| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > diaeldm | Structured version Visualization version GIF version | ||
| Description: Member of domain of the partial isomorphism A. (Contributed by NM, 4-Dec-2013.) |
| Ref | Expression |
|---|---|
| diafn.b | ⊢ 𝐵 = (Base‘𝐾) |
| diafn.l | ⊢ ≤ = (le‘𝐾) |
| diafn.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| diafn.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| diaeldm | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑋 ∈ dom 𝐼 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diafn.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | diafn.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | diafn.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | diafn.i | . . . 4 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
| 5 | 1, 2, 3, 4 | diadm 41002 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → dom 𝐼 = {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊}) |
| 6 | 5 | eleq2d 2814 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑋 ∈ dom 𝐼 ↔ 𝑋 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊})) |
| 7 | breq1 5105 | . . 3 ⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑊 ↔ 𝑋 ≤ 𝑊)) | |
| 8 | 7 | elrab 3656 | . 2 ⊢ (𝑋 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊} ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) |
| 9 | 6, 8 | bitrdi 287 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑋 ∈ dom 𝐼 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3402 class class class wbr 5102 dom cdm 5631 ‘cfv 6499 Basecbs 17155 lecple 17203 LHypclh 39951 DIsoAcdia 40995 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-disoa 40996 |
| This theorem is referenced by: diadmclN 41004 diadmleN 41005 dia0eldmN 41007 dia1eldmN 41008 diaf11N 41016 diaglbN 41022 diaintclN 41025 diasslssN 41026 docaclN 41091 doca2N 41093 djajN 41104 dibval2 41111 dibeldmN 41125 |
| Copyright terms: Public domain | W3C validator |