Home | Metamath
Proof Explorer Theorem List (p. 406 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | flt4lem5f 40501 | Final equation of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. Given 𝐴↑4 + 𝐵↑4 = 𝐶↑2, provide a smaller solution. This satisfies the infinite descent condition. (Contributed by SN, 24-Aug-2024.) |
⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀 − 𝑁))) / 2) & ⊢ 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀 − 𝑁))) / 2) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) & ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → ((𝑀 gcd (𝐵 / 2))↑2) = (((𝑅 gcd (𝐵 / 2))↑4) + ((𝑆 gcd (𝐵 / 2))↑4))) | ||
Theorem | flt4lem6 40502 | Remove shared factors in a solution to 𝐴↑4 + 𝐵↑4 = 𝐶↑2. (Contributed by SN, 24-Jul-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → (((𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐶 / ((𝐴 gcd 𝐵)↑2)) ∈ ℕ) ∧ (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) = ((𝐶 / ((𝐴 gcd 𝐵)↑2))↑2))) | ||
Theorem | flt4lem7 40503* | Convert flt4lem5f 40501 into a convenient form for nna4b4nsq 40504. TODO-SN: The change to (𝐴 gcd 𝐵) = 1 points at some inefficiency in the lemmas. (Contributed by SN, 25-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) & ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → ∃𝑙 ∈ ℕ (∃𝑔 ∈ ℕ ∃ℎ ∈ ℕ (¬ 2 ∥ 𝑔 ∧ ((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑙↑2))) ∧ 𝑙 < 𝐶)) | ||
Theorem | nna4b4nsq 40504 | Strengthening of Fermat's last theorem for exponent 4, where the sum is only assumed to be a square. (Contributed by SN, 23-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) ⇒ ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) ≠ (𝐶↑2)) | ||
Theorem | fltltc 40505 | (𝐶↑𝑁) is the largest term and therefore 𝐵 < 𝐶. (Contributed by Steven Nguyen, 22-Aug-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) ⇒ ⊢ (𝜑 → 𝐵 < 𝐶) | ||
Theorem | fltnltalem 40506 | Lemma for fltnlta 40507. A lower bound for 𝐴 based on pwdif 15589. (Contributed by Steven Nguyen, 22-Aug-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) ⇒ ⊢ (𝜑 → ((𝐶 − 𝐵) · ((𝐶↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) < (𝐴↑𝑁)) | ||
Theorem | fltnlta 40507 | In a Fermat counterexample, the exponent 𝑁 is less than all three numbers (𝐴, 𝐵, and 𝐶). Note that 𝐴 < 𝐵 (hypothesis) and 𝐵 < 𝐶 (fltltc 40505). See https://youtu.be/EymVXkPWxyc 40505 for an outline. (Contributed by SN, 24-Aug-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝑁 < 𝐴) | ||
Theorem | binom2d 40508 | Deduction form of binom2. (Contributed by Igor Ieskov, 14-Dec-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2))) | ||
Theorem | cu3addd 40509 | Cube of sum of three numbers. (Contributed by Igor Ieskov, 14-Dec-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))) + (((3 · (𝐴 · (𝐶↑2))) + (3 · (𝐵 · (𝐶↑2)))) + (𝐶↑3)))) | ||
Theorem | sqnegd 40510 | The square of the negative of a number. (Contributed by Igor Ieskov, 21-Jan-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (-𝐴↑2) = (𝐴↑2)) | ||
Theorem | negexpidd 40511 | The sum of a real number to the power of N and the negative of the number to the power of N equals zero if N is a nonnegative odd integer. (Contributed by Igor Ieskov, 21-Jan-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → ¬ 2 ∥ 𝑁) ⇒ ⊢ (𝜑 → ((𝐴↑𝑁) + (-𝐴↑𝑁)) = 0) | ||
Theorem | rexlimdv3d 40512* | An extended version of rexlimdvv 3223 to include three set variables. (Contributed by Igor Ieskov, 21-Jan-2024.) |
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → (𝜓 → 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝜓 → 𝜒)) | ||
