![]() |
Metamath
Proof Explorer Theorem List (p. 406 of 480) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30435) |
![]() (30436-31958) |
![]() (31959-47941) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | dihmeetlem20N 40501 | Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ Β¬ π β€ π) β§ ((π β π΅ β§ Β¬ π β€ π) β§ (π β§ π) β€ π)) β (πΌβ(π β§ π)) = ((πΌβπ) β© (πΌβπ))) | ||
Theorem | dihmeetALTN 40502 | Isomorphism H of a lattice meet. This version does not depend on the atomisticity of the constructed vector space. TODO: Delete? (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β§ = (meetβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π΅ β§ π β π΅) β (πΌβ(π β§ π)) = ((πΌβπ) β© (πΌβπ))) | ||
Theorem | dih1dimatlem0 40503* | Lemma for dih1dimat 40505. (Contributed by NM, 11-Apr-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π΄ = (LSAtomsβπ) & β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ πΆ = (AtomsβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ π = (β β π β¦ ( I βΎ π΅)) & β’ πΉ = (Scalarβπ) & β’ π½ = (invrβπΉ) & β’ π = (Baseβπ) & β’ Β· = ( Β·π βπ) & β’ π = (LSubSpβπ) & β’ π = (LSpanβπ) & β’ 0 = (0gβπ) & β’ πΊ = (β©β β π (ββπ) = (((π½βπ )βπ)βπ)) β β’ (((πΎ β HL β§ π β π») β§ (π β π β§ π β πΈ) β§ π β π) β ((π = (πβπΊ) β§ π β πΈ) β ((π β π β§ π β πΈ) β§ βπ‘ β πΈ (π = (π‘βπ) β§ π = (π‘ β π ))))) | ||
Theorem | dih1dimatlem 40504* | Lemma for dih1dimat 40505. (Contributed by NM, 10-Apr-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π΄ = (LSAtomsβπ) & β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ πΆ = (AtomsβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ π = (β β π β¦ ( I βΎ π΅)) & β’ πΉ = (Scalarβπ) & β’ π½ = (invrβπΉ) & β’ π = (Baseβπ) & β’ Β· = ( Β·π βπ) & β’ π = (LSubSpβπ) & β’ π = (LSpanβπ) & β’ 0 = (0gβπ) & β’ πΊ = (β©β β π (ββπ) = (((π½βπ )βπ)βπ)) β β’ (((πΎ β HL β§ π β π») β§ π· β π΄) β π· β ran πΌ) | ||
Theorem | dih1dimat 40505 | Any 1-dimensional subspace is a value of isomorphism H. (Contributed by NM, 11-Apr-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π΄ = (LSAtomsβπ) β β’ (((πΎ β HL β§ π β π») β§ π β π΄) β π β ran πΌ) | ||
Theorem | dihlsprn 40506 | The span of a vector belongs to the range of isomorphism H. (Contributed by NM, 27-Apr-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π) β (πβ{π}) β ran πΌ) | ||
Theorem | dihlspsnssN 40507 | A subspace included in a 1-dim subspace belongs to the range of isomorphism H. (Contributed by NM, 26-Apr-2014.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSubSpβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β (πβ{π})) β (π β π β π β ran πΌ)) | ||
Theorem | dihlspsnat 40508 | The inverse isomorphism H of the span of a singleton is a Hilbert lattice atom. (Contributed by NM, 27-Apr-2014.) |
β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β 0 ) β (β‘πΌβ(πβ{π})) β π΄) | ||
Theorem | dihatlat 40509 | The isomorphism H of an atom is a 1-dim subspace. (Contributed by NM, 28-Apr-2014.) |
β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ πΏ = (LSAtomsβπ) β β’ (((πΎ β HL β§ π β π») β§ π β π΄) β (πΌβπ) β πΏ) | ||
Theorem | dihat 40510 | There exists at least one atom in the subspaces of vector space H. (Contributed by NM, 12-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π΄ = (LSAtomsβπ) & β’ (π β (πΎ β HL β§ π β π»)) β β’ (π β (πΌβπ) β π΄) | ||
Theorem | dihpN 40511* | The value of isomorphism H at the fiducial atom π is determined by the vector β¨0, πβ© (the zero translation ltrnid 39310 and a nonzero member of the endomorphism ring). In particular, π can be replaced with the ring unity ( I βΎ π). (Contributed by NM, 26-Aug-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ π = (π β π β¦ ( I βΎ π΅)) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (LSpanβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (π β πΈ β§ π β π)) β β’ (π β (πΌβπ) = (πβ{β¨( I βΎ π΅), πβ©})) | ||
