Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > efifo | Structured version Visualization version GIF version |
Description: The exponential function of an imaginary number maps the reals onto the unit circle. (Contributed by Mario Carneiro, 13-May-2014.) |
Ref | Expression |
---|---|
efifo.1 | ⊢ 𝐹 = (𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) |
efifo.2 | ⊢ 𝐶 = (◡abs “ {1}) |
Ref | Expression |
---|---|
efifo | ⊢ 𝐹:ℝ–onto→𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efifo.1 | . . . 4 ⊢ 𝐹 = (𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) | |
2 | ax-icn 10939 | . . . . . . . 8 ⊢ i ∈ ℂ | |
3 | recn 10970 | . . . . . . . 8 ⊢ (𝑧 ∈ ℝ → 𝑧 ∈ ℂ) | |
4 | mulcl 10964 | . . . . . . . 8 ⊢ ((i ∈ ℂ ∧ 𝑧 ∈ ℂ) → (i · 𝑧) ∈ ℂ) | |
5 | 2, 3, 4 | sylancr 587 | . . . . . . 7 ⊢ (𝑧 ∈ ℝ → (i · 𝑧) ∈ ℂ) |
6 | efcl 15801 | . . . . . . 7 ⊢ ((i · 𝑧) ∈ ℂ → (exp‘(i · 𝑧)) ∈ ℂ) | |
7 | 5, 6 | syl 17 | . . . . . 6 ⊢ (𝑧 ∈ ℝ → (exp‘(i · 𝑧)) ∈ ℂ) |
8 | absefi 15914 | . . . . . 6 ⊢ (𝑧 ∈ ℝ → (abs‘(exp‘(i · 𝑧))) = 1) | |
9 | absf 15058 | . . . . . . 7 ⊢ abs:ℂ⟶ℝ | |
10 | ffn 6609 | . . . . . . 7 ⊢ (abs:ℂ⟶ℝ → abs Fn ℂ) | |
11 | fniniseg 6946 | . . . . . . 7 ⊢ (abs Fn ℂ → ((exp‘(i · 𝑧)) ∈ (◡abs “ {1}) ↔ ((exp‘(i · 𝑧)) ∈ ℂ ∧ (abs‘(exp‘(i · 𝑧))) = 1))) | |
12 | 9, 10, 11 | mp2b 10 | . . . . . 6 ⊢ ((exp‘(i · 𝑧)) ∈ (◡abs “ {1}) ↔ ((exp‘(i · 𝑧)) ∈ ℂ ∧ (abs‘(exp‘(i · 𝑧))) = 1)) |
13 | 7, 8, 12 | sylanbrc 583 | . . . . 5 ⊢ (𝑧 ∈ ℝ → (exp‘(i · 𝑧)) ∈ (◡abs “ {1})) |
14 | efifo.2 | . . . . 5 ⊢ 𝐶 = (◡abs “ {1}) | |
15 | 13, 14 | eleqtrrdi 2851 | . . . 4 ⊢ (𝑧 ∈ ℝ → (exp‘(i · 𝑧)) ∈ 𝐶) |
16 | 1, 15 | fmpti 6995 | . . 3 ⊢ 𝐹:ℝ⟶𝐶 |
17 | ffn 6609 | . . 3 ⊢ (𝐹:ℝ⟶𝐶 → 𝐹 Fn ℝ) | |
18 | 16, 17 | ax-mp 5 | . 2 ⊢ 𝐹 Fn ℝ |
19 | frn 6616 | . . . 4 ⊢ (𝐹:ℝ⟶𝐶 → ran 𝐹 ⊆ 𝐶) | |
20 | 16, 19 | ax-mp 5 | . . 3 ⊢ ran 𝐹 ⊆ 𝐶 |
21 | df-ima 5603 | . . . . 5 ⊢ (𝐹 “ (0(,](2 · π))) = ran (𝐹 ↾ (0(,](2 · π))) | |
22 | 1 | reseq1i 5890 | . . . . . . . 8 ⊢ (𝐹 ↾ (0(,](2 · π))) = ((𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) ↾ (0(,](2 · π))) |
23 | 0xr 11031 | . . . . . . . . . . . 12 ⊢ 0 ∈ ℝ* | |
24 | 2re 12056 | . . . . . . . . . . . . 13 ⊢ 2 ∈ ℝ | |
25 | pire 25624 | . . . . . . . . . . . . 13 ⊢ π ∈ ℝ | |
26 | 24, 25 | remulcli 11000 | . . . . . . . . . . . 12 ⊢ (2 · π) ∈ ℝ |
27 | elioc2 13151 | . . . . . . . . . . . 12 ⊢ ((0 ∈ ℝ* ∧ (2 · π) ∈ ℝ) → (𝑧 ∈ (0(,](2 · π)) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧 ∧ 𝑧 ≤ (2 · π)))) | |
28 | 23, 26, 27 | mp2an 689 | . . . . . . . . . . 11 ⊢ (𝑧 ∈ (0(,](2 · π)) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧 ∧ 𝑧 ≤ (2 · π))) |