Theorem | 3cubeslem1 40513 | Lemma for 3cubes 40519. (Contributed by Igor Ieskov, 22-Jan-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℚ) ⇒ ⊢ (𝜑 → 0 < (((𝐴 + 1)↑2) − 𝐴)) | ||
Theorem | 3cubeslem2 40514 | Lemma for 3cubes 40519. Used to show that the denominators in 3cubeslem4 40518 are nonzero. (Contributed by Igor Ieskov, 22-Jan-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℚ) ⇒ ⊢ (𝜑 → ¬ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = 0) | ||
Theorem | 3cubeslem3l 40515 | Lemma for 3cubes 40519. (Contributed by Igor Ieskov, 22-Jan-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℚ) ⇒ ⊢ (𝜑 → (𝐴 · (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) = (((𝐴↑7) · (3↑9)) + (((𝐴↑6) · (3↑9)) + (((𝐴↑5) · ((3↑8) + (3↑8))) + (((𝐴↑4) · (((3↑7) · 2) + (3↑6))) + (((𝐴↑3) · ((3↑6) + (3↑6))) + (((𝐴↑2) · (3↑5)) + (𝐴 · (3↑3))))))))) | ||
Theorem | 3cubeslem3r 40516 | Lemma for 3cubes 40519. (Contributed by Igor Ieskov, 22-Jan-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℚ) ⇒ ⊢ (𝜑 → ((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) + ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3)) = (((𝐴↑7) · (3↑9)) + (((𝐴↑6) · (3↑9)) + (((𝐴↑5) · ((3↑8) + (3↑8))) + (((𝐴↑4) · (((3↑7) · 2) + (3↑6))) + (((𝐴↑3) · ((3↑6) + (3↑6))) + (((𝐴↑2) · (3↑5)) + (𝐴 · (3↑3))))))))) | ||
Theorem | 3cubeslem3 40517 | Lemma for 3cubes 40519. (Contributed by Igor Ieskov, 22-Jan-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℚ) ⇒ ⊢ (𝜑 → (𝐴 · (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) = ((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) + ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3))) | ||
Theorem | 3cubeslem4 40518 | Lemma for 3cubes 40519. This is Ryley's explicit formula for decomposing a rational 𝐴 into a sum of three rational cubes. (Contributed by Igor Ieskov, 22-Jan-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℚ) ⇒ ⊢ (𝜑 → 𝐴 = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3))) | ||
Theorem | 3cubes 40519* | Every rational number is a sum of three rational cubes. See S. Ryley, The Ladies' Diary 122 (1825), 35. (Contributed by Igor Ieskov, 22-Jan-2024.) |
⊢ (𝐴 ∈ ℚ ↔ ∃𝑎 ∈ ℚ ∃𝑏 ∈ ℚ ∃𝑐 ∈ ℚ 𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3))) | ||
Theorem | rntrclfvOAI 40520 | The range of the transitive closure is equal to the range of the relation. (Contributed by OpenAI, 7-Jul-2020.) |
⊢ (𝑅 ∈ 𝑉 → ran (t+‘𝑅) = ran 𝑅) | ||
Theorem | moxfr 40521* | Transfer at-most-one between related expressions. (Contributed by Stefan O'Rear, 12-Feb-2015.) |
⊢ 𝐴 ∈ V & ⊢ ∃!𝑦 𝑥 = 𝐴 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃*𝑥𝜑 ↔ ∃*𝑦𝜓) | ||
Theorem | imaiinfv 40522* | Indexed intersection of an image. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ∩ 𝑥 ∈ 𝐵 (𝐹‘𝑥) = ∩ (𝐹 “ 𝐵)) | ||
Theorem | elrfi 40523* | Elementhood in a set of relative finite intersections. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ 𝐶)) ↔ ∃𝑣 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = (𝐵 ∩ ∩ 𝑣))) | ||
Theorem | elrfirn 40524* | Elementhood in a set of relative finite intersections of an indexed family of sets. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹:𝐼⟶𝒫 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran 𝐹)) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 ∩ ∩ 𝑦 ∈ 𝑣 (𝐹‘𝑦)))) | ||
Theorem | elrfirn2 40525* | Elementhood in a set of relative finite intersections of an indexed family of sets (implicit). (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ ((𝐵 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝐼 𝐶 ⊆ 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran (𝑦 ∈ 𝐼 ↦ 𝐶))) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 ∩ ∩ 𝑦 ∈ 𝑣 𝐶))) | ||
