 ≤ (2 · π))) |
29 | 28 | simp1bi 1145 | . . . . . . . . . 10 ⊢ (𝑧 ∈ (0(,](2 · π)) → 𝑧 ∈ ℝ) |
30 | 29 | ssriv 3948 | . . . . . . . . 9 ⊢ (0(,](2 · π)) ⊆ ℝ |
31 | resmpt 5991 | . . . . . . . . 9 ⊢ ((0(,](2 · π)) ⊆ ℝ → ((𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) ↾ (0(,](2 · π))) = (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧)))) | |
32 | 30, 31 | ax-mp 5 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) ↾ (0(,](2 · π))) = (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) |
33 | 22, 32 | eqtri 2764 | . . . . . . 7 ⊢ (𝐹 ↾ (0(,](2 · π))) = (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) |
34 | 33 | rneqi 5892 | . . . . . 6 ⊢ ran (𝐹 ↾ (0(,](2 · π))) = ran (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) |
35 | 0re 11157 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
36 | eqid 2736 | . . . . . . . . 9 ⊢ (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) = (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) | |
37 | 26 | recni 11169 | . . . . . . . . . . . 12 ⊢ (2 · π) ∈ ℂ |
38 | 37 | addid2i 11343 | . . . . . . . . . . 11 ⊢ (0 + (2 · π)) = (2 · π) |
39 | 38 | oveq2i 7368 | . . . . . . . . . 10 ⊢ (0(,](0 + (2 · π))) = (0(,](2 · π)) |
40 | 39 | eqcomi 2745 | . . . . . . . . 9 ⊢ (0(,](2 · π)) = (0(,](0 + (2 · π))) |
41 | 36, 14, 40 | efif1o 25902 | . . . . . . . 8 ⊢ (0 ∈ ℝ → (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–1-1-onto→𝐶) |
42 | 35, 41 | ax-mp 5 | . . . . . . 7 ⊢ (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–1-1-onto→𝐶 |
43 | f1ofo 6791 | . . . . . . 7 ⊢ ((𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–1-1-onto→𝐶 → (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–onto→𝐶) | |
44 | forn 6759 | . . . . . . 7 ⊢ ((𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–onto→𝐶 → ran (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) = 𝐶) | |
45 | 42, 43, 44 | mp2b 10 | . . . . . 6 ⊢ ran (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) = 𝐶 |
46 | 34, 45 | eqtri 2764 | . . . . 5 ⊢ ran (𝐹 ↾ (0(,](2 · π))) = 𝐶 |
47 | 21, 46 | eqtri 2764 | . . . 4 ⊢ (𝐹 “ (0(,](2 · π))) = 𝐶 |
48 | imassrn 6024 | . . . 4 ⊢ (𝐹 “ (0(,](2 · π))) ⊆ ran 𝐹 | |
49 | 47, 48 | eqsstrri 3979 | . . 3 ⊢ 𝐶 ⊆ ran 𝐹 |
50 | 20, 49 | eqssi 3960 | . 2 ⊢ ran 𝐹 = 𝐶 |
51 | df-fo 6502 | . 2 ⊢ (𝐹:ℝ–onto→𝐶 ↔ (𝐹 Fn ℝ ∧ ran 𝐹 = 𝐶)) | |
52 | 18, 50, 51 | mpbir2an 709 | 1 ⊢ 𝐹:ℝ–onto→𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ⊆ wss 3910 {csn 4586 class class class wbr 5105 ↦ cmpt 5188 ◡ccnv 5632 ran crn 5634 ↾ cres 5635 “ cima 5636 Fn wfn 6491 ⟶wf 6492 –onto→wfo 6494 –1-1-onto→wf1o 6495 ‘cfv 6496 (class class class)co 7357 ℂcc 11049 ℝcr 11050 0cc0 11051 1c1 11052 ici 11053 + caddc 11054 · cmul 11056 ℝ*cxr 11188 < clt 11189 ≤ cle 11190 2c2 12208 (,]cioc 13265 abscabs 15119 expce 15944 πcpi 15949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 ax-addf 11130 ax-mulf 11131 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8648 df-map 8767 df-pm 8768 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-fi 9347 df-sup 9378 df-inf 9379 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-q 12874 df-rp 12916 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-ioo 13268 df-ioc 13269 df-ico 13270 df-icc 13271 df-fz 13425 df-fzo 13568 df-fl 13697 df-mod 13775 df-seq 13907 df-exp 13968 df-fac 14174 df-bc 14203 df-hash 14231 df-shft 14952 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-limsup 15353 df-clim 15370 df-rlim 15371 df-sum 15571 df-ef 15950 df-sin 15952 df-cos 15953 df-pi 15955 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-starv 17148 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-unif 17156 df-hom 17157 df-cco 17158 df-rest 17304 df-topn 17305 df-0g 17323 df-gsum 17324 df-topgen 17325 df-pt 17326 df-prds 17329 df-xrs 17384 df-qtop 17389 df-imas 17390 df-xps 17392 df-mre 17466 df-mrc 17467 df-acs 17469 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-submnd 18602 df-mulg 18873 df-cntz 19097 df-cmn 19564 df-psmet 20788 df-xmet 20789 df-met 20790 df-bl 20791 df-mopn 20792 df-fbas 20793 df-fg 20794 df-cnfld 20797 df-top 22243 df-topon 22260 df-topsp 22282 df-bases 22296 df-cld 22370 df-ntr 22371 df-cls 22372 df-nei 22449 df-lp 22487 df-perf 22488 df-cn 22578 df-cnp 22579 df-haus 22666 df-tx 22913 df-hmeo 23106 df-fil 23197 df-fm 23289 df-flim 23290 df-flf 23291 df-xms 23673 df-ms 23674 df-tms 23675 df-cncf 24241 df-limc 25230 df-dv 25231 |
This theorem is referenced by: circgrp 25908 circsubm 25909 circtopn 32418 circcn 32419 |
Copyright terms: Public domain | W3C validator |