HomeHome Metamath Proof Explorer
Theorem List (p. 406 of 466)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29289)
  Hilbert Space Explorer  Hilbert Space Explorer
(29290-30812)
  Users' Mathboxes  Users' Mathboxes
(30813-46532)
 

Theorem List for Metamath Proof Explorer - 40501-40600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremflt4lem5f 40501 Final equation of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. Given 𝐴↑4 + 𝐵↑4 = 𝐶↑2, provide a smaller solution. This satisfies the infinite descent condition. (Contributed by SN, 24-Aug-2024.)
𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2)    &   𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2)    &   𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀𝑁))) / 2)    &   𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀𝑁))) / 2)    &   (𝜑𝐴 ∈ ℕ)    &   (𝜑𝐵 ∈ ℕ)    &   (𝜑𝐶 ∈ ℕ)    &   (𝜑 → ¬ 2 ∥ 𝐴)    &   (𝜑 → (𝐴 gcd 𝐶) = 1)    &   (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2))       (𝜑 → ((𝑀 gcd (𝐵 / 2))↑2) = (((𝑅 gcd (𝐵 / 2))↑4) + ((𝑆 gcd (𝐵 / 2))↑4)))
 
Theoremflt4lem6 40502 Remove shared factors in a solution to 𝐴↑4 + 𝐵↑4 = 𝐶↑2. (Contributed by SN, 24-Jul-2024.)
(𝜑𝐴 ∈ ℕ)    &   (𝜑𝐵 ∈ ℕ)    &   (𝜑𝐶 ∈ ℕ)    &   (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2))       (𝜑 → (((𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐶 / ((𝐴 gcd 𝐵)↑2)) ∈ ℕ) ∧ (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) = ((𝐶 / ((𝐴 gcd 𝐵)↑2))↑2)))
 
Theoremflt4lem7 40503* Convert flt4lem5f 40501 into a convenient form for nna4b4nsq 40504. TODO-SN: The change to (𝐴 gcd 𝐵) = 1 points at some inefficiency in the lemmas. (Contributed by SN, 25-Aug-2024.)
(𝜑𝐴 ∈ ℕ)    &   (𝜑𝐵 ∈ ℕ)    &   (𝜑𝐶 ∈ ℕ)    &   (𝜑 → ¬ 2 ∥ 𝐴)    &   (𝜑 → (𝐴 gcd 𝐵) = 1)    &   (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2))       (𝜑 → ∃𝑙 ∈ ℕ (∃𝑔 ∈ ℕ ∃ ∈ ℕ (¬ 2 ∥ 𝑔 ∧ ((𝑔 gcd ) = 1 ∧ ((𝑔↑4) + (↑4)) = (𝑙↑2))) ∧ 𝑙 < 𝐶))
 
Theoremnna4b4nsq 40504 Strengthening of Fermat's last theorem for exponent 4, where the sum is only assumed to be a square. (Contributed by SN, 23-Aug-2024.)
(𝜑𝐴 ∈ ℕ)    &   (𝜑𝐵 ∈ ℕ)    &   (𝜑𝐶 ∈ ℕ)       (𝜑 → ((𝐴↑4) + (𝐵↑4)) ≠ (𝐶↑2))
 
Theoremfltltc 40505 (𝐶𝑁) is the largest term and therefore 𝐵 < 𝐶. (Contributed by Steven Nguyen, 22-Aug-2023.)
(𝜑𝐴 ∈ ℕ)    &   (𝜑𝐵 ∈ ℕ)    &   (𝜑𝐶 ∈ ℕ)    &   (𝜑𝑁 ∈ (ℤ‘3))    &   (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))       (𝜑𝐵 < 𝐶)
 