Theorem | dihlatat 40512 | The reverse isomorphism H of a 1-dim subspace is an atom. (Contributed by NM, 28-Apr-2014.) |
β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ πΏ = (LSAtomsβπ) β β’ (((πΎ β HL β§ π β π») β§ π β πΏ) β (β‘πΌβπ) β π΄) | ||
Theorem | dihatexv 40513* | There is a nonzero vector that maps to every lattice atom. (Contributed by NM, 16-Aug-2014.) |
β’ π΅ = (BaseβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π΅) β β’ (π β (π β π΄ β βπ₯ β (π β { 0 })(πΌβπ) = (πβ{π₯}))) | ||
Theorem | dihatexv2 40514* | There is a nonzero vector that maps to every lattice atom. (Contributed by NM, 17-Aug-2014.) |
β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) β β’ (π β (π β π΄ β βπ₯ β (π β { 0 })π = (β‘πΌβ(πβ{π₯})))) | ||
Theorem | dihglblem6 40515* | Isomorphism H of a lattice glb. (Contributed by NM, 9-Apr-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ πΊ = (glbβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (LSubSpβπ) & β’ π· = (LSAtomsβπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β β )) β (πΌβ(πΊβπ)) = β© π₯ β π (πΌβπ₯)) | ||
Theorem | dihglb 40516* | Isomorphism H of a lattice glb. (Contributed by NM, 11-Apr-2014.) |
β’ π΅ = (BaseβπΎ) & β’ πΊ = (glbβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β β )) β (πΌβ(πΊβπ)) = β© π₯ β π (πΌβπ₯)) | ||
Theorem | dihglb2 40517* | Isomorphism H of a lattice glb. (Contributed by NM, 11-Apr-2014.) |
β’ π΅ = (BaseβπΎ) & β’ πΊ = (glbβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) β β’ (((πΎ β HL β§ π β π») β§ π β π) β (πΌβ(πΊβ{π₯ β π΅ β£ π β (πΌβπ₯)})) = β© {π¦ β ran πΌ β£ π β π¦}) | ||
Theorem | dihmeet 40518 | Isomorphism H of a lattice meet. (Contributed by NM, 13-Apr-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β§ = (meetβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π΅ β§ π β π΅) β (πΌβ(π β§ π)) = ((πΌβπ) β© (πΌβπ))) | ||
Theorem | dihintcl 40519 | The intersection of closed subspaces (the range of isomorphism H) is a closed subspace. (Contributed by NM, 14-Apr-2014.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β ran πΌ β§ π β β )) β β© π β ran πΌ) | ||
Theorem | dihmeetcl 40520 | Closure of closed subspace meet for DVecH vector space. (Contributed by NM, 5-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β ran πΌ β§ π β ran πΌ)) β (π β© π) β ran πΌ) | ||
Theorem | dihmeet2 40521 | Reverse isomorphism H of a closed subspace intersection. (Contributed by NM, 15-Jan-2015.) |
β’ β§ = (meetβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) β β’ (π β (β‘πΌβ(π β© π)) = ((β‘πΌβπ) β§ (β‘πΌβπ))) | ||
Syntax | coch 40522 | Extend class notation with subspace orthocomplement for DVecH vector space. |
class ocH | ||
Definition | df-doch 40523* | Define subspace orthocomplement for DVecH vector space. Temporarily, we are using the range of the isomorphism instead of the set of closed subspaces. Later, when inner product is introduced, we will show that these are the same. (Contributed by NM, 14-Mar-2014.) |
β’ ocH = (π β V β¦ (π€ β (LHypβπ) β¦ (π₯ β π« (Baseβ((DVecHβπ)βπ€)) β¦ (((DIsoHβπ)βπ€)β((ocβπ)β((glbβπ)β{π¦ β (Baseβπ) β£ π₯ β (((DIsoHβπ)βπ€)βπ¦)})))))) | ||
Theorem | dochffval 40524* | Subspace orthocomplement for DVecH vector space. (Contributed by NM, 14-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ πΊ = (glbβπΎ) & β’ β₯ = (ocβπΎ) & β’ π» = (LHypβπΎ) β β’ (πΎ β π β (ocHβπΎ) = (π€ β π» β¦ (π₯ β π« (Baseβ((DVecHβπΎ)βπ€)) β¦ (((DIsoHβπΎ)βπ€)β( β₯ β(πΊβ{π¦ β π΅ β£ π₯ β (((DIsoHβπΎ)βπ€)βπ¦)})))))) | ||
Theorem | dochfval 40525* | Subspace orthocomplement for DVecH vector space. (Contributed by NM, 14-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ πΊ = (glbβπΎ) & β’ β₯ = (ocβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = ((ocHβπΎ)βπ) β β’ ((πΎ β π β§ π β π») β π = (π₯ β π« π β¦ (πΌβ( β₯ β(πΊβ{π¦ β π΅ β£ π₯ β (πΌβπ¦)}))))) | ||