Theorem | cmpfiiin 40526* | In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝑆 ∈ (Clsd‘𝐽)) & ⊢ ((𝜑 ∧ (𝑙 ⊆ 𝐼 ∧ 𝑙 ∈ Fin)) → (𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆) ≠ ∅) ⇒ ⊢ (𝜑 → (𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆) ≠ ∅) | ||
Theorem | ismrcd1 40527* | Any function from the subsets of a set to itself, which is extensive (satisfies mrcssid 17335), isotone (satisfies mrcss 17334), and idempotent (satisfies mrcidm 17337) has a collection of fixed points which is a Moore collection, and itself is the closure operator for that collection. This can be taken as an alternate definition for the closure operators. This is the first half, ismrcd2 40528 is the second. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝒫 𝐵⟶𝒫 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → 𝑥 ⊆ (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝐹‘𝑦) ⊆ (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)) ⇒ ⊢ (𝜑 → dom (𝐹 ∩ I ) ∈ (Moore‘𝐵)) | ||
Theorem | ismrcd2 40528* | Second half of ismrcd1 40527. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝒫 𝐵⟶𝒫 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → 𝑥 ⊆ (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝐹‘𝑦) ⊆ (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)) ⇒ ⊢ (𝜑 → 𝐹 = (mrCls‘dom (𝐹 ∩ I ))) | ||
Theorem | istopclsd 40529* | A closure function which satisfies sscls 22216, clsidm 22227, cls0 22240, and clsun 34526 defines a (unique) topology which it is the closure function on. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝒫 𝐵⟶𝒫 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → 𝑥 ⊆ (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)) & ⊢ (𝜑 → (𝐹‘∅) = ∅) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝐵) → (𝐹‘(𝑥 ∪ 𝑦)) = ((𝐹‘𝑥) ∪ (𝐹‘𝑦))) & ⊢ 𝐽 = {𝑧 ∈ 𝒫 𝐵 ∣ (𝐹‘(𝐵 ∖ 𝑧)) = (𝐵 ∖ 𝑧)} ⇒ ⊢ (𝜑 → (𝐽 ∈ (TopOn‘𝐵) ∧ (cls‘𝐽) = 𝐹)) | ||
Theorem | ismrc 40530* | A function is a Moore closure operator iff it satisfies mrcssid 17335, mrcss 17334, and mrcidm 17337. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ (𝐹 ∈ (mrCls “ (Moore‘𝐵)) ↔ (𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑦) ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥))))) | ||
Syntax | cnacs 40531 | Class of Noetherian closure systems. |
class NoeACS | ||
Definition | df-nacs 40532* | Define a closure system of Noetherian type (not standard terminology) as an algebraic system where all closed sets are finitely generated. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
⊢ NoeACS = (𝑥 ∈ V ↦ {𝑐 ∈ (ACS‘𝑥) ∣ ∀𝑠 ∈ 𝑐 ∃𝑔 ∈ (𝒫 𝑥 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)}) | ||
Theorem | isnacs 40533* | Expand definition of Noetherian-type closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠 ∈ 𝐶 ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹‘𝑔))) | ||
Theorem | nacsfg 40534* | In a Noetherian-type closure system, all closed sets are finitely generated. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑆 ∈ 𝐶) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔)) | ||
Theorem | isnacs2 40535 | Express Noetherian-type closure system with fewer quantifiers. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ (𝐹 “ (𝒫 𝑋 ∩ Fin)) = 𝐶)) | ||
Theorem | mrefg2 40536* | Slight variation on finite generation for closure systems. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ (𝐶 ∈ (Moore‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 = (𝐹‘𝑔))) | ||
Theorem | mrefg3 40537* | Slight variation on finite generation for closure systems. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 ⊆ (𝐹‘𝑔))) | ||
Theorem | nacsacs 40538 | A closure system of Noetherian type is algebraic. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