Theoremfltnltalem 40506 Lemma for fltnlta 40507. A lower bound for 𝐴 based on pwdif 15589. (Contributed by Steven Nguyen, 22-Aug-2023.)
(𝜑𝐴 ∈ ℕ)    &   (𝜑𝐵 ∈ ℕ)    &   (𝜑𝐶 ∈ ℕ)    &   (𝜑𝑁 ∈ (ℤ‘3))    &   (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))       (𝜑 → ((𝐶𝐵) · ((𝐶↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) < (𝐴𝑁))
 
Theoremfltnlta 40507 In a Fermat counterexample, the exponent 𝑁 is less than all three numbers (𝐴, 𝐵, and 𝐶). Note that 𝐴 < 𝐵 (hypothesis) and 𝐵 < 𝐶 (fltltc 40505). See https://youtu.be/EymVXkPWxyc 40505 for an outline. (Contributed by SN, 24-Aug-2023.)
(𝜑𝐴 ∈ ℕ)    &   (𝜑𝐵 ∈ ℕ)    &   (𝜑𝐶 ∈ ℕ)    &   (𝜑𝑁 ∈ (ℤ‘3))    &   (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))    &   (𝜑𝐴 < 𝐵)       (𝜑𝑁 < 𝐴)
 
20.27  Mathbox for Igor Ieskov
 
Theorembinom2d 40508 Deduction form of binom2. (Contributed by Igor Ieskov, 14-Dec-2023.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)))
 
Theoremcu3addd 40509 Cube of sum of three numbers. (Contributed by Igor Ieskov, 14-Dec-2023.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))) + (((3 · (𝐴 · (𝐶↑2))) + (3 · (𝐵 · (𝐶↑2)))) + (𝐶↑3))))
 
Theoremsqnegd 40510 The square of the negative of a number. (Contributed by Igor Ieskov, 21-Jan-2024.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (-𝐴↑2) = (𝐴↑2))
 
Theoremnegexpidd 40511 The sum of a real number to the power of N and the negative of the number to the power of N equals zero if N is a nonnegative odd integer. (Contributed by Igor Ieskov, 21-Jan-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑 → ¬ 2 ∥ 𝑁)       (𝜑 → ((𝐴𝑁) + (-𝐴𝑁)) = 0)
 
Theoremrexlimdv3d 40512* An extended version of rexlimdvv 3223 to include three set variables. (Contributed by Igor Ieskov, 21-Jan-2024.)
(𝜑 → ((𝑥𝐴𝑦𝐵𝑧𝐶) → (𝜓𝜒)))       (𝜑 → (∃𝑥𝐴𝑦𝐵𝑧𝐶 𝜓𝜒))
 
Theorem3cubeslem1 40513 Lemma for 3cubes 40519. (Contributed by Igor Ieskov, 22-Jan-2024.)
(𝜑𝐴 ∈ ℚ)       (𝜑 → 0 < (((𝐴 + 1)↑2) − 𝐴))
 
Theorem3cubeslem2 40514 Lemma for 3cubes 40519. Used to show that the denominators in 3cubeslem4 40518 are nonzero. (Contributed by Igor Ieskov, 22-Jan-2024.)
(𝜑𝐴 ∈ ℚ)       (𝜑 → ¬ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = 0)
 
Theorem3cubeslem3l 40515 Lemma for 3cubes 40519. (Contributed by Igor Ieskov, 22-Jan-2024.)
(𝜑𝐴 ∈ ℚ)       (𝜑 → (𝐴 · (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) = (((𝐴↑7) · (3↑9)) + (((𝐴↑6) · (3↑9)) + (((𝐴↑5) · ((3↑8) + (3↑8))) + (((𝐴↑4) · (((3↑7) · 2) + (3↑6))) + (((𝐴↑3) · ((3↑6) + (3↑6))) + (((𝐴↑2) · (3↑5)) + (𝐴 · (3↑3)))))))))
 