Theorem | dochval 40526* | Subspace orthocomplement for DVecH vector space. (Contributed by NM, 14-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ πΊ = (glbβπΎ) & β’ β₯ = (ocβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = ((ocHβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ π β π) β (πβπ) = (πΌβ( β₯ β(πΊβ{π¦ β π΅ β£ π β (πΌβπ¦)})))) | ||
Theorem | dochval2 40527* | Subspace orthocomplement for DVecH vector space. (Contributed by NM, 14-Apr-2014.) |
β’ β₯ = (ocβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π) β (πβπ) = (πΌβ( β₯ β(β‘πΌββ© {π§ β ran πΌ β£ π β π§})))) | ||
Theorem | dochcl 40528 | Closure of subspace orthocomplement for DVecH vector space. (Contributed by NM, 9-Mar-2014.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π) β ( β₯ βπ) β ran πΌ) | ||
Theorem | dochlss 40529 | A subspace orthocomplement is a subspace of the DVecH vector space. (Contributed by NM, 22-Jul-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSubSpβπ) & β’ β₯ = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π) β ( β₯ βπ) β π) | ||
Theorem | dochssv 40530 | A subspace orthocomplement belongs to the DVecH vector space. (Contributed by NM, 22-Jul-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π) β ( β₯ βπ) β π) | ||
Theorem | dochfN 40531 | Domain and codomain of the subspace orthocomplement for the DVecH vector space. (Contributed by NM, 27-Dec-2014.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) β β’ (π β β₯ :π« πβΆran πΌ) | ||
Theorem | dochvalr 40532 | Orthocomplement of a closed subspace. (Contributed by NM, 14-Mar-2014.) |
β’ β₯ = (ocβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β ran πΌ) β (πβπ) = (πΌβ( β₯ β(β‘πΌβπ)))) | ||
Theorem | doch0 40533 | Orthocomplement of the zero subspace. (Contributed by NM, 19-Jun-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) β β’ ((πΎ β HL β§ π β π») β ( β₯ β{ 0 }) = π) | ||
Theorem | doch1 40534 | Orthocomplement of the unit subspace (all vectors). (Contributed by NM, 19-Jun-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) β β’ ((πΎ β HL β§ π β π») β ( β₯ βπ) = { 0 }) | ||
Theorem | dochoc0 40535 | The zero subspace is closed. (Contributed by NM, 16-Feb-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ 0 = (0gβπ) & β’ (π β (πΎ β HL β§ π β π»)) β β’ (π β ( β₯ β( β₯ β{ 0 })) = { 0 }) | ||
Theorem | dochoc1 40536 | The unit subspace (all vectors) is closed. (Contributed by NM, 16-Feb-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = (Baseβπ) & β’ (π β (πΎ β HL β§ π β π»)) β β’ (π β ( β₯ β( β₯ βπ)) = π) | ||
Theorem | dochvalr2 40537 | Orthocomplement of a closed subspace. (Contributed by NM, 21-Jul-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β₯ = (ocβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π΅) β (πβ(πΌβπ)) = (πΌβ( β₯ βπ))) | ||
Theorem | dochvalr3 40538 | Orthocomplement of a closed subspace. (Contributed by NM, 15-Jan-2015.) |
β’ β₯ = (ocβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) β β’ (π β ( β₯ β(β‘πΌβπ)) = (β‘πΌβ(πβπ))) | ||
Theorem | doch2val2 40539* | Double orthocomplement for DVecH vector space. (Contributed by NM, 26-Jul-2014.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β ( β₯ β( β₯ βπ)) = β© {π§ β ran πΌ β£ π β π§}) | ||
Theorem | dochss 40540 | Subset law for orthocomplement. (Contributed by NM, 16-Apr-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β ( β₯ βπ) β ( β₯ βπ)) | ||
Theorem | dochocss 40541 | Double negative law for orthocomplement of an arbitrary set of vectors. (Contributed by NM, 16-Apr-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π) β π β ( β₯ β( β₯ βπ))) | ||
