Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diadmclN Structured version   Visualization version   GIF version

Theorem diadmclN 38978
Description: A member of domain of the partial isomorphism A is a lattice element. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
diadmcl.b 𝐵 = (Base‘𝐾)
diadmcl.h 𝐻 = (LHyp‘𝐾)
diadmcl.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
diadmclN (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋𝐵)

Proof of Theorem diadmclN
StepHypRef Expression
1 diadmcl.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2738 . . 3 (le‘𝐾) = (le‘𝐾)
3 diadmcl.h . . 3 𝐻 = (LHyp‘𝐾)
4 diadmcl.i . . 3 𝐼 = ((DIsoA‘𝐾)‘𝑊)
51, 2, 3, 4diaeldm 38977 . 2 ((𝐾𝑉𝑊𝐻) → (𝑋 ∈ dom 𝐼 ↔ (𝑋𝐵𝑋(le‘𝐾)𝑊)))
65simprbda 498 1 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108   class class class wbr 5070  dom cdm 5580  cfv 6418  Basecbs 16840  lecple 16895  LHypclh 37925  DIsoAcdia 38969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-disoa 38970
This theorem is referenced by:  diameetN  38997  docaclN  39065  diaocN  39066  doca2N  39067  djajN  39078
  Copyright terms: Public domain W3C validator