Theorem3cubeslem3r 40516 Lemma for 3cubes 40519. (Contributed by Igor Ieskov, 22-Jan-2024.)
(𝜑𝐴 ∈ ℚ)       (𝜑 → ((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) + ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3)) = (((𝐴↑7) · (3↑9)) + (((𝐴↑6) · (3↑9)) + (((𝐴↑5) · ((3↑8) + (3↑8))) + (((𝐴↑4) · (((3↑7) · 2) + (3↑6))) + (((𝐴↑3) · ((3↑6) + (3↑6))) + (((𝐴↑2) · (3↑5)) + (𝐴 · (3↑3)))))))))
 
Theorem3cubeslem3 40517 Lemma for 3cubes 40519. (Contributed by Igor Ieskov, 22-Jan-2024.)
(𝜑𝐴 ∈ ℚ)       (𝜑 → (𝐴 · (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) = ((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) + ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3)))
 
Theorem3cubeslem4 40518 Lemma for 3cubes 40519. This is Ryley's explicit formula for decomposing a rational 𝐴 into a sum of three rational cubes. (Contributed by Igor Ieskov, 22-Jan-2024.)
(𝜑𝐴 ∈ ℚ)       (𝜑𝐴 = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)))
 
Theorem3cubes 40519* Every rational number is a sum of three rational cubes. See S. Ryley, The Ladies' Diary 122 (1825), 35. (Contributed by Igor Ieskov, 22-Jan-2024.)
(𝐴 ∈ ℚ ↔ ∃𝑎 ∈ ℚ ∃𝑏 ∈ ℚ ∃𝑐 ∈ ℚ 𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)))
 
20.28  Mathbox for OpenAI
 
TheoremrntrclfvOAI 40520 The range of the transitive closure is equal to the range of the relation. (Contributed by OpenAI, 7-Jul-2020.)
(𝑅𝑉 → ran (t+‘𝑅) = ran 𝑅)
 
20.29  Mathbox for Stefan O'Rear
 
20.29.1  Additional elementary logic and set theory
 
Theoremmoxfr 40521* Transfer at-most-one between related expressions. (Contributed by Stefan O'Rear, 12-Feb-2015.)
𝐴 ∈ V    &   ∃!𝑦 𝑥 = 𝐴    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∃*𝑥𝜑 ↔ ∃*𝑦𝜓)
 
20.29.2  Additional theory of functions
 
Theoremimaiinfv 40522* Indexed intersection of an image. (Contributed by Stefan O'Rear, 22-Feb-2015.)
((𝐹 Fn 𝐴𝐵𝐴) → 𝑥𝐵 (𝐹𝑥) = (𝐹𝐵))
 
20.29.3  Additional topology
 
Theoremelrfi 40523* Elementhood in a set of relative finite intersections. (Contributed by Stefan O'Rear, 22-Feb-2015.)
((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ 𝐶)) ↔ ∃𝑣 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = (𝐵 𝑣)))
 
Theoremelrfirn 40524* Elementhood in a set of relative finite intersections of an indexed family of sets. (Contributed by Stefan O'Rear, 22-Feb-2015.)
((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran 𝐹)) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑦𝑣 (𝐹𝑦))))
 
Theoremelrfirn2 40525* Elementhood in a set of relative finite intersections of an indexed family of sets (implicit). (Contributed by Stefan O'Rear, 22-Feb-2015.)
((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran (𝑦𝐼𝐶))) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑦𝑣 𝐶)))
 
Theoremcmpfiiin 40526* In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.)
𝑋 = 𝐽    &   (𝜑𝐽 ∈ Comp)    &   ((𝜑𝑘𝐼) → 𝑆 ∈ (Clsd‘𝐽))    &   ((𝜑 ∧ (𝑙𝐼𝑙 ∈ Fin)) → (𝑋 𝑘𝑙 𝑆) ≠ ∅)       (𝜑 → (𝑋 𝑘𝐼 𝑆) ≠ ∅)
 