⊢ (𝐶 ∈ (NoeACS‘𝑋) → 𝐶 ∈ (ACS‘𝑋)) | ||
Theorem | isnacs3 40539* | A choice-free order equivalent to the Noetherian condition on a closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
⊢ (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝑠))) | ||
Theorem | incssnn0 40540* | Transitivity induction of subsets, lemma for nacsfix 40541. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
⊢ ((∀𝑥 ∈ ℕ0 (𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (𝐹‘𝐴) ⊆ (𝐹‘𝐵)) | ||
Theorem | nacsfix 40541* | An increasing sequence of closed sets in a Noetherian-type closure system eventually fixates. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
⊢ ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ∃𝑦 ∈ ℕ0 ∀𝑧 ∈ (ℤ≥‘𝑦)(𝐹‘𝑧) = (𝐹‘𝑦)) | ||
Theorem | constmap 40542 |
A constant (represented without dummy variables) is an element of a
function set.
Note: In the following development, we will be quite often quantifying over functions and points in N-dimensional space (which are equivalent to functions from an "index set"). Many of the following theorems exist to transfer standard facts about functions to elements of function sets. (Contributed by Stefan O'Rear, 30-Aug-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}) ∈ (𝐶 ↑m 𝐴)) | ||
Theorem | mapco2g 40543 | Renaming indices in a tuple, with sethood as antecedents. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Mario Carneiro, 5-May-2015.) |
⊢ ((𝐸 ∈ V ∧ 𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷:𝐸⟶𝐶) → (𝐴 ∘ 𝐷) ∈ (𝐵 ↑m 𝐸)) | ||
Theorem | mapco2 40544 | Post-composition (renaming indices) of a mapping viewed as a point. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
⊢ 𝐸 ∈ V ⇒ ⊢ ((𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷:𝐸⟶𝐶) → (𝐴 ∘ 𝐷) ∈ (𝐵 ↑m 𝐸)) | ||
Theorem | mapfzcons 40545 | Extending a one-based mapping by adding a tuple at the end results in another mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
⊢ 𝑀 = (𝑁 + 1) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ (𝐵 ↑m (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → (𝐴 ∪ {〈𝑀, 𝐶〉}) ∈ (𝐵 ↑m (1...𝑀))) | ||
Theorem | mapfzcons1 40546 | Recover prefix mapping from an extended mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
⊢ 𝑀 = (𝑁 + 1) ⇒ ⊢ (𝐴 ∈ (𝐵 ↑m (1...𝑁)) → ((𝐴 ∪ {〈𝑀, 𝐶〉}) ↾ (1...𝑁)) = 𝐴) | ||
Theorem | mapfzcons1cl 40547 | A nonempty mapping has a prefix. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
⊢ 𝑀 = (𝑁 + 1) ⇒ ⊢ (𝐴 ∈ (𝐵 ↑m (1...𝑀)) → (𝐴 ↾ (1...𝑁)) ∈ (𝐵 ↑m (1...𝑁))) | ||
Theorem | mapfzcons2 40548 | Recover added element from an extended mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
⊢ 𝑀 = (𝑁 + 1) ⇒ ⊢ ((𝐴 ∈ (𝐵 ↑m (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → ((𝐴 ∪ {〈𝑀, 𝐶〉})‘𝑀) = 𝐶) | ||
Theorem | mptfcl 40549* | Interpret range of a maps-to notation as a constraint on the definition. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ ((𝑡 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶 → (𝑡 ∈ 𝐴 → 𝐵 ∈ 𝐶)) | ||
Syntax | cmzpcl 40550 | Extend class notation to include pre-polynomial rings. |
class mzPolyCld | ||
Syntax | cmzp 40551 | Extend class notation to include polynomial rings. |
class mzPoly | ||
Definition | df-mzpcl 40552* | Define the polynomially closed function rings over an arbitrary index set 𝑣. The set (mzPolyCld‘𝑣) contains all sets of functions from (ℤ ↑m 𝑣) to ℤ which include all constants and projections and are closed under addition and multiplication. This is a "temporary" set used to define the polynomial function ring itself (mzPoly‘𝑣); see df-mzp 40553. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ mzPolyCld = (𝑣 ∈ V ↦ {𝑝 ∈ 𝒫 (ℤ ↑m (ℤ ↑m 𝑣)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗 ∈ 𝑣 (𝑥 ∈ (ℤ ↑m 𝑣) ↦ (𝑥‘𝑗)) ∈ 𝑝) ∧ ∀𝑓 ∈ 𝑝 ∀𝑔 ∈ 𝑝 ((𝑓 ∘f + 𝑔) ∈ 𝑝 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑝))}) | ||
