![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > diadmleN | Structured version Visualization version GIF version |
Description: A member of domain of the partial isomorphism A is under the fiducial hyperplane. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
diadmle.l | β’ β€ = (leβπΎ) |
diadmle.h | β’ π» = (LHypβπΎ) |
diadmle.i | β’ πΌ = ((DIsoAβπΎ)βπ) |
Ref | Expression |
---|---|
diadmleN | β’ (((πΎ β π β§ π β π») β§ π β dom πΌ) β π β€ π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . 3 β’ (BaseβπΎ) = (BaseβπΎ) | |
2 | diadmle.l | . . 3 β’ β€ = (leβπΎ) | |
3 | diadmle.h | . . 3 β’ π» = (LHypβπΎ) | |
4 | diadmle.i | . . 3 β’ πΌ = ((DIsoAβπΎ)βπ) | |
5 | 1, 2, 3, 4 | diaeldm 39907 | . 2 β’ ((πΎ β π β§ π β π») β (π β dom πΌ β (π β (BaseβπΎ) β§ π β€ π))) |
6 | 5 | simplbda 501 | 1 β’ (((πΎ β π β§ π β π») β§ π β dom πΌ) β π β€ π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 class class class wbr 5149 dom cdm 5677 βcfv 6544 Basecbs 17144 lecple 17204 LHypclh 38855 DIsoAcdia 39899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-disoa 39900 |
This theorem is referenced by: diaocN 39996 doca2N 39997 djajN 40008 |
Copyright terms: Public domain | W3C validator |