20.29.4  Characterization of closure operators. Kuratowski closure axioms
 
Theoremismrcd1 40527* Any function from the subsets of a set to itself, which is extensive (satisfies mrcssid 17335), isotone (satisfies mrcss 17334), and idempotent (satisfies mrcidm 17337) has a collection of fixed points which is a Moore collection, and itself is the closure operator for that collection. This can be taken as an alternate definition for the closure operators. This is the first half, ismrcd2 40528 is the second. (Contributed by Stefan O'Rear, 1-Feb-2015.)
(𝜑𝐵𝑉)    &   (𝜑𝐹:𝒫 𝐵⟶𝒫 𝐵)    &   ((𝜑𝑥𝐵) → 𝑥 ⊆ (𝐹𝑥))    &   ((𝜑𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥))    &   ((𝜑𝑥𝐵) → (𝐹‘(𝐹𝑥)) = (𝐹𝑥))       (𝜑 → dom (𝐹 ∩ I ) ∈ (Moore‘𝐵))
 
Theoremismrcd2 40528* Second half of ismrcd1 40527. (Contributed by Stefan O'Rear, 1-Feb-2015.)
(𝜑𝐵𝑉)    &   (𝜑𝐹:𝒫 𝐵⟶𝒫 𝐵)    &   ((𝜑𝑥𝐵) → 𝑥 ⊆ (𝐹𝑥))    &   ((𝜑𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥))    &   ((𝜑𝑥𝐵) → (𝐹‘(𝐹𝑥)) = (𝐹𝑥))       (𝜑𝐹 = (mrCls‘dom (𝐹 ∩ I )))
 
Theoremistopclsd 40529* A closure function which satisfies sscls 22216, clsidm 22227, cls0 22240, and clsun 34526 defines a (unique) topology which it is the closure function on. (Contributed by Stefan O'Rear, 1-Feb-2015.)
(𝜑𝐵𝑉)    &   (𝜑𝐹:𝒫 𝐵⟶𝒫 𝐵)    &   ((𝜑𝑥𝐵) → 𝑥 ⊆ (𝐹𝑥))    &   ((𝜑𝑥𝐵) → (𝐹‘(𝐹𝑥)) = (𝐹𝑥))    &   (𝜑 → (𝐹‘∅) = ∅)    &   ((𝜑𝑥𝐵𝑦𝐵) → (𝐹‘(𝑥𝑦)) = ((𝐹𝑥) ∪ (𝐹𝑦)))    &   𝐽 = {𝑧 ∈ 𝒫 𝐵 ∣ (𝐹‘(𝐵𝑧)) = (𝐵𝑧)}       (𝜑 → (𝐽 ∈ (TopOn‘𝐵) ∧ (cls‘𝐽) = 𝐹))
 
Theoremismrc 40530* A function is a Moore closure operator iff it satisfies mrcssid 17335, mrcss 17334, and mrcidm 17337. (Contributed by Stefan O'Rear, 1-Feb-2015.)
(𝐹 ∈ (mrCls “ (Moore‘𝐵)) ↔ (𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥𝑦((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑦) ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥)))))
 
20.29.5  Algebraic closure systems
 
Syntaxcnacs 40531 Class of Noetherian closure systems.
class NoeACS
 
Definitiondf-nacs 40532* Define a closure system of Noetherian type (not standard terminology) as an algebraic system where all closed sets are finitely generated. (Contributed by Stefan O'Rear, 4-Apr-2015.)
NoeACS = (𝑥 ∈ V ↦ {𝑐 ∈ (ACS‘𝑥) ∣ ∀𝑠𝑐𝑔 ∈ (𝒫 𝑥 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)})
 
Theoremisnacs 40533* Expand definition of Noetherian-type closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.)
𝐹 = (mrCls‘𝐶)       (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔)))
 
Theoremnacsfg 40534* In a Noetherian-type closure system, all closed sets are finitely generated. (Contributed by Stefan O'Rear, 4-Apr-2015.)
𝐹 = (mrCls‘𝐶)       ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑆𝐶) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹𝑔))
 
Theoremisnacs2 40535 Express Noetherian-type closure system with fewer quantifiers. (Contributed by Stefan O'Rear, 4-Apr-2015.)
𝐹 = (mrCls‘𝐶)       (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ (𝐹 “ (𝒫 𝑋 ∩ Fin)) = 𝐶))
 