Theorem | dochoc 40542 | Double negative law for orthocomplement of a closed subspace. (Contributed by NM, 14-Mar-2014.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β ran πΌ) β ( β₯ β( β₯ βπ)) = π) | ||
Theorem | dochsscl 40543 | If a set of vectors is included in a closed set, so is its closure. (Contributed by NM, 17-Jun-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β ran πΌ) β β’ (π β (π β π β ( β₯ β( β₯ βπ)) β π)) | ||
Theorem | dochoccl 40544 | A set of vectors is closed iff it equals its double orthocomplent. (Contributed by NM, 1-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β (π β ran πΌ β ( β₯ β( β₯ βπ)) = π)) | ||
Theorem | dochord 40545 | Ordering law for orthocomplement. (Contributed by NM, 12-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) β β’ (π β (π β π β ( β₯ βπ) β ( β₯ βπ))) | ||
Theorem | dochord2N 40546 | Ordering law for orthocomplement. (Contributed by NM, 29-Oct-2014.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) β β’ (π β (( β₯ βπ) β π β ( β₯ βπ) β π)) | ||
Theorem | dochord3 40547 | Ordering law for orthocomplement. (Contributed by NM, 9-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) β β’ (π β (π β ( β₯ βπ) β π β ( β₯ βπ))) | ||
Theorem | doch11 40548 | Orthocomplement is one-to-one. (Contributed by NM, 12-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) β β’ (π β (( β₯ βπ) = ( β₯ βπ) β π = π)) | ||
Theorem | dochsordN 40549 | Strict ordering law for orthocomplement. (Contributed by NM, 12-Aug-2014.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) β β’ (π β (π β π β ( β₯ βπ) β ( β₯ βπ))) | ||
Theorem | dochn0nv 40550 | An orthocomplement is nonzero iff the double orthocomplement is not the whole vector space. (Contributed by NM, 1-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β (( β₯ βπ) β { 0 } β ( β₯ β( β₯ βπ)) β π)) | ||
Theorem | dihoml4c 40551 | Version of dihoml4 40552 with closed subspaces. (Contributed by NM, 15-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) & β’ (π β π β π) β β’ (π β (( β₯ β(( β₯ βπ) β© π)) β© π) = π) | ||
Theorem | dihoml4 40552 | Orthomodular law for constructed vector space H. Lemma 3.3(1) in [Holland95] p. 215. (poml4N 39128 analog.) (Contributed by NM, 15-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (LSubSpβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β ( β₯ β( β₯ βπ)) = π) & β’ (π β π β π) β β’ (π β (( β₯ β(( β₯ βπ) β© π)) β© π) = ( β₯ β( β₯ βπ))) | ||
Theorem | dochspss 40553 | The span of a set of vectors is included in their double orthocomplement. (Contributed by NM, 26-Jul-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β (πβπ) β ( β₯ β( β₯ βπ))) | ||
Theorem | dochocsp 40554 | The span of an orthocomplement equals the orthocomplement of the span. (Contributed by NM, 7-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β ( β₯ β(πβπ)) = ( β₯ βπ)) | ||
Theorem | dochspocN 40555 | The span of an orthocomplement equals the orthocomplement of the span. (Contributed by NM, 7-Aug-2014.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β (πβ( β₯ βπ)) = ( β₯ β(πβπ))) | ||
Theorem | dochocsn 40556 | The double orthocomplement of a singleton is its span. (Contributed by NM, 13-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β ( β₯ β( β₯ β{π})) = (πβ{π})) | ||
Theorem | dochsncom 40557 | Swap vectors in an orthocomplement of a singleton. (Contributed by NM, 17-Jun-2015.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (π β ( β₯ β{π}) β π β ( β₯ β{π}))) | ||
Theorem | dochsat 40558 | The double orthocomplement of an atom is an atom. (Contributed by NM, 29-Oct-2014.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (LSubSpβπ) & β’ π΄ = (LSAtomsβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β (( β₯ β( β₯ βπ)) β π΄ β π β π΄)) | ||