Definition | df-mzp 40553 | Polynomials over ℤ with an arbitrary index set, that is, the smallest ring of functions containing all constant functions and all projections. This is almost the most general reasonable definition; to reach full generality, we would need to be able to replace ZZ with an arbitrary (semi)ring (and a coordinate subring), but rings have not been defined yet. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ mzPoly = (𝑣 ∈ V ↦ ∩ (mzPolyCld‘𝑣)) | ||
Theorem | mzpclval 40554* | Substitution lemma for mzPolyCld. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ (𝑉 ∈ V → (mzPolyCld‘𝑉) = {𝑝 ∈ 𝒫 (ℤ ↑m (ℤ ↑m 𝑉)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗 ∈ 𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥‘𝑗)) ∈ 𝑝) ∧ ∀𝑓 ∈ 𝑝 ∀𝑔 ∈ 𝑝 ((𝑓 ∘f + 𝑔) ∈ 𝑝 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑝))}) | ||
Theorem | elmzpcl 40555* | Double substitution lemma for mzPolyCld. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ (𝑉 ∈ V → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑃 ∧ ∀𝑗 ∈ 𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥‘𝑗)) ∈ 𝑃) ∧ ∀𝑓 ∈ 𝑃 ∀𝑔 ∈ 𝑃 ((𝑓 ∘f + 𝑔) ∈ 𝑃 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑃))))) | ||
Theorem | mzpclall 40556 | The set of all functions with the signature of a polynomial is a polynomially closed set. This is a lemma to show that the intersection in df-mzp 40553 is well-defined. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ (𝑉 ∈ V → (ℤ ↑m (ℤ ↑m 𝑉)) ∈ (mzPolyCld‘𝑉)) | ||
Theorem | mzpcln0 40557 | Corollary of mzpclall 40556: polynomially closed function sets are not empty. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ (𝑉 ∈ V → (mzPolyCld‘𝑉) ≠ ∅) | ||
Theorem | mzpcl1 40558 | Defining property 1 of a polynomially closed function set 𝑃: it contains all constant functions. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → ((ℤ ↑m 𝑉) × {𝐹}) ∈ 𝑃) | ||
Theorem | mzpcl2 40559* | Defining property 2 of a polynomially closed function set 𝑃: it contains all projections. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ 𝑉) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝐹)) ∈ 𝑃) | ||
Theorem | mzpcl34 40560 | Defining properties 3 and 4 of a polynomially closed function set 𝑃: it is closed under pointwise addition and multiplication. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃) → ((𝐹 ∘f + 𝐺) ∈ 𝑃 ∧ (𝐹 ∘f · 𝐺) ∈ 𝑃)) | ||
Theorem | mzpval 40561 | Value of the mzPoly function. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ (𝑉 ∈ V → (mzPoly‘𝑉) = ∩ (mzPolyCld‘𝑉)) | ||
Theorem | dmmzp 40562 | mzPoly is defined for all index sets which are sets. This is used with elfvdm 6815 to eliminate sethood antecedents. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ dom mzPoly = V | ||
Theorem | mzpincl 40563 | Polynomial closedness is a universal first-order property and passes to intersections. This is where the closure properties of the polynomial ring itself are proved. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ (𝑉 ∈ V → (mzPoly‘𝑉) ∈ (mzPolyCld‘𝑉)) | ||
Theorem | mzpconst 40564 | Constant functions are polynomial. See also mzpconstmpt 40569. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝑉 ∈ V ∧ 𝐶 ∈ ℤ) → ((ℤ ↑m 𝑉) × {𝐶}) ∈ (mzPoly‘𝑉)) | ||
Theorem | mzpf 40565 | A polynomial function is a function from the coordinate space to the integers. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
⊢ (𝐹 ∈ (mzPoly‘𝑉) → 𝐹:(ℤ ↑m 𝑉)⟶ℤ) | ||