29 | 28 | simp1bi 1144 | . . . . . . . . . 10 ⊢ (𝑧 ∈ (0(,](2 · π)) → 𝑧 ∈ ℝ) |
30 | 29 | ssriv 3926 | . . . . . . . . 9 ⊢ (0(,](2 · π)) ⊆ ℝ |
31 | resmpt 5948 | . . . . . . . . 9 ⊢ ((0(,](2 · π)) ⊆ ℝ → ((𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) ↾ (0(,](2 · π))) = (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧)))) | |
32 | 30, 31 | ax-mp 5 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) ↾ (0(,](2 · π))) = (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) |
33 | 22, 32 | eqtri 2767 | . . . . . . 7 ⊢ (𝐹 ↾ (0(,](2 · π))) = (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) |
34 | 33 | rneqi 5849 | . . . . . 6 ⊢ ran (𝐹 ↾ (0(,](2 · π))) = ran (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) |
35 | 0re 10986 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
36 | eqid 2739 | . . . . . . . . 9 ⊢ (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) = (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) | |
37 | 26 | recni 10998 | . . . . . . . . . . . 12 ⊢ (2 · π) ∈ ℂ |
38 | 37 | addid2i 11172 | . . . . . . . . . . 11 ⊢ (0 + (2 · π)) = (2 · π) |
39 | 38 | oveq2i 7295 | . . . . . . . . . 10 ⊢ (0(,](0 + (2 · π))) = (0(,](2 · π)) |
40 | 39 | eqcomi 2748 | . . . . . . . . 9 ⊢ (0(,](2 · π)) = (0(,](0 + (2 · π))) |
41 | 36, 14, 40 | efif1o 25711 | . . . . . . . 8 ⊢ (0 ∈ ℝ → (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–1-1-onto→𝐶) |
42 | 35, 41 | ax-mp 5 | . . . . . . 7 ⊢ (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–1-1-onto→𝐶 |
43 | f1ofo 6732 | . . . . . . 7 ⊢ ((𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–1-1-onto→𝐶 → (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–onto→𝐶) | |
44 | forn 6700 | . . . . . . 7 ⊢ ((𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–onto→𝐶 → ran (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) = 𝐶) | |
45 | 42, 43, 44 | mp2b 10 | . . . . . 6 ⊢ ran (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) = 𝐶 |
46 | 34, 45 | eqtri 2767 | . . . . 5 ⊢ ran (𝐹 ↾ (0(,](2 · π))) = 𝐶 |
47 | 21, 46 | eqtri 2767 | . . . 4 ⊢ (𝐹 “ (0(,](2 · π))) = 𝐶 |
48 | imassrn 5983 | . . . 4 ⊢ (𝐹 “ (0(,](2 · π))) ⊆ ran 𝐹 | |
49 | 47, 48 | eqsstrri 3957 | . . 3 ⊢ 𝐶 ⊆ ran 𝐹 |
50 | 20, 49 | eqssi 3938 | . 2 ⊢ ran 𝐹 = 𝐶 |
51 | df-fo 6443 | . 2 ⊢ (𝐹:ℝ–onto→𝐶 ↔ (𝐹 Fn ℝ ∧ ran 𝐹 = 𝐶)) | |