Theorem | dochshpncl 40559 | If a hyperplane is not closed, its closure equals the vector space. (Contributed by NM, 29-Oct-2014.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSHypβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β (( β₯ β( β₯ βπ)) β π β ( β₯ β( β₯ βπ)) = π)) | ||
Theorem | dochlkr 40560 | Equivalent conditions for the closure of a kernel to be a hyperplane. (Contributed by NM, 29-Oct-2014.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ πΉ = (LFnlβπ) & β’ π = (LSHypβπ) & β’ πΏ = (LKerβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΊ β πΉ) β β’ (π β (( β₯ β( β₯ β(πΏβπΊ))) β π β (( β₯ β( β₯ β(πΏβπΊ))) = (πΏβπΊ) β§ (πΏβπΊ) β π))) | ||
Theorem | dochkrshp 40561 | The closure of a kernel is a hyperplane iff it doesn't contain all vectors. (Contributed by NM, 1-Nov-2014.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSHypβπ) & β’ πΉ = (LFnlβπ) & β’ πΏ = (LKerβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΊ β πΉ) β β’ (π β (( β₯ β( β₯ β(πΏβπΊ))) β π β ( β₯ β( β₯ β(πΏβπΊ))) β π)) | ||
Theorem | dochkrshp2 40562 | Properties of the closure of the kernel of a functional. (Contributed by NM, 1-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSHypβπ) & β’ πΉ = (LFnlβπ) & β’ πΏ = (LKerβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΊ β πΉ) β β’ (π β (( β₯ β( β₯ β(πΏβπΊ))) β π β (( β₯ β( β₯ β(πΏβπΊ))) = (πΏβπΊ) β§ (πΏβπΊ) β π))) | ||
Theorem | dochkrshp3 40563 | Properties of the closure of the kernel of a functional. (Contributed by NM, 1-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ πΉ = (LFnlβπ) & β’ πΏ = (LKerβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΊ β πΉ) β β’ (π β (( β₯ β( β₯ β(πΏβπΊ))) β π β (( β₯ β( β₯ β(πΏβπΊ))) = (πΏβπΊ) β§ (πΏβπΊ) β π))) | ||
Theorem | dochkrshp4 40564 | Properties of the closure of the kernel of a functional. (Contributed by NM, 1-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ πΉ = (LFnlβπ) & β’ πΏ = (LKerβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΊ β πΉ) β β’ (π β (( β₯ β( β₯ β(πΏβπΊ))) = (πΏβπΊ) β (( β₯ β( β₯ β(πΏβπΊ))) β π β¨ (πΏβπΊ) = π))) | ||
Theorem | dochdmj1 40565 | De Morgan-like law for subspace orthocomplement. (Contributed by NM, 5-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β ( β₯ β(π βͺ π)) = (( β₯ βπ) β© ( β₯ βπ))) | ||
Theorem | dochnoncon 40566 | Law of noncontradiction. The intersection of a subspace and its orthocomplement is the zero subspace. (Contributed by NM, 16-Apr-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (LSubSpβπ) & β’ 0 = (0gβπ) & β’ β₯ = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π) β (π β© ( β₯ βπ)) = { 0 }) | ||
Theorem | dochnel2 40567 | A nonzero member of a subspace doesn't belong to the orthocomplement of the subspace. (Contributed by NM, 28-Feb-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (LSubSpβπ) & β’ 0 = (0gβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β (π β { 0 })) β β’ (π β Β¬ π β ( β₯ βπ)) | ||
Theorem | dochnel 40568 | A nonzero vector doesn't belong to the orthocomplement of its singleton. (Contributed by NM, 27-Oct-2014.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β (π β { 0 })) β β’ (π β Β¬ π β ( β₯ β{π})) | ||
Syntax | cdjh 40569 | Extend class notation with subspace join for DVecH vector space. |
class joinH | ||
Definition | df-djh 40570* | Define (closed) subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.) |
β’ joinH = (π β V β¦ (π€ β (LHypβπ) β¦ (π₯ β π« (Baseβ((DVecHβπ)βπ€)), π¦ β π« (Baseβ((DVecHβπ)βπ€)) β¦ (((ocHβπ)βπ€)β((((ocHβπ)βπ€)βπ₯) β© (((ocHβπ)βπ€)βπ¦)))))) | ||
Theorem | djhffval 40571* | Subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.) |
β’ π» = (LHypβπΎ) β β’ (πΎ β π β (joinHβπΎ) = (π€ β π» β¦ (π₯ β π« (Baseβ((DVecHβπΎ)βπ€)), π¦ β π« (Baseβ((DVecHβπΎ)βπ€)) β¦ (((ocHβπΎ)βπ€)β((((ocHβπΎ)βπ€)βπ₯) β© (((ocHβπΎ)βπ€)βπ¦)))))) | ||
