MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efifo Structured version   Visualization version   GIF version

Theorem efifo 24817
Description: The exponential function of an imaginary number maps the reals onto the unit circle. (Contributed by Mario Carneiro, 13-May-2014.)
Hypotheses
Ref Expression
efifo.1 𝐹 = (𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧)))
efifo.2 𝐶 = (abs “ {1})
Assertion
Ref Expression
efifo 𝐹:ℝ–onto𝐶
Distinct variable group:   𝑧,𝐶
Allowed substitution hint:   𝐹(𝑧)

Proof of Theorem efifo
StepHypRef Expression
1 efifo.1 . . . 4 𝐹 = (𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧)))
2 ax-icn 10447 . . . . . . . 8 i ∈ ℂ
3 recn 10478 . . . . . . . 8 (𝑧 ∈ ℝ → 𝑧 ∈ ℂ)
4 mulcl 10472 . . . . . . . 8 ((i ∈ ℂ ∧ 𝑧 ∈ ℂ) → (i · 𝑧) ∈ ℂ)
52, 3, 4sylancr 587 . . . . . . 7 (𝑧 ∈ ℝ → (i · 𝑧) ∈ ℂ)
6 efcl 15274 . . . . . . 7 ((i · 𝑧) ∈ ℂ → (exp‘(i · 𝑧)) ∈ ℂ)
75, 6syl 17 . . . . . 6 (𝑧 ∈ ℝ → (exp‘(i · 𝑧)) ∈ ℂ)
8 absefi 15387 . . . . . 6 (𝑧 ∈ ℝ → (abs‘(exp‘(i · 𝑧))) = 1)
9 absf 14536 . . . . . . 7 abs:ℂ⟶ℝ
10 ffn 6387 . . . . . . 7 (abs:ℂ⟶ℝ → abs Fn ℂ)
11 fniniseg 6700 . . . . . . 7 (abs Fn ℂ → ((exp‘(i · 𝑧)) ∈ (abs “ {1}) ↔ ((exp‘(i · 𝑧)) ∈ ℂ ∧ (abs‘(exp‘(i · 𝑧))) = 1)))
129, 10, 11mp2b 10 . . . . . 6 ((exp‘(i · 𝑧)) ∈ (abs “ {1}) ↔ ((exp‘(i · 𝑧)) ∈ ℂ ∧ (abs‘(exp‘(i · 𝑧))) = 1))
137, 8, 12sylanbrc 583 . . . . 5 (𝑧 ∈ ℝ → (exp‘(i · 𝑧)) ∈ (abs “ {1}))
14 efifo.2 . . . . 5 𝐶 = (abs “ {1})
1513, 14syl6eleqr 2894 . . . 4 (𝑧 ∈ ℝ → (exp‘(i · 𝑧)) ∈ 𝐶)
161, 15fmpti 6744 . . 3 𝐹:ℝ⟶𝐶
17 ffn 6387 . . 3 (𝐹:ℝ⟶𝐶𝐹 Fn ℝ)
1816, 17ax-mp 5 . 2 𝐹 Fn ℝ
19 frn 6393 . . . 4 (𝐹:ℝ⟶𝐶 → ran 𝐹𝐶)
2016, 19ax-mp 5 . . 3 ran 𝐹𝐶
21 df-ima 5461 . . . . 5 (𝐹 “ (0(,](2 · π))) = ran (𝐹 ↾ (0(,](2 · π)))
221reseq1i 5735 . . . . . . . 8 (𝐹 ↾ (0(,](2 · π))) = ((𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) ↾ (0(,](2 · π)))
23 0xr 10539 . . . . . . . . . . . 12 0 ∈ ℝ*
24 2re 11564 . . . . . . . . . . . . 13 2 ∈ ℝ
25 pire 24732 . . . . . . . . . . . . 13 π ∈ ℝ
2624, 25remulcli 10508 . . . . . . . . . . . 12 (2 · π) ∈ ℝ
27 elioc2 12654 . . . . . . . . . . . 12 ((0 ∈ ℝ* ∧ (2 · π) ∈ ℝ) → (𝑧 ∈ (0(,](2 · π)) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧𝑧 ≤ (2 · π))))
2823, 26, 27mp2an 688 . . . . . . . . . . 11 (𝑧 ∈ (0(,](2 · π)) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧𝑧 ≤ (2 · π)))
2928simp1bi 1138 . . . . . . . . . 10 (𝑧 ∈ (0(,](2 · π)) → 𝑧 ∈ ℝ)
3029ssriv 3897 . . . . . . . . 9 (0(,](2 · π)) ⊆ ℝ
31 resmpt 5791 . . . . . . . . 9 ((0(,](2 · π)) ⊆ ℝ → ((𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) ↾ (0(,](2 · π))) = (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))))
