Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaeldm Structured version   Visualization version   GIF version

Theorem diaeldm 39057
Description: Member of domain of the partial isomorphism A. (Contributed by NM, 4-Dec-2013.)
Hypotheses
Ref Expression
diafn.b 𝐵 = (Base‘𝐾)
diafn.l = (le‘𝐾)
diafn.h 𝐻 = (LHyp‘𝐾)
diafn.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
diaeldm ((𝐾𝑉𝑊𝐻) → (𝑋 ∈ dom 𝐼 ↔ (𝑋𝐵𝑋 𝑊)))

Proof of Theorem diaeldm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 diafn.b . . . 4 𝐵 = (Base‘𝐾)
2 diafn.l . . . 4 = (le‘𝐾)
3 diafn.h . . . 4 𝐻 = (LHyp‘𝐾)
4 diafn.i . . . 4 𝐼 = ((DIsoA‘𝐾)‘𝑊)
51, 2, 3, 4diadm 39056 . . 3 ((𝐾𝑉𝑊𝐻) → dom 𝐼 = {𝑥𝐵𝑥 𝑊})
65eleq2d 2825 . 2 ((𝐾𝑉𝑊𝐻) → (𝑋 ∈ dom 𝐼𝑋 ∈ {𝑥𝐵𝑥 𝑊}))
7 breq1 5078 . . 3 (𝑥 = 𝑋 → (𝑥 𝑊𝑋 𝑊))
87elrab 3625 . 2 (𝑋 ∈ {𝑥𝐵𝑥 𝑊} ↔ (𝑋𝐵𝑋 𝑊))
96, 8bitrdi 287 1 ((𝐾𝑉𝑊𝐻) → (𝑋 ∈ dom 𝐼 ↔ (𝑋𝐵𝑋 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2107  {crab 3069   class class class wbr 5075  dom cdm 5590  cfv 6437  Basecbs 16921  lecple 16978  LHypclh 38005  DIsoAcdia 39049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pr 5353
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4258  df-if 4461  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-disoa 39050
This theorem is referenced by:  diadmclN  39058  diadmleN  39059  dia0eldmN  39061  dia1eldmN  39062  diaf11N  39070  diaglbN  39076  diaintclN  39079  diasslssN  39080  docaclN  39145  doca2N  39147  djajN  39158  dibval2  39165  dibeldmN  39179
  Copyright terms: Public domain W3C validator