Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > diaeldm | Structured version Visualization version GIF version |
Description: Member of domain of the partial isomorphism A. (Contributed by NM, 4-Dec-2013.) |
Ref | Expression |
---|---|
diafn.b | ⊢ 𝐵 = (Base‘𝐾) |
diafn.l | ⊢ ≤ = (le‘𝐾) |
diafn.h | ⊢ 𝐻 = (LHyp‘𝐾) |
diafn.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
diaeldm | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑋 ∈ dom 𝐼 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | diafn.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | diafn.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | diafn.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | diafn.i | . . . 4 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
5 | 1, 2, 3, 4 | diadm 38705 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → dom 𝐼 = {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊}) |
6 | 5 | eleq2d 2819 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑋 ∈ dom 𝐼 ↔ 𝑋 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊})) |
7 | breq1 5043 | . . 3 ⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑊 ↔ 𝑋 ≤ 𝑊)) | |
8 | 7 | elrab 3593 | . 2 ⊢ (𝑋 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊} ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) |
9 | 6, 8 | bitrdi 290 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑋 ∈ dom 𝐼 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 {crab 3058 class class class wbr 5040 dom cdm 5535 ‘cfv 6350 Basecbs 16599 lecple 16688 LHypclh 37654 DIsoAcdia 38698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5164 ax-sep 5177 ax-nul 5184 ax-pr 5306 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-id 5439 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-iota 6308 df-fun 6352 df-fn 6353 df-f 6354 df-f1 6355 df-fo 6356 df-f1o 6357 df-fv 6358 df-disoa 38699 |
This theorem is referenced by: diadmclN 38707 diadmleN 38708 dia0eldmN 38710 dia1eldmN 38711 diaf11N 38719 diaglbN 38725 diaintclN 38728 diasslssN 38729 docaclN 38794 doca2N 38796 djajN 38807 dibval2 38814 dibeldmN 38828 |
Copyright terms: Public domain | W3C validator |