Theoremmrefg2 40536* Slight variation on finite generation for closure systems. (Contributed by Stefan O'Rear, 4-Apr-2015.)
𝐹 = (mrCls‘𝐶)       (𝐶 ∈ (Moore‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 = (𝐹𝑔)))
 
Theoremmrefg3 40537* Slight variation on finite generation for closure systems. (Contributed by Stefan O'Rear, 4-Apr-2015.)
𝐹 = (mrCls‘𝐶)       ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 ⊆ (𝐹𝑔)))
 
Theoremnacsacs 40538 A closure system of Noetherian type is algebraic. (Contributed by Stefan O'Rear, 4-Apr-2015.)
(𝐶 ∈ (NoeACS‘𝑋) → 𝐶 ∈ (ACS‘𝑋))
 
Theoremisnacs3 40539* A choice-free order equivalent to the Noetherian condition on a closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.)
(𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)))
 
Theoremincssnn0 40540* Transitivity induction of subsets, lemma for nacsfix 40541. (Contributed by Stefan O'Rear, 4-Apr-2015.)
((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0𝐵 ∈ (ℤ𝐴)) → (𝐹𝐴) ⊆ (𝐹𝐵))
 
Theoremnacsfix 40541* An increasing sequence of closed sets in a Noetherian-type closure system eventually fixates. (Contributed by Stefan O'Rear, 4-Apr-2015.)
((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ∃𝑦 ∈ ℕ0𝑧 ∈ (ℤ𝑦)(𝐹𝑧) = (𝐹𝑦))
 
20.29.6  Miscellanea 1. Map utilities
 
Theoremconstmap 40542 A constant (represented without dummy variables) is an element of a function set.

Note: In the following development, we will be quite often quantifying over functions and points in N-dimensional space (which are equivalent to functions from an "index set"). Many of the following theorems exist to transfer standard facts about functions to elements of function sets. (Contributed by Stefan O'Rear, 30-Aug-2014.) (Revised by Stefan O'Rear, 5-May-2015.)

𝐴 ∈ V    &   𝐶 ∈ V       (𝐵𝐶 → (𝐴 × {𝐵}) ∈ (𝐶m 𝐴))
 
Theoremmapco2g 40543 Renaming indices in a tuple, with sethood as antecedents. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Mario Carneiro, 5-May-2015.)
((𝐸 ∈ V ∧ 𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷:𝐸𝐶) → (𝐴𝐷) ∈ (𝐵m 𝐸))
 
Theoremmapco2 40544 Post-composition (renaming indices) of a mapping viewed as a point. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.)
𝐸 ∈ V       ((𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷:𝐸𝐶) → (𝐴𝐷) ∈ (𝐵m 𝐸))
 
Theoremmapfzcons 40545 Extending a one-based mapping by adding a tuple at the end results in another mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.)
𝑀 = (𝑁 + 1)       ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → (𝐴 ∪ {⟨𝑀, 𝐶⟩}) ∈ (𝐵m (1...𝑀)))
 
Theoremmapfzcons1 40546 Recover prefix mapping from an extended mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.)
𝑀 = (𝑁 + 1)       (𝐴 ∈ (𝐵m (1...𝑁)) → ((𝐴 ∪ {⟨𝑀, 𝐶⟩}) ↾ (1...𝑁)) = 𝐴)
 
Theoremmapfzcons1cl 40547 A nonempty mapping has a prefix. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.)
𝑀 = (𝑁 + 1)       (𝐴 ∈ (𝐵m (1...𝑀)) → (𝐴 ↾ (1...𝑁)) ∈ (𝐵m (1...𝑁)))
 
Theoremmapfzcons2 40548 Recover added element from an extended mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.)
𝑀 = (𝑁 + 1)       ((𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → ((𝐴 ∪ {⟨𝑀, 𝐶⟩})‘𝑀) = 𝐶)
 