3230, 31ax-mp 5 . . . . . . . 8 ((𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) ↾ (0(,](2 · π))) = (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧)))
3322, 32eqtri 2819 . . . . . . 7 (𝐹 ↾ (0(,](2 · π))) = (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧)))
3433rneqi 5694 . . . . . 6 ran (𝐹 ↾ (0(,](2 · π))) = ran (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧)))
35 0re 10494 . . . . . . . 8 0 ∈ ℝ
36 eqid 2795 . . . . . . . . 9 (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) = (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧)))
3726recni 10506 . . . . . . . . . . . 12 (2 · π) ∈ ℂ
3837addid2i 10680 . . . . . . . . . . 11 (0 + (2 · π)) = (2 · π)
3938oveq2i 7032 . . . . . . . . . 10 (0(,](0 + (2 · π))) = (0(,](2 · π))
4039eqcomi 2804 . . . . . . . . 9 (0(,](2 · π)) = (0(,](0 + (2 · π)))
4136, 14, 40efif1o 24816 . . . . . . . 8 (0 ∈ ℝ → (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–1-1-onto𝐶)
4235, 41ax-mp 5 . . . . . . 7 (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–1-1-onto𝐶
43 f1ofo 6495 . . . . . . 7 ((𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–1-1-onto𝐶 → (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–onto𝐶)
44 forn 6466 . . . . . . 7 ((𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–onto𝐶 → ran (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) = 𝐶)
4542, 43, 44mp2b 10 . . . . . 6 ran (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) = 𝐶
4634, 45eqtri 2819 . . . . 5 ran (𝐹 ↾ (0(,](2 · π))) = 𝐶
4721, 46eqtri 2819 . . . 4 (𝐹 “ (0(,](2 · π))) = 𝐶
48 imassrn 5822 . . . 4 (𝐹 “ (0(,](2 · π))) ⊆ ran 𝐹
4947, 48eqsstrri 3927 . . 3 𝐶 ⊆ ran 𝐹
5020, 49eqssi 3909 . 2 ran 𝐹 = 𝐶
51 df-fo 6236 . 2 (𝐹:ℝ–onto𝐶 ↔ (𝐹 Fn ℝ ∧ ran 𝐹 = 𝐶))
5218, 50, 51mpbir2an 707 1 𝐹:ℝ–onto𝐶
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2081  wss 3863  {csn 4476   class class class wbr 4966  cmpt 5045  ccnv 5447  ran crn 5449  cres 5450  cima 5451   Fn wfn 6225  wf 6226  ontowfo 6228  1-1-ontowf1o 6229  cfv 6230  (class class class)co 7021  cc 10386  cr 10387  0cc0 10388  1c1 10389  ici 10390   + caddc 10391   · cmul 10393  *cxr 10525   < clt 10526  cle 10527  2c2 11545  (,]cioc 12594  abscabs 14432  expce 15253  πcpi 15258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5086  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-inf2 8955  ax-cnex 10444  ax-resscn 10445  ax-1cn 10446  ax-icn 10447  ax-addcl 10448  ax-addrcl 10449  ax-mulcl 10450  ax-mulrcl 10451  ax-mulcom 10452  ax-addass 10453  ax-mulass 10454  ax-distr 10455  ax-i2m1 10456  ax-1ne0 10457  ax-1rid 10458  ax-rnegex 10459  ax-rrecex 10460  ax-cnre 10461  ax-pre-lttri 10462  ax-pre-lttrn 10463  ax-pre-ltadd 10464  ax-pre-mulgt0 10465  ax-pre-sup 10466  ax-addf 10467  ax-mulf 10468