Theorem | mzpproj 40566* | A projection function is polynomial. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝑉 ∈ V ∧ 𝑋 ∈ 𝑉) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑋)) ∈ (mzPoly‘𝑉)) | ||
Theorem | mzpadd 40567 | The pointwise sum of two polynomial functions is a polynomial function. See also mzpaddmpt 40570. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝐴 ∈ (mzPoly‘𝑉) ∧ 𝐵 ∈ (mzPoly‘𝑉)) → (𝐴 ∘f + 𝐵) ∈ (mzPoly‘𝑉)) | ||
Theorem | mzpmul 40568 | The pointwise product of two polynomial functions is a polynomial function. See also mzpmulmpt 40571. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝐴 ∈ (mzPoly‘𝑉) ∧ 𝐵 ∈ (mzPoly‘𝑉)) → (𝐴 ∘f · 𝐵) ∈ (mzPoly‘𝑉)) | ||
Theorem | mzpconstmpt 40569* | A constant function expressed in maps-to notation is polynomial. This theorem and the several that follow (mzpaddmpt 40570, mzpmulmpt 40571, mzpnegmpt 40573, mzpsubmpt 40572, mzpexpmpt 40574) can be used to build proofs that functions which are "manifestly polynomial", in the sense of being a maps-to containing constants, projections, and simple arithmetic operations, are actually polynomial functions. There is no mzpprojmpt because mzpproj 40566 is already expressed using maps-to notation. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
⊢ ((𝑉 ∈ V ∧ 𝐶 ∈ ℤ) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐶) ∈ (mzPoly‘𝑉)) | ||
Theorem | mzpaddmpt 40570* | Sum of polynomial functions is polynomial. Maps-to version of mzpadd 40567. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
⊢ (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴 + 𝐵)) ∈ (mzPoly‘𝑉)) | ||
Theorem | mzpmulmpt 40571* | Product of polynomial functions is polynomial. Maps-to version of mzpmulmpt 40571. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
⊢ (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴 · 𝐵)) ∈ (mzPoly‘𝑉)) | ||
Theorem | mzpsubmpt 40572* | The difference of two polynomial functions is polynomial. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴 − 𝐵)) ∈ (mzPoly‘𝑉)) | ||
Theorem | mzpnegmpt 40573* | Negation of a polynomial function. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
⊢ ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ -𝐴) ∈ (mzPoly‘𝑉)) | ||
Theorem | mzpexpmpt 40574* | Raise a polynomial function to a (fixed) exponent. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
⊢ (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ 𝐷 ∈ ℕ0) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑𝐷)) ∈ (mzPoly‘𝑉)) | ||
Theorem | mzpindd 40575* | "Structural" induction to prove properties of all polynomial functions. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) → 𝜒) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑉) → 𝜃) & ⊢ ((𝜑 ∧ (𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂)) → 𝜁) & ⊢ ((𝜑 ∧ (𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂)) → 𝜎) & ⊢ (𝑥 = ((ℤ ↑m 𝑉) × {𝑓}) → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = 𝑓 → (𝜓 ↔ 𝜏)) & ⊢ (𝑥 = 𝑔 → (𝜓 ↔ 𝜂)) & ⊢ (𝑥 = (𝑓 ∘f + 𝑔) → (𝜓 ↔ 𝜁)) & ⊢ (𝑥 = (𝑓 ∘f · 𝑔) → (𝜓 ↔ 𝜎)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜌)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ (mzPoly‘𝑉)) → 𝜌) | ||
Theorem | mzpmfp 40576 | Relationship between multivariate Z-polynomials and general multivariate polynomial functions. (Contributed by Stefan O'Rear, 20-Mar-2015.) (Revised by AV, 13-Jun-2019.) |
⊢ (mzPoly‘𝐼) = ran (𝐼 eval ℤring) | ||
Theorem | mzpsubst 40577* | Substituting polynomials for the variables of a polynomial results in a polynomial. 𝐺 is expected to depend on 𝑦 and provide the polynomials which are being substituted. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