Theorem | djhfval 40572* | Subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) β β’ ((πΎ β π β§ π β π») β β¨ = (π₯ β π« π, π¦ β π« π β¦ ( β₯ β(( β₯ βπ₯) β© ( β₯ βπ¦))))) | ||
Theorem | djhval 40573 | Subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π β§ π β π)) β (π β¨ π) = ( β₯ β(( β₯ βπ) β© ( β₯ βπ)))) | ||
Theorem | djhval2 40574 | Value of subspace join for DVecH vector space. (Contributed by NM, 6-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β (π β¨ π) = ( β₯ β( β₯ β(π βͺ π)))) | ||
Theorem | djhcl 40575 | Closure of subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β¨ = ((joinHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π β§ π β π)) β (π β¨ π) β ran πΌ) | ||
Theorem | djhlj 40576 | Transfer lattice join to DVecH vector space closed subspace join. (Contributed by NM, 19-Jul-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β¨ = (joinβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π½ = ((joinHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β π΅)) β (πΌβ(π β¨ π)) = ((πΌβπ)π½(πΌβπ))) | ||
Theorem | djhljjN 40577 | Lattice join in terms of DVecH vector space closed subspace join. (Contributed by NM, 17-Aug-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β¨ = (joinβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π½ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β (π β¨ π) = (β‘πΌβ((πΌβπ)π½(πΌβπ)))) | ||
Theorem | djhjlj 40578 | DVecH vector space closed subspace join in terms of lattice join. (Contributed by NM, 9-Aug-2014.) |
β’ β¨ = (joinβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π½ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) β β’ (π β (ππ½π) = (πΌβ((β‘πΌβπ) β¨ (β‘πΌβπ)))) | ||
Theorem | djhj 40579 | DVecH vector space closed subspace join in terms of lattice join. (Contributed by NM, 17-Aug-2014.) |
β’ β¨ = (joinβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π½ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) β β’ (π β (β‘πΌβ(ππ½π)) = ((β‘πΌβπ) β¨ (β‘πΌβπ))) | ||
Theorem | djhcom 40580 | Subspace join commutes. (Contributed by NM, 8-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (π β¨ π) = (π β¨ π)) | ||
Theorem | djhspss 40581 | Subspace span of union is a subset of subspace join. (Contributed by NM, 6-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (πβ(π βͺ π)) β (π β¨ π)) | ||
Theorem | djhsumss 40582 | Subspace sum is a subset of subspace join. (Contributed by NM, 6-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (LSSumβπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (π β π) β (π β¨ π)) | ||
Theorem | dihsumssj 40583 | The subspace sum of two isomorphisms of lattice elements is less than the isomorphism of their lattice join. (Contributed by NM, 23-Sep-2014.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β ((πΌβπ) β (πΌβπ)) β (πΌβ(π β¨ π))) | ||
Theorem | djhunssN 40584 | Subspace union is a subset of subspace join. (Contributed by NM, 6-Aug-2014.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (π βͺ π) β (π β¨ π)) | ||
Theorem | dochdmm1 40585 | De Morgan-like law for closed subspace orthocomplement. (Contributed by NM, 13-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) β β’ (π β ( β₯ β(π β© π)) = (( β₯ βπ) β¨ ( β₯ βπ))) | ||
Theorem | djhexmid 40586 | Excluded middle property of DVecH vector space closed subspace join. (Contributed by NM, 22-Jul-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π) β (π β¨ ( β₯ βπ)) = π) | ||
Theorem | djh01 40587 | Closed subspace join with zero. (Contributed by NM, 9-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ 0 = (0gβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) β β’ (π β (π β¨ { 0 }) = π) | ||
Theorem | djh02 40588 | Closed subspace join with zero. (Contributed by NM, 9-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ 0 = (0gβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) β β’ (π β ({ 0 } β¨ π) = π) | ||
