MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efifo Structured version   Visualization version   GIF version

Theorem efifo 26607
Description: The exponential function of an imaginary number maps the reals onto the unit circle. (Contributed by Mario Carneiro, 13-May-2014.)
Hypotheses
Ref Expression
efifo.1 𝐹 = (𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧)))
efifo.2 𝐶 = (abs “ {1})
Assertion
Ref Expression
efifo 𝐹:ℝ–onto𝐶
Distinct variable group:   𝑧,𝐶
Allowed substitution hint:   𝐹(𝑧)

Proof of Theorem efifo
StepHypRef Expression
1 efifo.1 . . . 4 𝐹 = (𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧)))
2 ax-icn 11243 . . . . . . . 8 i ∈ ℂ
3 recn 11274 . . . . . . . 8 (𝑧 ∈ ℝ → 𝑧 ∈ ℂ)
4 mulcl 11268 . . . . . . . 8 ((i ∈ ℂ ∧ 𝑧 ∈ ℂ) → (i · 𝑧) ∈ ℂ)
52, 3, 4sylancr 586 . . . . . . 7 (𝑧 ∈ ℝ → (i · 𝑧) ∈ ℂ)
6 efcl 16130 . . . . . . 7 ((i · 𝑧) ∈ ℂ → (exp‘(i · 𝑧)) ∈ ℂ)
75, 6syl 17 . . . . . 6 (𝑧 ∈ ℝ → (exp‘(i · 𝑧)) ∈ ℂ)
8 absefi 16244 . . . . . 6 (𝑧 ∈ ℝ → (abs‘(exp‘(i · 𝑧))) = 1)
9 absf 15386 . . . . . . 7 abs:ℂ⟶ℝ
10 ffn 6747 . . . . . . 7 (abs:ℂ⟶ℝ → abs Fn ℂ)
11 fniniseg 7093 . . . . . . 7 (abs Fn ℂ → ((exp‘(i · 𝑧)) ∈ (abs “ {1}) ↔ ((exp‘(i · 𝑧)) ∈ ℂ ∧ (abs‘(exp‘(i · 𝑧))) = 1)))
129, 10, 11mp2b 10 . . . . . 6 ((exp‘(i · 𝑧)) ∈ (abs “ {1}) ↔ ((exp‘(i · 𝑧)) ∈ ℂ ∧ (abs‘(exp‘(i · 𝑧))) = 1))
137, 8, 12sylanbrc 582 . . . . 5 (𝑧 ∈ ℝ → (exp‘(i · 𝑧)) ∈ (abs “ {1}))
14 efifo.2 . . . . 5 𝐶 = (abs “ {1})
1513, 14eleqtrrdi 2855 . . . 4 (𝑧 ∈ ℝ → (exp‘(i · 𝑧)) ∈ 𝐶)
161, 15fmpti 7146 . . 3 𝐹:ℝ⟶𝐶
17 ffn 6747 . . 3 (𝐹:ℝ⟶𝐶𝐹 Fn ℝ)
1816, 17ax-mp 5 . 2 𝐹 Fn ℝ
19 frn 6754 . . . 4 (𝐹:ℝ⟶𝐶 → ran 𝐹𝐶)
2016, 19ax-mp 5 . . 3 ran 𝐹𝐶
21 df-ima 5713 . . . . 5 (𝐹 “ (0(,](2 · π))) = ran (𝐹 ↾ (0(,](2 · π)))
221reseq1i 6005 . . . . . . . 8 (𝐹 ↾ (0(,](2 · π))) = ((𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) ↾ (0(,](2 · π)))
23 0xr 11337 . . . . . . . . . . . 12 0 ∈ ℝ*
24 2re 12367 . . . . . . . . . . . . 13 2 ∈ ℝ
25 pire 26518 . . . . . . . . . . . . 13 π ∈ ℝ
2624, 25remulcli 11306 . . . . . . . . . . . 12 (2 · π) ∈ ℝ
27 elioc2 13470 . . . . . . . . . . . 12 ((0 ∈ ℝ* ∧ (2 · π) ∈ ℝ) → (𝑧 ∈ (0(,](2 · π)) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧𝑧 ≤ (2 · π))))
2823, 26, 27mp2an 691 . . . . . . . . . . 11 (𝑧 ∈ (0(,](2 · π)) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧𝑧 ≤ (2 · π)))
2928simp1bi 1145 . . . . . . . . . 10 (𝑧 ∈ (0(,](2 · π)) → 𝑧 ∈ ℝ)
3029ssriv 4012 . . . . . . . . 9 (0(,](2 · π)) ⊆ ℝ
31 resmpt 6066 . . . . . . . . 9 ((0(,](2 · π)) ⊆ ℝ → ((𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) ↾ (0(,](2 · π))) = (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))))
3230, 31ax-mp 5 . . . . . . . 8 ((𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) ↾ (0(,](2 · π))) = (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧)))
3322, 32eqtri 2768 . . . . . . 7 (𝐹 ↾ (0(,](2 · π))) = (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧)))
3433rneqi 5962 . . . . . 6 ran (𝐹 ↾ (0(,](2 · π))) = ran (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧)))
35 0re 11292 . . . . . . . 8 0 ∈ ℝ
36 eqid 2740 . . . . . . . . 9 (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) = (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧)))
3726recni 11304 . . . . . . . . . . . 12 (2 · π) ∈ ℂ
3837addlidi 11478 . . . . . . . . . . 11 (0 + (2 · π)) = (2 · π)
3938oveq2i 7459 . . . . . . . . . 10 (0(,](0 + (2 · π))) = (0(,](2 · π))
4039eqcomi 2749 . . . . . . . . 9 (0(,](2 · π)) = (0(,](0 + (2 · π)))
4136, 14, 40efif1o 26606 . . . . . . . 8 (0 ∈ ℝ → (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–1-1-onto𝐶)
4235, 41ax-mp 5 . . . . . . 7 (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–1-1-onto𝐶
43 f1ofo 6869 . . . . . . 7 ((𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–1-1-onto𝐶 → (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–onto𝐶)
44 forn 6837 . . . . . . 7 ((𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–onto𝐶 → ran (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) = 𝐶)
4542, 43, 44mp2b 10 . . . . . 6 ran (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) = 𝐶
4634, 45eqtri 2768 . . . . 5 ran (𝐹 ↾ (0(,](2 · π))) = 𝐶
4721, 46eqtri 2768 . . . 4 (𝐹 “ (0(,](2 · π))) = 𝐶
48 imassrn 6100 . . . 4 (𝐹 “ (0(,](2 · π))) ⊆ ran 𝐹
4947, 48eqsstrri 4044 . . 3 𝐶 ⊆ ran 𝐹
5020, 49eqssi 4025 . 2 ran 𝐹 = 𝐶
51 df-fo 6579 . 2 (𝐹:ℝ–onto𝐶 ↔ (𝐹 Fn ℝ ∧ ran 𝐹 = 𝐶))
5218, 50, 51mpbir2an 710 1 𝐹:ℝ–onto𝐶
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wss 3976  {csn 4648   class class class wbr 5166  cmpt 5249  ccnv 5699  ran crn 5701  cres 5702  cima 5703   Fn wfn 6568  wf 6569  ontowfo 6571  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185  ici 11186   + caddc 11187   · cmul 11189  *cxr 11323   < clt 11324  cle 11325  2c2 12348  (,]cioc 13408  abscabs 15283  expce 16109  πcpi 16114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922
This theorem is referenced by:  circgrp  26612  circsubm  26613  circtopn  33783  circcn  33784
  Copyright terms: Public domain W3C validator