20.29.7  Miscellanea for polynomials
 
Theoremmptfcl 40549* Interpret range of a maps-to notation as a constraint on the definition. (Contributed by Stefan O'Rear, 10-Oct-2014.)
((𝑡𝐴𝐵):𝐴𝐶 → (𝑡𝐴𝐵𝐶))
 
20.29.8  Multivariate polynomials over the integers
 
Syntaxcmzpcl 40550 Extend class notation to include pre-polynomial rings.
class mzPolyCld
 
Syntaxcmzp 40551 Extend class notation to include polynomial rings.
class mzPoly
 
Definitiondf-mzpcl 40552* Define the polynomially closed function rings over an arbitrary index set 𝑣. The set (mzPolyCld‘𝑣) contains all sets of functions from (ℤ ↑m 𝑣) to which include all constants and projections and are closed under addition and multiplication. This is a "temporary" set used to define the polynomial function ring itself (mzPoly‘𝑣); see df-mzp 40553. (Contributed by Stefan O'Rear, 4-Oct-2014.)
mzPolyCld = (𝑣 ∈ V ↦ {𝑝 ∈ 𝒫 (ℤ ↑m (ℤ ↑m 𝑣)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑣 (𝑥 ∈ (ℤ ↑m 𝑣) ↦ (𝑥𝑗)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓f + 𝑔) ∈ 𝑝 ∧ (𝑓f · 𝑔) ∈ 𝑝))})
 
Definitiondf-mzp 40553 Polynomials over with an arbitrary index set, that is, the smallest ring of functions containing all constant functions and all projections. This is almost the most general reasonable definition; to reach full generality, we would need to be able to replace ZZ with an arbitrary (semi)ring (and a coordinate subring), but rings have not been defined yet. (Contributed by Stefan O'Rear, 4-Oct-2014.)
mzPoly = (𝑣 ∈ V ↦ (mzPolyCld‘𝑣))
 
Theoremmzpclval 40554* Substitution lemma for mzPolyCld. (Contributed by Stefan O'Rear, 4-Oct-2014.)
(𝑉 ∈ V → (mzPolyCld‘𝑉) = {𝑝 ∈ 𝒫 (ℤ ↑m (ℤ ↑m 𝑉)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓f + 𝑔) ∈ 𝑝 ∧ (𝑓f · 𝑔) ∈ 𝑝))})
 
Theoremelmzpcl 40555* Double substitution lemma for mzPolyCld. (Contributed by Stefan O'Rear, 4-Oct-2014.)
(𝑉 ∈ V → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑃 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃)))))
 
Theoremmzpclall 40556 The set of all functions with the signature of a polynomial is a polynomially closed set. This is a lemma to show that the intersection in df-mzp 40553 is well-defined. (Contributed by Stefan O'Rear, 4-Oct-2014.)
(𝑉 ∈ V → (ℤ ↑m (ℤ ↑m 𝑉)) ∈ (mzPolyCld‘𝑉))
 
Theoremmzpcln0 40557 Corollary of mzpclall 40556: polynomially closed function sets are not empty. (Contributed by Stefan O'Rear, 4-Oct-2014.)
(𝑉 ∈ V → (mzPolyCld‘𝑉) ≠ ∅)
 
Theoremmzpcl1 40558 Defining property 1 of a polynomially closed function set 𝑃: it contains all constant functions. (Contributed by Stefan O'Rear, 4-Oct-2014.)
((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → ((ℤ ↑m 𝑉) × {𝐹}) ∈ 𝑃)
 
Theoremmzpcl2 40559* Defining property 2 of a polynomially closed function set 𝑃: it contains all projections. (Contributed by Stefan O'Rear, 4-Oct-2014.)
((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑉) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝐹)) ∈ 𝑃)
 