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-int 4787  df-iun 4831  df-iin 4832  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-se 5408  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-isom 6239  df-riota 6982  df-ov 7024  df-oprab 7025  df-mpo 7026  df-of 7272  df-om 7442  df-1st 7550  df-2nd 7551  df-supp 7687  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-1o 7958  df-2o 7959  df-oadd 7962  df-er 8144  df-map 8263  df-pm 8264  df-ixp 8316  df-en 8363  df-dom 8364  df-sdom 8365  df-fin 8366  df-fsupp 8685  df-fi 8726  df-sup 8757  df-inf 8758  df-oi 8825  df-card 9219  df-pnf 10528  df-mnf 10529  df-xr 10530  df-ltxr 10531  df-le 10532  df-sub 10724  df-neg 10725  df-div 11151  df-nn 11492  df-2 11553  df-3 11554  df-4 11555  df-5 11556  df-6 11557  df-7 11558  df-8 11559  df-9 11560  df-n0 11751  df-z 11835  df-dec 11953  df-uz 12099  df-q 12203  df-rp 12245  df-xneg 12362  df-xadd 12363  df-xmul 12364  df-ioo 12597  df-ioc 12598  df-ico 12599  df-icc 12600  df-fz 12748  df-fzo 12889  df-fl 13017  df-mod 13093  df-seq 13225  df-exp 13285  df-fac 13489  df-bc 13518  df-hash 13546  df-shft 14265  df-cj 14297  df-re 14298  df-im 14299  df-sqrt 14433  df-abs 14434  df-limsup 14667  df-clim 14684  df-rlim 14685  df-sum 14882  df-ef 15259  df-sin 15261  df-cos 15262  df-pi 15264  df-struct 16319  df-ndx 16320  df-slot 16321  df-base 16323  df-sets 16324  df-ress 16325  df-plusg 16412  df-mulr 16413  df-starv 16414  df-sca 16415  df-vsca 16416  df-ip 16417  df-tset 16418  df-ple 16419  df-ds 16421  df-unif 16422  df-hom 16423  df-cco 16424  df-rest 16530  df-topn 16531  df-0g 16549  df-gsum 16550  df-topgen 16551  df-pt 16552  df-prds 16555  df-xrs 16609  df-qtop 16614  df-imas 16615  df-xps 16617  df-mre 16691  df-mrc 16692  df-acs 16694  df-mgm 17686  df-sgrp 17728  df-mnd 17739  df-submnd 17780  df-mulg 17987  df-cntz 18193  df-cmn 18640  df-psmet 20224  df-xmet 20225  df-met 20226  df-bl 20227  df-mopn 20228  df-fbas 20229  df-fg 20230  df-cnfld 20233  df-top 21191  df-topon 21208  df-topsp 21230  df-bases 21243  df-cld 21316  df-ntr 21317  df-cls 21318  df-nei 21395  df-lp 21433  df-perf 21434  df-cn 21524  df-cnp 21525  df-haus 21612  df-tx 21859  df-hmeo 22052  df-fil 22143  df-fm 22235  df-flim 22236  df-flf 22237  df-xms 22618  df-ms 22619  df-tms 22620  df-cncf 23174  df-limc 24152  df-dv 24153
This theorem is referenced by:  circgrp  24822  circsubm  24823  circtopn  30723  circcn  30724
  Copyright terms: Public domain W3C validator