52 | 18, 50, 51 | mpbir2an 708 | 1 ⊢ 𝐹:ℝ–onto→𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ⊆ wss 3888 {csn 4562 class class class wbr 5075 ↦ cmpt 5158 ◡ccnv 5589 ran crn 5591 ↾ cres 5592 “ cima 5593 Fn wfn 6432 ⟶wf 6433 –onto→wfo 6435 –1-1-onto→wf1o 6436 ‘cfv 6437 (class class class)co 7284 ℂcc 10878 ℝcr 10879 0cc0 10880 1c1 10881 ici 10882 + caddc 10883 · cmul 10885 ℝ*cxr 11017 < clt 11018 ≤ cle 11019 2c2 12037 (,]cioc 13089 abscabs 14954 expce 15780 πcpi 15785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-inf2 9408 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 ax-pre-sup 10958 ax-addf 10959 ax-mulf 10960 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rmo 3072 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-tp 4567 df-op 4569 df-uni 4841 df-int 4881 df-iun 4927 df-iin 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-isom 6446 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-of 7542 df-om 7722 df-1st 7840 df-2nd 7841 df-supp 7987 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-1o 8306 df-2o 8307 df-er 8507 df-map 8626 df-pm 8627 df-ixp 8695 df-en 8743 df-dom 8744 df-sdom 8745 df-fin 8746 df-fsupp 9138 df-fi 9179 df-sup 9210 df-inf 9211 df-oi 9278 df-card 9706 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-div 11642 df-nn 11983 df-2 12045 df-3 12046 df-4 12047 df-5 12048 df-6 12049 df-7 12050 df-8 12051 df-9 12052 df-n0 12243 df-z 12329 df-dec 12447 df-uz 12592 df-q 12698 df-rp 12740 df-xneg 12857 df-xadd 12858 df-xmul 12859 df-ioo 13092 df-ioc 13093 df-ico 13094 df-icc 13095 df-fz 13249 df-fzo 13392 df-fl 13521 df-mod 13599 df-seq 13731 df-exp 13792 df-fac 13997 df-bc 14026 df-hash 14054 df-shft 14787 df-cj 14819 df-re 14820 df-im 14821 df-sqrt 14955 df-abs 14956 df-limsup 15189 df-clim 15206 df-rlim 15207 df-sum 15407 df-ef 15786 df-sin 15788 df-cos 15789 df-pi 15791 df-struct 16857 df-sets 16874 df-slot 16892 df-ndx 16904 df-base 16922 df-ress 16951 df-plusg 16984 df-mulr 16985 df-starv 16986 df-sca 16987 df-vsca 16988 df-ip 16989 df-tset 16990 df-ple 16991 df-ds 16993 df-unif 16994 df-hom 16995 df-cco 16996 df-rest 17142 df-topn 17143 df-0g 17161 df-gsum 17162 df-topgen 17163 df-pt 17164 df-prds 17167 df-xrs 17222 df-qtop 17227 df-imas 17228 df-xps 17230 df-mre 17304 df-mrc 17305 df-acs 17307 df-mgm 18335 df-sgrp 18384 df-mnd 18395 df-submnd 18440 df-mulg 18710 df-cntz 18932 df-cmn 19397 df-psmet 20598 df-xmet 20599 df-met 20600 df-bl 20601 df-mopn 20602 df-fbas 20603 df-fg 20604 df-cnfld 20607 df-top 22052 df-topon 22069 df-topsp 22091 df-bases 22105 df-cld 22179 df-ntr 22180 df-cls 22181 df-nei 22258 df-lp 22296 df-perf 22297 df-cn 22387 df-cnp 22388 df-haus 22475 df-tx 22722 df-hmeo 22915 df-fil 23006 df-fm 23098 df-flim 23099 df-flf 23100 df-xms 23482 df-ms 23483 df-tms 23484 df-cncf 24050 df-limc 25039 df-dv 25040 |
This theorem is referenced by: circgrp 25717 circsubm 25718 circtopn 31796 circcn 31797 |
Copyright terms: Public domain | W3C validator |