![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > diadmleN | Structured version Visualization version GIF version |
Description: A member of domain of the partial isomorphism A is under the fiducial hyperplane. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
diadmle.l | β’ β€ = (leβπΎ) |
diadmle.h | β’ π» = (LHypβπΎ) |
diadmle.i | β’ πΌ = ((DIsoAβπΎ)βπ) |
Ref | Expression |
---|---|
diadmleN | β’ (((πΎ β π β§ π β π») β§ π β dom πΌ) β π β€ π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . 3 β’ (BaseβπΎ) = (BaseβπΎ) | |
2 | diadmle.l | . . 3 β’ β€ = (leβπΎ) | |
3 | diadmle.h | . . 3 β’ π» = (LHypβπΎ) | |
4 | diadmle.i | . . 3 β’ πΌ = ((DIsoAβπΎ)βπ) | |
5 | 1, 2, 3, 4 | diaeldm 40419 | . 2 β’ ((πΎ β π β§ π β π») β (π β dom πΌ β (π β (BaseβπΎ) β§ π β€ π))) |
6 | 5 | simplbda 499 | 1 β’ (((πΎ β π β§ π β π») β§ π β dom πΌ) β π β€ π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 class class class wbr 5141 dom cdm 5669 βcfv 6536 Basecbs 17150 lecple 17210 LHypclh 39367 DIsoAcdia 40411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-disoa 40412 |
This theorem is referenced by: diaocN 40508 doca2N 40509 djajN 40520 |
Copyright terms: Public domain | W3C validator |