![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > diaeldm | Structured version Visualization version GIF version |
Description: Member of domain of the partial isomorphism A. (Contributed by NM, 4-Dec-2013.) |
Ref | Expression |
---|---|
diafn.b | ⊢ 𝐵 = (Base‘𝐾) |
diafn.l | ⊢ ≤ = (le‘𝐾) |
diafn.h | ⊢ 𝐻 = (LHyp‘𝐾) |
diafn.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
diaeldm | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑋 ∈ dom 𝐼 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | diafn.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | diafn.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | diafn.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | diafn.i | . . . 4 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
5 | 1, 2, 3, 4 | diadm 41018 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → dom 𝐼 = {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊}) |
6 | 5 | eleq2d 2825 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑋 ∈ dom 𝐼 ↔ 𝑋 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊})) |
7 | breq1 5151 | . . 3 ⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑊 ↔ 𝑋 ≤ 𝑊)) | |
8 | 7 | elrab 3695 | . 2 ⊢ (𝑋 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊} ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) |
9 | 6, 8 | bitrdi 287 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑋 ∈ dom 𝐼 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {crab 3433 class class class wbr 5148 dom cdm 5689 ‘cfv 6563 Basecbs 17245 lecple 17305 LHypclh 39967 DIsoAcdia 41011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-disoa 41012 |
This theorem is referenced by: diadmclN 41020 diadmleN 41021 dia0eldmN 41023 dia1eldmN 41024 diaf11N 41032 diaglbN 41038 diaintclN 41041 diasslssN 41042 docaclN 41107 doca2N 41109 djajN 41120 dibval2 41127 dibeldmN 41141 |
Copyright terms: Public domain | W3C validator |