Theoremmzpcl34 40560 Defining properties 3 and 4 of a polynomially closed function set 𝑃: it is closed under pointwise addition and multiplication. (Contributed by Stefan O'Rear, 4-Oct-2014.)
((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → ((𝐹f + 𝐺) ∈ 𝑃 ∧ (𝐹f · 𝐺) ∈ 𝑃))
 
Theoremmzpval 40561 Value of the mzPoly function. (Contributed by Stefan O'Rear, 4-Oct-2014.)
(𝑉 ∈ V → (mzPoly‘𝑉) = (mzPolyCld‘𝑉))
 
Theoremdmmzp 40562 mzPoly is defined for all index sets which are sets. This is used with elfvdm 6815 to eliminate sethood antecedents. (Contributed by Stefan O'Rear, 4-Oct-2014.)
dom mzPoly = V
 
Theoremmzpincl 40563 Polynomial closedness is a universal first-order property and passes to intersections. This is where the closure properties of the polynomial ring itself are proved. (Contributed by Stefan O'Rear, 4-Oct-2014.)
(𝑉 ∈ V → (mzPoly‘𝑉) ∈ (mzPolyCld‘𝑉))
 
Theoremmzpconst 40564 Constant functions are polynomial. See also mzpconstmpt 40569. (Contributed by Stefan O'Rear, 4-Oct-2014.)
((𝑉 ∈ V ∧ 𝐶 ∈ ℤ) → ((ℤ ↑m 𝑉) × {𝐶}) ∈ (mzPoly‘𝑉))
 
Theoremmzpf 40565 A polynomial function is a function from the coordinate space to the integers. (Contributed by Stefan O'Rear, 5-Oct-2014.)
(𝐹 ∈ (mzPoly‘𝑉) → 𝐹:(ℤ ↑m 𝑉)⟶ℤ)
 
Theoremmzpproj 40566* A projection function is polynomial. (Contributed by Stefan O'Rear, 4-Oct-2014.)
((𝑉 ∈ V ∧ 𝑋𝑉) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑋)) ∈ (mzPoly‘𝑉))
 
Theoremmzpadd 40567 The pointwise sum of two polynomial functions is a polynomial function. See also mzpaddmpt 40570. (Contributed by Stefan O'Rear, 4-Oct-2014.)
((𝐴 ∈ (mzPoly‘𝑉) ∧ 𝐵 ∈ (mzPoly‘𝑉)) → (𝐴f + 𝐵) ∈ (mzPoly‘𝑉))
 
Theoremmzpmul 40568 The pointwise product of two polynomial functions is a polynomial function. See also mzpmulmpt 40571. (Contributed by Stefan O'Rear, 4-Oct-2014.)
((𝐴 ∈ (mzPoly‘𝑉) ∧ 𝐵 ∈ (mzPoly‘𝑉)) → (𝐴f · 𝐵) ∈ (mzPoly‘𝑉))
 
Theoremmzpconstmpt 40569* A constant function expressed in maps-to notation is polynomial. This theorem and the several that follow (mzpaddmpt 40570, mzpmulmpt 40571, mzpnegmpt 40573, mzpsubmpt 40572, mzpexpmpt 40574) can be used to build proofs that functions which are "manifestly polynomial", in the sense of being a maps-to containing constants, projections, and simple arithmetic operations, are actually polynomial functions. There is no mzpprojmpt because mzpproj 40566 is already expressed using maps-to notation. (Contributed by Stefan O'Rear, 5-Oct-2014.)
((𝑉 ∈ V ∧ 𝐶 ∈ ℤ) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐶) ∈ (mzPoly‘𝑉))
 
Theoremmzpaddmpt 40570* Sum of polynomial functions is polynomial. Maps-to version of mzpadd 40567. (Contributed by Stefan O'Rear, 5-Oct-2014.)
(((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴 + 𝐵)) ∈ (mzPoly‘𝑉))
 
Theoremmzpmulmpt 40571* Product of polynomial functions is polynomial. Maps-to version of mzpmulmpt 40571. (Contributed by Stefan O'Rear, 5-Oct-2014.)
(((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴 · 𝐵)) ∈ (mzPoly‘𝑉))
 
