MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff1o6 Structured version   Visualization version   GIF version

Theorem dff1o6 7273
Description: A one-to-one onto function in terms of function values. (Contributed by NM, 29-Mar-2008.)
Assertion
Ref Expression
dff1o6 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem dff1o6
StepHypRef Expression
1 df-f1o 6543 . 2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
2 dff13 7252 . . 3 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
3 df-fo 6542 . . 3 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
42, 3anbi12i 628 . 2 ((𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵) ↔ ((𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)))
5 df-3an 1088 . . 3 ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
6 eqimss 4022 . . . . . . 7 (ran 𝐹 = 𝐵 → ran 𝐹𝐵)
76anim2i 617 . . . . . 6 ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
8 df-f 6540 . . . . . 6 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
97, 8sylibr 234 . . . . 5 ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴𝐵)
109pm4.71ri 560 . . . 4 ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) ↔ (𝐹:𝐴𝐵 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)))
1110anbi1i 624 . . 3 (((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ↔ ((𝐹:𝐴𝐵 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
12 an32 646 . . 3 (((𝐹:𝐴𝐵 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ↔ ((𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)))
135, 11, 123bitrri 298 . 2 (((𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
141, 4, 133bitri 297 1 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wral 3052  wss 3931  ran crn 5660   Fn wfn 6531  wf 6532  1-1wf1 6533  ontowfo 6534  1-1-ontowf1o 6535  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544
This theorem is referenced by:  soisores  7325  f1otrg  28855  f1otrge  28856  grpoinvf  30518  bra11  32094  hgt750lemb  34693  diaf11N  41073  dibf11N  41185  lcfrlem9  41574  mapd1o  41672  hdmapf1oN  41889  hgmapf1oN  41927  rmxypairf1o  42902  onsucf1o  43263
  Copyright terms: Public domain W3C validator