Theorem | djhlsmcl 40589 | A closed subspace sum equals subspace join. (shjshseli 31010 analog.) (Contributed by NM, 13-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSubSpβπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β ((π β π) β ran πΌ β (π β π) = (π β¨ π))) | ||
Theorem | djhcvat42 40590* | A covering property. (cvrat42 38619 analog.) (Contributed by NM, 17-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) β β’ (π β ((π β { 0 } β§ (πβ{π}) β (π β¨ (πβ{π}))) β βπ§ β (π β { 0 })((πβ{π§}) β π β§ (πβ{π}) β ((πβ{π§}) β¨ (πβ{π}))))) | ||
Theorem | dihjatb 40591 | Isomorphism H of lattice join of two atoms under the fiducial hyperplane. (Contributed by NM, 23-Sep-2014.) |
β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (π β π΄ β§ π β€ π)) & β’ (π β (π β π΄ β§ π β€ π)) β β’ (π β (πΌβ(π β¨ π)) = ((πΌβπ) β (πΌβπ))) | ||
Theorem | dihjatc 40592 | Isomorphism H of lattice join of an element under the fiducial hyperplane with atom not under it. (Contributed by NM, 26-Aug-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (π β π΅ β§ π β€ π)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) β β’ (π β (πΌβ(π β¨ π)) = ((πΌβπ) β (πΌβπ))) | ||
Theorem | dihjatcclem1 40593 | Lemma for isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 26-Sep-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((π β¨ π) β§ π) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) β β’ (π β (πΌβ(π β¨ π)) = (((πΌβπ) β (πΌβπ)) β (πΌβπ))) | ||
Theorem | dihjatcclem2 40594 | Lemma for isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 26-Sep-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((π β¨ π) β§ π) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) & β’ (π β (πΌβπ) β ((πΌβπ) β (πΌβπ))) β β’ (π β (πΌβ(π β¨ π)) = ((πΌβπ) β (πΌβπ))) | ||
Theorem | dihjatcclem3 40595* | Lemma for dihjatcc 40597. (Contributed by NM, 28-Sep-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((π β¨ π) β§ π) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) & β’ πΆ = ((ocβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ πΊ = (β©π β π (πβπΆ) = π) & β’ π· = (β©π β π (πβπΆ) = π) β β’ (π β (π β(πΊ β β‘π·)) = π) | ||
Theorem | dihjatcclem4 40596* | Lemma for isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 29-Sep-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((π β¨ π) β§ π) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) & β’ πΆ = ((ocβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ πΊ = (β©π β π (πβπΆ) = π) & β’ π· = (β©π β π (πβπΆ) = π) & β’ π = (π β πΈ β¦ (π β π β¦ β‘(πβπ))) & β’ 0 = (π β π β¦ ( I βΎ π΅)) & β’ π½ = (π β πΈ, π β πΈ β¦ (π β π β¦ ((πβπ) β (πβπ)))) β β’ (π β (πΌβπ) β ((πΌβπ) β (πΌβπ))) | ||
Theorem | dihjatcc 40597 | Isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 29-Sep-2014.) |
β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) β β’ (π β (πΌβ(π β¨ π)) = ((πΌβπ) β (πΌβπ))) | ||
Theorem | dihjat 40598 | Isomorphism H of lattice join of two atoms. (Contributed by NM, 29-Sep-2014.) |
β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π΄) & β’ (π β π β π΄) β β’ (π β (πΌβ(π β¨ π)) = ((πΌβπ) β (πΌβπ))) | ||
Theorem | dihprrnlem1N 40599 | Lemma for dihprrn 40601, showing one of 4 cases. (Contributed by NM, 30-Aug-2014.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ β€ = (leβπΎ) & β’ 0 = (0gβπ) & β’ (π β π β 0 ) & β’ (π β (β‘πΌβ(πβ{π})) β€ π) & β’ (π β Β¬ (β‘πΌβ(πβ{π})) β€ π) β β’ (π β (πβ{π, π}) β ran πΌ) | ||
Theorem | dihprrnlem2 40600 | Lemma for dihprrn 40601. (Contributed by NM, 29-Sep-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ 0 = (0gβπ) & β’ (π β π β 0 ) & β’ (π β π β 0 ) β β’ (π β (πβ{π, π}) β ran πΌ) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |