| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > diaeldm | Structured version Visualization version GIF version | ||
| Description: Member of domain of the partial isomorphism A. (Contributed by NM, 4-Dec-2013.) |
| Ref | Expression |
|---|---|
| diafn.b | ⊢ 𝐵 = (Base‘𝐾) |
| diafn.l | ⊢ ≤ = (le‘𝐾) |
| diafn.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| diafn.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| diaeldm | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑋 ∈ dom 𝐼 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diafn.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | diafn.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | diafn.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | diafn.i | . . . 4 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
| 5 | 1, 2, 3, 4 | diadm 41144 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → dom 𝐼 = {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊}) |
| 6 | 5 | eleq2d 2817 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑋 ∈ dom 𝐼 ↔ 𝑋 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊})) |
| 7 | breq1 5092 | . . 3 ⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑊 ↔ 𝑋 ≤ 𝑊)) | |
| 8 | 7 | elrab 3642 | . 2 ⊢ (𝑋 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊} ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) |
| 9 | 6, 8 | bitrdi 287 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑋 ∈ dom 𝐼 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 class class class wbr 5089 dom cdm 5614 ‘cfv 6481 Basecbs 17120 lecple 17168 LHypclh 40093 DIsoAcdia 41137 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-disoa 41138 |
| This theorem is referenced by: diadmclN 41146 diadmleN 41147 dia0eldmN 41149 dia1eldmN 41150 diaf11N 41158 diaglbN 41164 diaintclN 41167 diasslssN 41168 docaclN 41233 doca2N 41235 djajN 41246 dibval2 41253 dibeldmN 41267 |
| Copyright terms: Public domain | W3C validator |