⊢ ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ∀𝑦 ∈ 𝑉 𝐺 ∈ (mzPoly‘𝑊)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑦 ∈ 𝑉 ↦ (𝐺‘𝑥)))) ∈ (mzPoly‘𝑊)) | ||
Theorem | mzprename 40578* | Simplified version of mzpsubst 40577 to simply relabel variables in a polynomial. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
⊢ ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉⟶𝑊) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥 ∘ 𝑅))) ∈ (mzPoly‘𝑊)) | ||
Theorem | mzpresrename 40579* | A polynomial is a polynomial over all larger index sets. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Revised by Stefan O'Rear, 5-Jun-2015.) |
⊢ ((𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥 ↾ 𝑉))) ∈ (mzPoly‘𝑊)) | ||
Theorem | mzpcompact2lem 40580* | Lemma for mzpcompact2 40581. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐 ↾ 𝑎))))) | ||
Theorem | mzpcompact2 40581* | Polynomials are finitary objects and can only reference a finite number of variables, even if the index set is infinite. Thus, every polynomial can be expressed as a (uniquely minimal, although we do not prove that) polynomial on a finite number of variables, which is then extended by adding an arbitrary set of ignored variables. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
⊢ (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐 ↾ 𝑎))))) | ||
Theorem | coeq0i 40582 | coeq0 6163 but without explicitly introducing domain and range symbols. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → (𝐴 ∘ 𝐵) = ∅) | ||
Theorem | fzsplit1nn0 40583 | Split a finite 1-based set of integers in the middle, allowing either end to be empty ((1...0)). (Contributed by Stefan O'Rear, 8-Oct-2014.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))) | ||
Syntax | cdioph 40584 | Extend class notation to include the family of Diophantine sets. |
class Dioph | ||
Definition | df-dioph 40585* | A Diophantine set is a set of positive integers which is a projection of the zero set of some polynomial. This definition somewhat awkwardly mixes ℤ (via mzPoly) and ℕ0 (to define the zero sets); the former could be avoided by considering coincidence sets of ℕ0 polynomials at the cost of requiring two, and the second is driven by consistency with our mu-recursive functions and the requirements of the Davis-Putnam-Robinson-Matiyasevich proof. Both are avoidable at a complexity cost. In particular, it is a consequence of 4sq 16674 that implicitly restricting variables to ℕ0 adds no expressive power over allowing them to range over ℤ. While this definition stipulates a specific index set for the polynomials, there is actually flexibility here, see eldioph2b 40592. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
⊢ Dioph = (𝑛 ∈ ℕ0 ↦ ran (𝑘 ∈ (ℤ≥‘𝑛), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝‘𝑢) = 0)})) | ||
Theorem | eldiophb 40586* | Initial expression of Diophantine property of a set. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
⊢ (𝐷 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑘 ∈ (ℤ≥‘𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘))𝐷 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝‘𝑢) = 0)})) | ||
Theorem | eldioph 40587* | Condition for a set to be Diophantine (unpacking existential quantifier). (Contributed by Stefan O'Rear, 5-Oct-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ (mzPoly‘(1...𝐾))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑m (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃‘𝑢) = 0)} ∈ (Dioph‘𝑁)) | ||
Theorem | diophrw 40588* | Renaming and adding unused witness variables does not change the Diophantine set coded by a polynomial. (Contributed by Stefan O'Rear, 7-Oct-2014.) |
