Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diadmleN Structured version   Visualization version   GIF version

Theorem diadmleN 39355
Description: A member of domain of the partial isomorphism A is under the fiducial hyperplane. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
diadmle.l = (le‘𝐾)
diadmle.h 𝐻 = (LHyp‘𝐾)
diadmle.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
diadmleN (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋 𝑊)

Proof of Theorem diadmleN
StepHypRef Expression
1 eqid 2737 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 diadmle.l . . 3 = (le‘𝐾)
3 diadmle.h . . 3 𝐻 = (LHyp‘𝐾)
4 diadmle.i . . 3 𝐼 = ((DIsoA‘𝐾)‘𝑊)
51, 2, 3, 4diaeldm 39353 . 2 ((𝐾𝑉𝑊𝐻) → (𝑋 ∈ dom 𝐼 ↔ (𝑋 ∈ (Base‘𝐾) ∧ 𝑋 𝑊)))
65simplbda 501 1 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1541  wcel 2106   class class class wbr 5097  dom cdm 5625  cfv 6484  Basecbs 17010  lecple 17067  LHypclh 38301  DIsoAcdia 39345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pr 5377
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-id 5523  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-disoa 39346
This theorem is referenced by:  diaocN  39442  doca2N  39443  djajN  39454
  Copyright terms: Public domain W3C validator