Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaeldm Structured version   Visualization version   GIF version

Theorem diaeldm 38058
 Description: Member of domain of the partial isomorphism A. (Contributed by NM, 4-Dec-2013.)
Hypotheses
Ref Expression
diafn.b 𝐵 = (Base‘𝐾)
diafn.l = (le‘𝐾)
diafn.h 𝐻 = (LHyp‘𝐾)
diafn.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
diaeldm ((𝐾𝑉𝑊𝐻) → (𝑋 ∈ dom 𝐼 ↔ (𝑋𝐵𝑋 𝑊)))

Proof of Theorem diaeldm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 diafn.b . . . 4 𝐵 = (Base‘𝐾)
2 diafn.l . . . 4 = (le‘𝐾)
3 diafn.h . . . 4 𝐻 = (LHyp‘𝐾)
4 diafn.i . . . 4 𝐼 = ((DIsoA‘𝐾)‘𝑊)
51, 2, 3, 4diadm 38057 . . 3 ((𝐾𝑉𝑊𝐻) → dom 𝐼 = {𝑥𝐵𝑥 𝑊})
65eleq2d 2903 . 2 ((𝐾𝑉𝑊𝐻) → (𝑋 ∈ dom 𝐼𝑋 ∈ {𝑥𝐵𝑥 𝑊}))
7 breq1 5066 . . 3 (𝑥 = 𝑋 → (𝑥 𝑊𝑋 𝑊))
87elrab 3684 . 2 (𝑋 ∈ {𝑥𝐵𝑥 𝑊} ↔ (𝑋𝐵𝑋 𝑊))
96, 8syl6bb 288 1 ((𝐾𝑉𝑊𝐻) → (𝑋 ∈ dom 𝐼 ↔ (𝑋𝐵𝑋 𝑊)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207   ∧ wa 396   = wceq 1530   ∈ wcel 2107  {crab 3147   class class class wbr 5063  dom cdm 5554  ‘cfv 6354  Basecbs 16478  lecple 16567  LHypclh 37006  DIsoAcdia 38050 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pr 5326 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-disoa 38051 This theorem is referenced by:  diadmclN  38059  diadmleN  38060  dia0eldmN  38062  dia1eldmN  38063  diaf11N  38071  diaglbN  38077  diaintclN  38080  diasslssN  38081  docaclN  38146  doca2N  38148  djajN  38159  dibval2  38166  dibeldmN  38180
 Copyright terms: Public domain W3C validator