| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efifo | Structured version Visualization version GIF version | ||
| Description: The exponential function of an imaginary number maps the reals onto the unit circle. (Contributed by Mario Carneiro, 13-May-2014.) |
| Ref | Expression |
|---|---|
| efifo.1 | ⊢ 𝐹 = (𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) |
| efifo.2 | ⊢ 𝐶 = (◡abs “ {1}) |
| Ref | Expression |
|---|---|
| efifo | ⊢ 𝐹:ℝ–onto→𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efifo.1 | . . . 4 ⊢ 𝐹 = (𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) | |
| 2 | ax-icn 11188 | . . . . . . . 8 ⊢ i ∈ ℂ | |
| 3 | recn 11219 | . . . . . . . 8 ⊢ (𝑧 ∈ ℝ → 𝑧 ∈ ℂ) | |
| 4 | mulcl 11213 | . . . . . . . 8 ⊢ ((i ∈ ℂ ∧ 𝑧 ∈ ℂ) → (i · 𝑧) ∈ ℂ) | |
| 5 | 2, 3, 4 | sylancr 587 | . . . . . . 7 ⊢ (𝑧 ∈ ℝ → (i · 𝑧) ∈ ℂ) |
| 6 | efcl 16098 | . . . . . . 7 ⊢ ((i · 𝑧) ∈ ℂ → (exp‘(i · 𝑧)) ∈ ℂ) | |
| 7 | 5, 6 | syl 17 | . . . . . 6 ⊢ (𝑧 ∈ ℝ → (exp‘(i · 𝑧)) ∈ ℂ) |
| 8 | absefi 16214 | . . . . . 6 ⊢ (𝑧 ∈ ℝ → (abs‘(exp‘(i · 𝑧))) = 1) | |
| 9 | absf 15356 | . . . . . . 7 ⊢ abs:ℂ⟶ℝ | |
| 10 | ffn 6706 | . . . . . . 7 ⊢ (abs:ℂ⟶ℝ → abs Fn ℂ) | |
| 11 | fniniseg 7050 | . . . . . . 7 ⊢ (abs Fn ℂ → ((exp‘(i · 𝑧)) ∈ (◡abs “ {1}) ↔ ((exp‘(i · 𝑧)) ∈ ℂ ∧ (abs‘(exp‘(i · 𝑧))) = 1))) | |
| 12 | 9, 10, 11 | mp2b 10 | . . . . . 6 ⊢ ((exp‘(i · 𝑧)) ∈ (◡abs “ {1}) ↔ ((exp‘(i · 𝑧)) ∈ ℂ ∧ (abs‘(exp‘(i · 𝑧))) = 1)) |
| 13 | 7, 8, 12 | sylanbrc 583 | . . . . 5 ⊢ (𝑧 ∈ ℝ → (exp‘(i · 𝑧)) ∈ (◡abs “ {1})) |
| 14 | efifo.2 | . . . . 5 ⊢ 𝐶 = (◡abs “ {1}) | |
| 15 | 13, 14 | eleqtrrdi 2845 | . . . 4 ⊢ (𝑧 ∈ ℝ → (exp‘(i · 𝑧)) ∈ 𝐶) |
| 16 | 1, 15 | fmpti 7102 | . . 3 ⊢ 𝐹:ℝ⟶𝐶 |
| 17 | ffn 6706 | . . 3 ⊢ (𝐹:ℝ⟶𝐶 → 𝐹 Fn ℝ) | |
| 18 | 16, 17 | ax-mp 5 | . 2 ⊢ 𝐹 Fn ℝ |
| 19 | frn 6713 | . . . 4 ⊢ (𝐹:ℝ⟶𝐶 → ran 𝐹 ⊆ 𝐶) | |
| 20 | 16, 19 | ax-mp 5 | . . 3 ⊢ ran 𝐹 ⊆ 𝐶 |
| 21 | df-ima 5667 | . . . . 5 ⊢ (𝐹 “ (0(,](2 · π))) = ran (𝐹 ↾ (0(,](2 · π))) | |
| 22 | 1 | reseq1i 5962 | . . . . . . . 8 ⊢ (𝐹 ↾ (0(,](2 · π))) = ((𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) ↾ (0(,](2 · π))) |
| 23 | 0xr 11282 | . . . . . . . . . . . 12 ⊢ 0 ∈ ℝ* | |
| 24 | 2re 12314 | . . . . . . . . . . . . 13 ⊢ 2 ∈ ℝ | |
| 25 | pire 26418 | . . . . . . . . . . . . 13 ⊢ π ∈ ℝ | |
| 26 | 24, 25 | remulcli 11251 | . . . . . . . . . . . 12 ⊢ (2 · π) ∈ ℝ |
| 27 | elioc2 13426 | . . . . . . . . . . . 12 ⊢ ((0 ∈ ℝ* ∧ (2 · π) ∈ ℝ) → (𝑧 ∈ (0(,](2 · π)) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧 ∧ 𝑧 ≤ (2 · π)))) | |
| 28 | 23, 26, 27 | mp2an 692 | . . . . . . . . . . 11 ⊢ (𝑧 ∈ (0(,](2 · π)) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧 ∧ 𝑧 ≤ (2 · π))) |
| 29 | 28 | simp1bi 1145 | . . . . . . . . . 10 ⊢ (𝑧 ∈ (0(,](2 · π)) → 𝑧 ∈ ℝ) |
| 30 | 29 | ssriv 3962 | . . . . . . . . 9 ⊢ (0(,](2 · π)) ⊆ ℝ |
| 31 | resmpt 6024 | . . . . . . . . 9 ⊢ ((0(,](2 · π)) ⊆ ℝ → ((𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) ↾ (0(,](2 · π))) = (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧)))) | |
| 32 | 30, 31 | ax-mp 5 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) ↾ (0(,](2 · π))) = (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) |
| 33 | 22, 32 | eqtri 2758 | . . . . . . 7 ⊢ (𝐹 ↾ (0(,](2 · π))) = (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) |
| 34 | 33 | rneqi 5917 | . . . . . 6 ⊢ ran (𝐹 ↾ (0(,](2 · π))) = ran (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) |
| 35 | 0re 11237 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
| 36 | eqid 2735 | . . . . . . . . 9 ⊢ (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) = (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) | |
| 37 | 26 | recni 11249 | . . . . . . . . . . . 12 ⊢ (2 · π) ∈ ℂ |
| 38 | 37 | addlidi 11423 | . . . . . . . . . . 11 ⊢ (0 + (2 · π)) = (2 · π) |
| 39 | 38 | oveq2i 7416 | . . . . . . . . . 10 ⊢ (0(,](0 + (2 · π))) = (0(,](2 · π)) |
| 40 | 39 | eqcomi 2744 | . . . . . . . . 9 ⊢ (0(,](2 · π)) = (0(,](0 + (2 · π))) |
| 41 | 36, 14, 40 | efif1o 26507 | . . . . . . . 8 ⊢ (0 ∈ ℝ → (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–1-1-onto→𝐶) |
| 42 | 35, 41 | ax-mp 5 | . . . . . . 7 ⊢ (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–1-1-onto→𝐶 |
| 43 | f1ofo 6825 | . . . . . . 7 ⊢ ((𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–1-1-onto→𝐶 → (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–onto→𝐶) | |
| 44 | forn 6793 | . . . . . . 7 ⊢ ((𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–onto→𝐶 → ran (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) = 𝐶) | |
| 45 | 42, 43, 44 | mp2b 10 | . . . . . 6 ⊢ ran (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) = 𝐶 |
| 46 | 34, 45 | eqtri 2758 | . . . . 5 ⊢ ran (𝐹 ↾ (0(,](2 · π))) = 𝐶 |
| 47 | 21, 46 | eqtri 2758 | . . . 4 ⊢ (𝐹 “ (0(,](2 · π))) = 𝐶 |
| 48 | imassrn 6058 | . . . 4 ⊢ (𝐹 “ (0(,](2 · π))) ⊆ ran 𝐹 | |
| 49 | 47, 48 | eqsstrri 4006 | . . 3 ⊢ 𝐶 ⊆ ran 𝐹 |
| 50 | 20, 49 | eqssi 3975 | . 2 ⊢ ran 𝐹 = 𝐶 |
| 51 | df-fo 6537 | . 2 ⊢ (𝐹:ℝ–onto→𝐶 ↔ (𝐹 Fn ℝ ∧ ran 𝐹 = 𝐶)) | |
| 52 | 18, 50, 51 | mpbir2an 711 | 1 ⊢ 𝐹:ℝ–onto→𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 {csn 4601 class class class wbr 5119 ↦ cmpt 5201 ◡ccnv 5653 ran crn 5655 ↾ cres 5656 “ cima 5657 Fn wfn 6526 ⟶wf 6527 –onto→wfo 6529 –1-1-onto→wf1o 6530 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 ℝcr 11128 0cc0 11129 1c1 11130 ici 11131 + caddc 11132 · cmul 11134 ℝ*cxr 11268 < clt 11269 ≤ cle 11270 2c2 12295 (,]cioc 13363 abscabs 15253 expce 16077 πcpi 16082 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-pm 8843 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-fi 9423 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-ioo 13366 df-ioc 13367 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-fl 13809 df-mod 13887 df-seq 14020 df-exp 14080 df-fac 14292 df-bc 14321 df-hash 14349 df-shft 15086 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-limsup 15487 df-clim 15504 df-rlim 15505 df-sum 15703 df-ef 16083 df-sin 16085 df-cos 16086 df-pi 16088 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-rest 17436 df-topn 17437 df-0g 17455 df-gsum 17456 df-topgen 17457 df-pt 17458 df-prds 17461 df-xrs 17516 df-qtop 17521 df-imas 17522 df-xps 17524 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-mulg 19051 df-cntz 19300 df-cmn 19763 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-fbas 21312 df-fg 21313 df-cnfld 21316 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-cld 22957 df-ntr 22958 df-cls 22959 df-nei 23036 df-lp 23074 df-perf 23075 df-cn 23165 df-cnp 23166 df-haus 23253 df-tx 23500 df-hmeo 23693 df-fil 23784 df-fm 23876 df-flim 23877 df-flf 23878 df-xms 24259 df-ms 24260 df-tms 24261 df-cncf 24822 df-limc 25819 df-dv 25820 |
| This theorem is referenced by: circgrp 26513 circsubm 26514 circtopn 33868 circcn 33869 |
| Copyright terms: Public domain | W3C validator |