⊢ ((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) → {𝑎 ∣ ∃𝑏 ∈ (ℕ0 ↑m 𝑆)(𝑎 = (𝑏 ↾ 𝑂) ∧ ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘𝑏) = 0)} = {𝑎 ∣ ∃𝑐 ∈ (ℕ0 ↑m 𝑇)(𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)}) | ||
Theorem | eldioph2lem1 40589* | Lemma for eldioph2 40591. Construct necessary renaming function for one direction. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ∃𝑑 ∈ (ℤ≥‘𝑁)∃𝑒 ∈ V (𝑒:(1...𝑑)–1-1-onto→𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) | ||
Theorem | eldioph2lem2 40590* | Lemma for eldioph2 40591. Construct necessary renaming function for one direction. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
⊢ (((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) → ∃𝑐(𝑐:(1...𝐴)–1-1→𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) | ||
Theorem | eldioph2 40591* | Construct a Diophantine set from a polynomial with witness variables drawn from any set whatsoever, via mzpcompact2 40581. (Contributed by Stefan O'Rear, 8-Oct-2014.) (Revised by Stefan O'Rear, 5-Jun-2015.) |
⊢ ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃‘𝑢) = 0)} ∈ (Dioph‘𝑁)) | ||
Theorem | eldioph2b 40592* | While Diophantine sets were defined to have a finite number of witness variables consequtively following the observable variables, this is not necessary; they can equivalently be taken to use any witness set (𝑆 ∖ (1...𝑁)). For instance, in diophin 40601 we use this to take the two input sets to have disjoint witness sets. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
⊢ (((𝑁 ∈ ℕ0 ∧ 𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) → (𝐴 ∈ (Dioph‘𝑁) ↔ ∃𝑝 ∈ (mzPoly‘𝑆)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝‘𝑢) = 0)})) | ||
Theorem | eldiophelnn0 40593 | Remove antecedent on 𝐵 from Diophantine set constructors. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ (𝐴 ∈ (Dioph‘𝐵) → 𝐵 ∈ ℕ0) | ||
Theorem | eldioph3b 40594* | Define Diophantine sets in terms of polynomials with variables indexed by ℕ. This avoids a quantifier over the number of witness variables and will be easier to use than eldiophb 40586 in most cases. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ (𝐴 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘ℕ)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝‘𝑢) = 0)})) | ||
Theorem | eldioph3 40595* | Inference version of eldioph3b 40594 with quantifier expanded. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ (mzPoly‘ℕ)) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃‘𝑢) = 0)} ∈ (Dioph‘𝑁)) | ||
Theorem | ellz1 40596 | Membership in a lower set of integers. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
⊢ (𝐵 ∈ ℤ → (𝐴 ∈ (ℤ ∖ (ℤ≥‘(𝐵 + 1))) ↔ (𝐴 ∈ ℤ ∧ 𝐴 ≤ 𝐵))) | ||
Theorem | lzunuz 40597 | The union of a lower set of integers and an upper set of integers which abut or overlap is all of the integers. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → ((ℤ ∖ (ℤ≥‘(𝐴 + 1))) ∪ (ℤ≥‘𝐵)) = ℤ) | ||
Theorem | fz1eqin 40598 | Express a one-based finite range as the intersection of lower integers with ℕ. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
⊢ (𝑁 ∈ ℕ0 → (1...𝑁) = ((ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∩ ℕ)) | ||
Theorem | lzenom 40599 | Lower integers are countably infinite. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ (𝑁 ∈ ℤ → (ℤ ∖ (ℤ≥‘(𝑁 + 1))) ≈ ω) | ||
Theorem | elmapresaunres2 40600 | fresaunres2 6655 transposed to mappings. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
⊢ ((𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐵) ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ∪ 𝐺) ↾ 𝐵) = 𝐺) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |