![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efifo | Structured version Visualization version GIF version |
Description: The exponential function of an imaginary number maps the reals onto the unit circle. (Contributed by Mario Carneiro, 13-May-2014.) |
Ref | Expression |
---|---|
efifo.1 | β’ πΉ = (π§ β β β¦ (expβ(i Β· π§))) |
efifo.2 | β’ πΆ = (β‘abs β {1}) |
Ref | Expression |
---|---|
efifo | β’ πΉ:ββontoβπΆ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efifo.1 | . . . 4 β’ πΉ = (π§ β β β¦ (expβ(i Β· π§))) | |
2 | ax-icn 11198 | . . . . . . . 8 β’ i β β | |
3 | recn 11229 | . . . . . . . 8 β’ (π§ β β β π§ β β) | |
4 | mulcl 11223 | . . . . . . . 8 β’ ((i β β β§ π§ β β) β (i Β· π§) β β) | |
5 | 2, 3, 4 | sylancr 586 | . . . . . . 7 β’ (π§ β β β (i Β· π§) β β) |
6 | efcl 16059 | . . . . . . 7 β’ ((i Β· π§) β β β (expβ(i Β· π§)) β β) | |
7 | 5, 6 | syl 17 | . . . . . 6 β’ (π§ β β β (expβ(i Β· π§)) β β) |
8 | absefi 16173 | . . . . . 6 β’ (π§ β β β (absβ(expβ(i Β· π§))) = 1) | |
9 | absf 15317 | . . . . . . 7 β’ abs:ββΆβ | |
10 | ffn 6722 | . . . . . . 7 β’ (abs:ββΆβ β abs Fn β) | |
11 | fniniseg 7069 | . . . . . . 7 β’ (abs Fn β β ((expβ(i Β· π§)) β (β‘abs β {1}) β ((expβ(i Β· π§)) β β β§ (absβ(expβ(i Β· π§))) = 1))) | |
12 | 9, 10, 11 | mp2b 10 | . . . . . 6 β’ ((expβ(i Β· π§)) β (β‘abs β {1}) β ((expβ(i Β· π§)) β β β§ (absβ(expβ(i Β· π§))) = 1)) |
13 | 7, 8, 12 | sylanbrc 582 | . . . . 5 β’ (π§ β β β (expβ(i Β· π§)) β (β‘abs β {1})) |
14 | efifo.2 | . . . . 5 β’ πΆ = (β‘abs β {1}) | |
15 | 13, 14 | eleqtrrdi 2840 | . . . 4 β’ (π§ β β β (expβ(i Β· π§)) β πΆ) |
16 | 1, 15 | fmpti 7122 | . . 3 β’ πΉ:ββΆπΆ |
17 | ffn 6722 | . . 3 β’ (πΉ:ββΆπΆ β πΉ Fn β) | |
18 | 16, 17 | ax-mp 5 | . 2 β’ πΉ Fn β |
19 | frn 6729 | . . . 4 β’ (πΉ:ββΆπΆ β ran πΉ β πΆ) | |
20 | 16, 19 | ax-mp 5 | . . 3 β’ ran πΉ β πΆ |
21 | df-ima 5691 | . . . . 5 β’ (πΉ β (0(,](2 Β· Ο))) = ran (πΉ βΎ (0(,](2 Β· Ο))) | |
22 | 1 | reseq1i 5981 | . . . . . . . 8 β’ (πΉ βΎ (0(,](2 Β· Ο))) = ((π§ β β β¦ (expβ(i Β· π§))) βΎ (0(,](2 Β· Ο))) |
23 | 0xr 11292 | . . . . . . . . . . . 12 β’ 0 β β* | |
24 | 2re 12317 | . . . . . . . . . . . . 13 β’ 2 β β | |
25 | pire 26406 | . . . . . . . . . . . . 13 β’ Ο β β | |
26 | 24, 25 | remulcli 11261 | . . . . . . . . . . . 12 β’ (2 Β· Ο) β β |
27 | elioc2 13420 | . . . . . . . . . . . 12 β’ ((0 β β* β§ (2 Β· Ο) β β) β (π§ β (0(,](2 Β· Ο)) β (π§ β β β§ 0 < π§ β§ π§ β€ (2 Β· Ο)))) | |
28 | 23, 26, 27 | mp2an 691 | . . . . . . . . . . 11 β’ (π§ β (0(,](2 Β· Ο)) β (π§ β β β§ 0 < π§ β§ π§ β€ (2 Β· Ο))) |
29 | 28 | simp1bi 1143 | . . . . . . . . . 10 β’ (π§ β (0(,](2 Β· Ο)) β π§ β β) |
30 | 29 | ssriv 3984 | . . . . . . . . 9 β’ (0(,](2 Β· Ο)) β β |
31 | resmpt 6041 | . . . . . . . . 9 β’ ((0(,](2 Β· Ο)) β β β ((π§ β β β¦ (expβ(i Β· π§))) βΎ (0(,](2 Β· Ο))) = (π§ β (0(,](2 Β· Ο)) β¦ (expβ(i Β· π§)))) | |
32 | 30, 31 | ax-mp 5 | . . . . . . . 8 β’ ((π§ β β β¦ (expβ(i Β· π§))) βΎ (0(,](2 Β· Ο))) = (π§ β (0(,](2 Β· Ο)) β¦ (expβ(i Β· π§))) |
33 | 22, 32 | eqtri 2756 | . . . . . . 7 β’ (πΉ βΎ (0(,](2 Β· Ο))) = (π§ β (0(,](2 Β· Ο)) β¦ (expβ(i Β· π§))) |
34 | 33 | rneqi 5939 | . . . . . 6 β’ ran (πΉ βΎ (0(,](2 Β· Ο))) = ran (π§ β (0(,](2 Β· Ο)) β¦ (expβ(i Β· π§))) |
35 | 0re 11247 | . . . . . . . 8 β’ 0 β β | |
36 | eqid 2728 | . . . . . . . . 9 β’ (π§ β (0(,](2 Β· Ο)) β¦ (expβ(i Β· π§))) = (π§ β (0(,](2 Β· Ο)) β¦ (expβ(i Β· π§))) | |
37 | 26 | recni 11259 | . . . . . . . . . . . 12 β’ (2 Β· Ο) β β |
38 | 37 | addlidi 11433 | . . . . . . . . . . 11 β’ (0 + (2 Β· Ο)) = (2 Β· Ο) |
39 | 38 | oveq2i 7431 | . . . . . . . . . 10 β’ (0(,](0 + (2 Β· Ο))) = (0(,](2 Β· Ο)) |
40 | 39 | eqcomi 2737 | . . . . . . . . 9 β’ (0(,](2 Β· Ο)) = (0(,](0 + (2 Β· Ο))) |
41 | 36, 14, 40 | efif1o 26493 | . . . . . . . 8 β’ (0 β β β (π§ β (0(,](2 Β· Ο)) β¦ (expβ(i Β· π§))):(0(,](2 Β· Ο))β1-1-ontoβπΆ) |
42 | 35, 41 | ax-mp 5 | . . . . . . 7 β’ (π§ β (0(,](2 Β· Ο)) β¦ (expβ(i Β· π§))):(0(,](2 Β· Ο))β1-1-ontoβπΆ |
43 | f1ofo 6846 | . . . . . . 7 β’ ((π§ β (0(,](2 Β· Ο)) β¦ (expβ(i Β· π§))):(0(,](2 Β· Ο))β1-1-ontoβπΆ β (π§ β (0(,](2 Β· Ο)) β¦ (expβ(i Β· π§))):(0(,](2 Β· Ο))βontoβπΆ) | |
44 | forn 6814 | . . . . . . 7 β’ ((π§ β (0(,](2 Β· Ο)) β¦ (expβ(i Β· π§))):(0(,](2 Β· Ο))βontoβπΆ β ran (π§ β (0(,](2 Β· Ο)) β¦ (expβ(i Β· π§))) = πΆ) | |
45 | 42, 43, 44 | mp2b 10 | . . . . . 6 β’ ran (π§ β (0(,](2 Β· Ο)) β¦ (expβ(i Β· π§))) = πΆ |
46 | 34, 45 | eqtri 2756 | . . . . 5 β’ ran (πΉ βΎ (0(,](2 Β· Ο))) = πΆ |
47 | 21, 46 | eqtri 2756 | . . . 4 β’ (πΉ β (0(,](2 Β· Ο))) = πΆ |
48 | imassrn 6074 | . . . 4 β’ (πΉ β (0(,](2 Β· Ο))) β ran πΉ | |
49 | 47, 48 | eqsstrri 4015 | . . 3 β’ πΆ β ran πΉ |
50 | 20, 49 | eqssi 3996 | . 2 β’ ran πΉ = πΆ |
51 | df-fo 6554 | . 2 β’ (πΉ:ββontoβπΆ β (πΉ Fn β β§ ran πΉ = πΆ)) | |
52 | 18, 50, 51 | mpbir2an 710 | 1 β’ πΉ:ββontoβπΆ |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 395 β§ w3a 1085 = wceq 1534 β wcel 2099 β wss 3947 {csn 4629 class class class wbr 5148 β¦ cmpt 5231 β‘ccnv 5677 ran crn 5679 βΎ cres 5680 β cima 5681 Fn wfn 6543 βΆwf 6544 βontoβwfo 6546 β1-1-ontoβwf1o 6547 βcfv 6548 (class class class)co 7420 βcc 11137 βcr 11138 0cc0 11139 1c1 11140 ici 11141 + caddc 11142 Β· cmul 11144 β*cxr 11278 < clt 11279 β€ cle 11280 2c2 12298 (,]cioc 13358 abscabs 15214 expce 16038 Οcpi 16043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-inf2 9665 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 ax-addf 11218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-of 7685 df-om 7871 df-1st 7993 df-2nd 7994 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8725 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9387 df-fi 9435 df-sup 9466 df-inf 9467 df-oi 9534 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 df-7 12311 df-8 12312 df-9 12313 df-n0 12504 df-z 12590 df-dec 12709 df-uz 12854 df-q 12964 df-rp 13008 df-xneg 13125 df-xadd 13126 df-xmul 13127 df-ioo 13361 df-ioc 13362 df-ico 13363 df-icc 13364 df-fz 13518 df-fzo 13661 df-fl 13790 df-mod 13868 df-seq 14000 df-exp 14060 df-fac 14266 df-bc 14295 df-hash 14323 df-shft 15047 df-cj 15079 df-re 15080 df-im 15081 df-sqrt 15215 df-abs 15216 df-limsup 15448 df-clim 15465 df-rlim 15466 df-sum 15666 df-ef 16044 df-sin 16046 df-cos 16047 df-pi 16049 df-struct 17116 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-ress 17210 df-plusg 17246 df-mulr 17247 df-starv 17248 df-sca 17249 df-vsca 17250 df-ip 17251 df-tset 17252 df-ple 17253 df-ds 17255 df-unif 17256 df-hom 17257 df-cco 17258 df-rest 17404 df-topn 17405 df-0g 17423 df-gsum 17424 df-topgen 17425 df-pt 17426 df-prds 17429 df-xrs 17484 df-qtop 17489 df-imas 17490 df-xps 17492 df-mre 17566 df-mrc 17567 df-acs 17569 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-submnd 18741 df-mulg 19024 df-cntz 19268 df-cmn 19737 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-fbas 21276 df-fg 21277 df-cnfld 21280 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22862 df-cld 22936 df-ntr 22937 df-cls 22938 df-nei 23015 df-lp 23053 df-perf 23054 df-cn 23144 df-cnp 23145 df-haus 23232 df-tx 23479 df-hmeo 23672 df-fil 23763 df-fm 23855 df-flim 23856 df-flf 23857 df-xms 24239 df-ms 24240 df-tms 24241 df-cncf 24811 df-limc 25808 df-dv 25809 |
This theorem is referenced by: circgrp 26499 circsubm 26500 circtopn 33438 circcn 33439 |
Copyright terms: Public domain | W3C validator |