Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > efifo | Structured version Visualization version GIF version |
Description: The exponential function of an imaginary number maps the reals onto the unit circle. (Contributed by Mario Carneiro, 13-May-2014.) |
Ref | Expression |
---|---|
efifo.1 | ⊢ 𝐹 = (𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) |
efifo.2 | ⊢ 𝐶 = (◡abs “ {1}) |
Ref | Expression |
---|---|
efifo | ⊢ 𝐹:ℝ–onto→𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efifo.1 | . . . 4 ⊢ 𝐹 = (𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) | |
2 | ax-icn 10861 | . . . . . . . 8 ⊢ i ∈ ℂ | |
3 | recn 10892 | . . . . . . . 8 ⊢ (𝑧 ∈ ℝ → 𝑧 ∈ ℂ) | |
4 | mulcl 10886 | . . . . . . . 8 ⊢ ((i ∈ ℂ ∧ 𝑧 ∈ ℂ) → (i · 𝑧) ∈ ℂ) | |
5 | 2, 3, 4 | sylancr 586 | . . . . . . 7 ⊢ (𝑧 ∈ ℝ → (i · 𝑧) ∈ ℂ) |
6 | efcl 15720 | . . . . . . 7 ⊢ ((i · 𝑧) ∈ ℂ → (exp‘(i · 𝑧)) ∈ ℂ) | |
7 | 5, 6 | syl 17 | . . . . . 6 ⊢ (𝑧 ∈ ℝ → (exp‘(i · 𝑧)) ∈ ℂ) |
8 | absefi 15833 | . . . . . 6 ⊢ (𝑧 ∈ ℝ → (abs‘(exp‘(i · 𝑧))) = 1) | |
9 | absf 14977 | . . . . . . 7 ⊢ abs:ℂ⟶ℝ | |
10 | ffn 6584 | . . . . . . 7 ⊢ (abs:ℂ⟶ℝ → abs Fn ℂ) | |
11 | fniniseg 6919 | . . . . . . 7 ⊢ (abs Fn ℂ → ((exp‘(i · 𝑧)) ∈ (◡abs “ {1}) ↔ ((exp‘(i · 𝑧)) ∈ ℂ ∧ (abs‘(exp‘(i · 𝑧))) = 1))) | |
12 | 9, 10, 11 | mp2b 10 | . . . . . 6 ⊢ ((exp‘(i · 𝑧)) ∈ (◡abs “ {1}) ↔ ((exp‘(i · 𝑧)) ∈ ℂ ∧ (abs‘(exp‘(i · 𝑧))) = 1)) |
13 | 7, 8, 12 | sylanbrc 582 | . . . . 5 ⊢ (𝑧 ∈ ℝ → (exp‘(i · 𝑧)) ∈ (◡abs “ {1})) |
14 | efifo.2 | . . . . 5 ⊢ 𝐶 = (◡abs “ {1}) | |
15 | 13, 14 | eleqtrrdi 2850 | . . . 4 ⊢ (𝑧 ∈ ℝ → (exp‘(i · 𝑧)) ∈ 𝐶) |
16 | 1, 15 | fmpti 6968 | . . 3 ⊢ 𝐹:ℝ⟶𝐶 |
17 | ffn 6584 | . . 3 ⊢ (𝐹:ℝ⟶𝐶 → 𝐹 Fn ℝ) | |
18 | 16, 17 | ax-mp 5 | . 2 ⊢ 𝐹 Fn ℝ |
19 | frn 6591 | . . . 4 ⊢ (𝐹:ℝ⟶𝐶 → ran 𝐹 ⊆ 𝐶) | |
20 | 16, 19 | ax-mp 5 | . . 3 ⊢ ran 𝐹 ⊆ 𝐶 |
21 | df-ima 5593 | . . . . 5 ⊢ (𝐹 “ (0(,](2 · π))) = ran (𝐹 ↾ (0(,](2 · π))) | |
22 | 1 | reseq1i 5876 | . . . . . . . 8 ⊢ (𝐹 ↾ (0(,](2 · π))) = ((𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) ↾ (0(,](2 · π))) |
23 | 0xr 10953 | . . . . . . . . . . . 12 ⊢ 0 ∈ ℝ* | |
24 | 2re 11977 | . . . . . . . . . . . . 13 ⊢ 2 ∈ ℝ | |
25 | pire 25520 | . . . . . . . . . . . . 13 ⊢ π ∈ ℝ | |
26 | 24, 25 | remulcli 10922 | . . . . . . . . . . . 12 ⊢ (2 · π) ∈ ℝ |
27 | elioc2 13071 | . . . . . . . . . . . 12 ⊢ ((0 ∈ ℝ* ∧ (2 · π) ∈ ℝ) → (𝑧 ∈ (0(,](2 · π)) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧 ∧ 𝑧 ≤ (2 · π)))) | |
28 | 23, 26, 27 | mp2an 688 | . . . . . . . . . . 11 ⊢ (𝑧 ∈ (0(,](2 · π)) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧 ∧ 𝑧 ≤ (2 · π))) |
29 | 28 | simp1bi 1143 | . . . . . . . . . 10 ⊢ (𝑧 ∈ (0(,](2 · π)) → 𝑧 ∈ ℝ) |
30 | 29 | ssriv 3921 | . . . . . . . . 9 ⊢ (0(,](2 · π)) ⊆ ℝ |
31 | resmpt 5934 | . . . . . . . . 9 ⊢ ((0(,](2 · π)) ⊆ ℝ → ((𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) ↾ (0(,](2 · π))) = (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧)))) | |
32 | 30, 31 | ax-mp 5 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) ↾ (0(,](2 · π))) = (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) |
33 | 22, 32 | eqtri 2766 | . . . . . . 7 ⊢ (𝐹 ↾ (0(,](2 · π))) = (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) |
34 | 33 | rneqi 5835 | . . . . . 6 ⊢ ran (𝐹 ↾ (0(,](2 · π))) = ran (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) |
35 | 0re 10908 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
36 | eqid 2738 | . . . . . . . . 9 ⊢ (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) = (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) | |
37 | 26 | recni 10920 | . . . . . . . . . . . 12 ⊢ (2 · π) ∈ ℂ |
38 | 37 | addid2i 11093 | . . . . . . . . . . 11 ⊢ (0 + (2 · π)) = (2 · π) |
39 | 38 | oveq2i 7266 | . . . . . . . . . 10 ⊢ (0(,](0 + (2 · π))) = (0(,](2 · π)) |
40 | 39 | eqcomi 2747 | . . . . . . . . 9 ⊢ (0(,](2 · π)) = (0(,](0 + (2 · π))) |
41 | 36, 14, 40 | efif1o 25607 | . . . . . . . 8 ⊢ (0 ∈ ℝ → (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–1-1-onto→𝐶) |
42 | 35, 41 | ax-mp 5 | . . . . . . 7 ⊢ (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–1-1-onto→𝐶 |
43 | f1ofo 6707 | . . . . . . 7 ⊢ ((𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–1-1-onto→𝐶 → (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–onto→𝐶) | |
44 | forn 6675 | . . . . . . 7 ⊢ ((𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–onto→𝐶 → ran (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) = 𝐶) | |
45 | 42, 43, 44 | mp2b 10 | . . . . . 6 ⊢ ran (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) = 𝐶 |
46 | 34, 45 | eqtri 2766 | . . . . 5 ⊢ ran (𝐹 ↾ (0(,](2 · π))) = 𝐶 |
47 | 21, 46 | eqtri 2766 | . . . 4 ⊢ (𝐹 “ (0(,](2 · π))) = 𝐶 |
48 | imassrn 5969 | . . . 4 ⊢ (𝐹 “ (0(,](2 · π))) ⊆ ran 𝐹 | |
49 | 47, 48 | eqsstrri 3952 | . . 3 ⊢ 𝐶 ⊆ ran 𝐹 |
50 | 20, 49 | eqssi 3933 | . 2 ⊢ ran 𝐹 = 𝐶 |
51 | df-fo 6424 | . 2 ⊢ (𝐹:ℝ–onto→𝐶 ↔ (𝐹 Fn ℝ ∧ ran 𝐹 = 𝐶)) | |
52 | 18, 50, 51 | mpbir2an 707 | 1 ⊢ 𝐹:ℝ–onto→𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 {csn 4558 class class class wbr 5070 ↦ cmpt 5153 ◡ccnv 5579 ran crn 5581 ↾ cres 5582 “ cima 5583 Fn wfn 6413 ⟶wf 6414 –onto→wfo 6416 –1-1-onto→wf1o 6417 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 0cc0 10802 1c1 10803 ici 10804 + caddc 10805 · cmul 10807 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 2c2 11958 (,]cioc 13009 abscabs 14873 expce 15699 πcpi 15704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-fac 13916 df-bc 13945 df-hash 13973 df-shft 14706 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-ef 15705 df-sin 15707 df-cos 15708 df-pi 15710 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cn 22286 df-cnp 22287 df-haus 22374 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-cncf 23947 df-limc 24935 df-dv 24936 |
This theorem is referenced by: circgrp 25613 circsubm 25614 circtopn 31689 circcn 31690 |
Copyright terms: Public domain | W3C validator |