MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efifo Structured version   Visualization version   GIF version

Theorem efifo 25712
Description: The exponential function of an imaginary number maps the reals onto the unit circle. (Contributed by Mario Carneiro, 13-May-2014.)
Hypotheses
Ref Expression
efifo.1 𝐹 = (𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧)))
efifo.2 𝐶 = (abs “ {1})
Assertion
Ref Expression
efifo 𝐹:ℝ–onto𝐶
Distinct variable group:   𝑧,𝐶
Allowed substitution hint:   𝐹(𝑧)

Proof of Theorem efifo
StepHypRef Expression
1 efifo.1 . . . 4 𝐹 = (𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧)))
2 ax-icn 10939 . . . . . . . 8 i ∈ ℂ
3 recn 10970 . . . . . . . 8 (𝑧 ∈ ℝ → 𝑧 ∈ ℂ)
4 mulcl 10964 . . . . . . . 8 ((i ∈ ℂ ∧ 𝑧 ∈ ℂ) → (i · 𝑧) ∈ ℂ)
52, 3, 4sylancr 587 . . . . . . 7 (𝑧 ∈ ℝ → (i · 𝑧) ∈ ℂ)
6 efcl 15801 . . . . . . 7 ((i · 𝑧) ∈ ℂ → (exp‘(i · 𝑧)) ∈ ℂ)
75, 6syl 17 . . . . . 6 (𝑧 ∈ ℝ → (exp‘(i · 𝑧)) ∈ ℂ)
8 absefi 15914 . . . . . 6 (𝑧 ∈ ℝ → (abs‘(exp‘(i · 𝑧))) = 1)
9 absf 15058 . . . . . . 7 abs:ℂ⟶ℝ
10 ffn 6609 . . . . . . 7 (abs:ℂ⟶ℝ → abs Fn ℂ)
11 fniniseg 6946 . . . . . . 7 (abs Fn ℂ → ((exp‘(i · 𝑧)) ∈ (abs “ {1}) ↔ ((exp‘(i · 𝑧)) ∈ ℂ ∧ (abs‘(exp‘(i · 𝑧))) = 1)))
129, 10, 11mp2b 10 . . . . . 6 ((exp‘(i · 𝑧)) ∈ (abs “ {1}) ↔ ((exp‘(i · 𝑧)) ∈ ℂ ∧ (abs‘(exp‘(i · 𝑧))) = 1))
137, 8, 12sylanbrc 583 . . . . 5 (𝑧 ∈ ℝ → (exp‘(i · 𝑧)) ∈ (abs “ {1}))
14 efifo.2 . . . . 5 𝐶 = (abs “ {1})
1513, 14eleqtrrdi 2851 . . . 4 (𝑧 ∈ ℝ → (exp‘(i · 𝑧)) ∈ 𝐶)
161, 15fmpti 6995 . . 3 𝐹:ℝ⟶𝐶
17 ffn 6609 . . 3 (𝐹:ℝ⟶𝐶𝐹 Fn ℝ)
1816, 17ax-mp 5 . 2 𝐹 Fn ℝ
19 frn 6616 . . . 4 (𝐹:ℝ⟶𝐶 → ran 𝐹𝐶)
2016, 19ax-mp 5 . . 3 ran 𝐹𝐶
21 df-ima 5603 . . . . 5 (𝐹 “ (0(,](2 · π))) = ran (𝐹 ↾ (0(,](2 · π)))
221reseq1i 5890 . . . . . . . 8 (𝐹 ↾ (0(,](2 · π))) = ((𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) ↾ (0(,](2 · π)))
23 0xr 11031 . . . . . . . . . . . 12 0 ∈ ℝ*
24 2re 12056 . . . . . . . . . . . . 13 2 ∈ ℝ
25 pire 25624 . . . . . . . . . . . . 13 π ∈ ℝ
2624, 25remulcli 11000 . . . . . . . . . . . 12 (2 · π) ∈ ℝ
27 elioc2 13151 . . . . . . . . . . . 12 ((0 ∈ ℝ* ∧ (2 · π) ∈ ℝ) → (𝑧 ∈ (0(,](2 · π)) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧𝑧 ≤ (2 · π))))
2823, 26, 27mp2an 689 . . . . . . . . . . 11 (𝑧 ∈ (0(,](2 · π)) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧𝑧 ≤ (2 · π)))
2928simp1bi 1144 . . . . . . . . . 10 (𝑧 ∈ (0(,](2 · π)) → 𝑧 ∈ ℝ)
3029ssriv 3926 . . . . . . . . 9 (0(,](2 · π)) ⊆ ℝ
31 resmpt 5948 . . . . . . . . 9 ((0(,](2 · π)) ⊆ ℝ → ((𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) ↾ (0(,](2 · π))) = (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))))
3230, 31ax-mp 5 . . . . . . . 8 ((𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) ↾ (0(,](2 · π))) = (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧)))
3322, 32eqtri 2767 . . . . . . 7 (𝐹 ↾ (0(,](2 · π))) = (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧)))
3433rneqi 5849 . . . . . 6 ran (𝐹 ↾ (0(,](2 · π))) = ran (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧)))
35 0re 10986 . . . . . . . 8 0 ∈ ℝ
36 eqid 2739 . . . . . . . . 9 (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) = (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧)))
3726recni 10998 . . . . . . . . . . . 12 (2 · π) ∈ ℂ
3837addid2i 11172 . . . . . . . . . . 11 (0 + (2 · π)) = (2 · π)
3938oveq2i 7295 . . . . . . . . . 10 (0(,](0 + (2 · π))) = (0(,](2 · π))
4039eqcomi 2748 . . . . . . . . 9 (0(,](2 · π)) = (0(,](0 + (2 · π)))
4136, 14, 40efif1o 25711 . . . . . . . 8 (0 ∈ ℝ → (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–1-1-onto𝐶)
4235, 41ax-mp 5 . . . . . . 7 (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–1-1-onto𝐶
43 f1ofo 6732 . . . . . . 7 ((𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–1-1-onto𝐶 → (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–onto𝐶)
44 forn 6700 . . . . . . 7 ((𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–onto𝐶 → ran (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) = 𝐶)
4542, 43, 44mp2b 10 . . . . . 6 ran (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) = 𝐶
4634, 45eqtri 2767 . . . . 5 ran (𝐹 ↾ (0(,](2 · π))) = 𝐶
4721, 46eqtri 2767 . . . 4 (𝐹 “ (0(,](2 · π))) = 𝐶
48 imassrn 5983 . . . 4 (𝐹 “ (0(,](2 · π))) ⊆ ran 𝐹
4947, 48eqsstrri 3957 . . 3 𝐶 ⊆ ran 𝐹
5020, 49eqssi 3938 . 2 ran 𝐹 = 𝐶
51 df-fo 6443 . 2 (𝐹:ℝ–onto𝐶 ↔ (𝐹 Fn ℝ ∧ ran 𝐹 = 𝐶))
5218, 50, 51mpbir2an 708 1 𝐹:ℝ–onto𝐶
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2107  wss 3888  {csn 4562   class class class wbr 5075  cmpt 5158  ccnv 5589  ran crn 5591  cres 5592  cima 5593   Fn wfn 6432  wf 6433  ontowfo 6435  1-1-ontowf1o 6436  cfv 6437  (class class class)co 7284  cc 10878  cr 10879  0cc0 10880  1c1 10881  ici 10882   + caddc 10883   · cmul 10885  *cxr 11017   < clt 11018  cle 11019  2c2 12037  (,]cioc 13089  abscabs 14954  expce 15780  πcpi 15785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-inf2 9408  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958  ax-addf 10959  ax-mulf 10960
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-of 7542  df-om 7722  df-1st 7840  df-2nd 7841  df-supp 7987  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-2o 8307  df-er 8507  df-map 8626  df-pm 8627  df-ixp 8695  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fsupp 9138  df-fi 9179  df-sup 9210  df-inf 9211  df-oi 9278  df-card 9706  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-z 12329  df-dec 12447  df-uz 12592  df-q 12698  df-rp 12740  df-xneg 12857  df-xadd 12858  df-xmul 12859  df-ioo 13092  df-ioc 13093  df-ico 13094  df-icc 13095  df-fz 13249  df-fzo 13392  df-fl 13521  df-mod 13599  df-seq 13731  df-exp 13792  df-fac 13997  df-bc 14026  df-hash 14054  df-shft 14787  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-limsup 15189  df-clim 15206  df-rlim 15207  df-sum 15407  df-ef 15786  df-sin 15788  df-cos 15789  df-pi 15791  df-struct 16857  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-ress 16951  df-plusg 16984  df-mulr 16985  df-starv 16986  df-sca 16987  df-vsca 16988  df-ip 16989  df-tset 16990  df-ple 16991  df-ds 16993  df-unif 16994  df-hom 16995  df-cco 16996  df-rest 17142  df-topn 17143  df-0g 17161  df-gsum 17162  df-topgen 17163  df-pt 17164  df-prds 17167  df-xrs 17222  df-qtop 17227  df-imas 17228  df-xps 17230  df-mre 17304  df-mrc 17305  df-acs 17307  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-submnd 18440  df-mulg 18710  df-cntz 18932  df-cmn 19397  df-psmet 20598  df-xmet 20599  df-met 20600  df-bl 20601  df-mopn 20602  df-fbas 20603  df-fg 20604  df-cnfld 20607  df-top 22052  df-topon 22069  df-topsp 22091  df-bases 22105  df-cld 22179  df-ntr 22180  df-cls 22181  df-nei 22258  df-lp 22296  df-perf 22297  df-cn 22387  df-cnp 22388  df-haus 22475  df-tx 22722  df-hmeo 22915  df-fil 23006  df-fm 23098  df-flim 23099  df-flf 23100  df-xms 23482  df-ms 23483  df-tms 23484  df-cncf 24050  df-limc 25039  df-dv 25040
This theorem is referenced by:  circgrp  25717  circsubm  25718  circtopn  31796  circcn  31797
  Copyright terms: Public domain W3C validator