Theoremmzpsubmpt 40572* The difference of two polynomial functions is polynomial. (Contributed by Stefan O'Rear, 10-Oct-2014.)
(((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝐵)) ∈ (mzPoly‘𝑉))
 
Theoremmzpnegmpt 40573* Negation of a polynomial function. (Contributed by Stefan O'Rear, 11-Oct-2014.)
((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ -𝐴) ∈ (mzPoly‘𝑉))
 
Theoremmzpexpmpt 40574* Raise a polynomial function to a (fixed) exponent. (Contributed by Stefan O'Rear, 5-Oct-2014.)
(((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ 𝐷 ∈ ℕ0) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝐷)) ∈ (mzPoly‘𝑉))
 
Theoremmzpindd 40575* "Structural" induction to prove properties of all polynomial functions. (Contributed by Stefan O'Rear, 4-Oct-2014.)
((𝜑𝑓 ∈ ℤ) → 𝜒)    &   ((𝜑𝑓𝑉) → 𝜃)    &   ((𝜑 ∧ (𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂)) → 𝜁)    &   ((𝜑 ∧ (𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂)) → 𝜎)    &   (𝑥 = ((ℤ ↑m 𝑉) × {𝑓}) → (𝜓𝜒))    &   (𝑥 = (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) → (𝜓𝜃))    &   (𝑥 = 𝑓 → (𝜓𝜏))    &   (𝑥 = 𝑔 → (𝜓𝜂))    &   (𝑥 = (𝑓f + 𝑔) → (𝜓𝜁))    &   (𝑥 = (𝑓f · 𝑔) → (𝜓𝜎))    &   (𝑥 = 𝐴 → (𝜓𝜌))       ((𝜑𝐴 ∈ (mzPoly‘𝑉)) → 𝜌)
 
Theoremmzpmfp 40576 Relationship between multivariate Z-polynomials and general multivariate polynomial functions. (Contributed by Stefan O'Rear, 20-Mar-2015.) (Revised by AV, 13-Jun-2019.)
(mzPoly‘𝐼) = ran (𝐼 eval ℤring)
 
Theoremmzpsubst 40577* Substituting polynomials for the variables of a polynomial results in a polynomial. 𝐺 is expected to depend on 𝑦 and provide the polynomials which are being substituted. (Contributed by Stefan O'Rear, 5-Oct-2014.)
((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
 
Theoremmzprename 40578* Simplified version of mzpsubst 40577 to simply relabel variables in a polynomial. (Contributed by Stefan O'Rear, 5-Oct-2014.)
((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥𝑅))) ∈ (mzPoly‘𝑊))
 
Theoremmzpresrename 40579* A polynomial is a polynomial over all larger index sets. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Revised by Stefan O'Rear, 5-Jun-2015.)
((𝑊 ∈ V ∧ 𝑉𝑊𝐹 ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥𝑉))) ∈ (mzPoly‘𝑊))
 
Theoremmzpcompact2lem 40580* Lemma for mzpcompact2 40581. (Contributed by Stefan O'Rear, 9-Oct-2014.)
𝐵 ∈ V       (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝐵𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎)))))
 
Theoremmzpcompact2 40581* Polynomials are finitary objects and can only reference a finite number of variables, even if the index set is infinite. Thus, every polynomial can be expressed as a (uniquely minimal, although we do not prove that) polynomial on a finite number of variables, which is then extended by adding an arbitrary set of ignored variables. (Contributed by Stefan O'Rear, 9-Oct-2014.)
(𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝐵𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎)))))
 
20.29.9  Miscellanea for Diophantine sets 1
 
Theoremcoeq0i 40582 coeq0 6163 but without explicitly introducing domain and range symbols. (Contributed by Stefan O'Rear, 16-Oct-2014.)
((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → (𝐴𝐵) = ∅)
 
Theoremfzsplit1nn0 40583 Split a finite 1-based set of integers in the middle, allowing either end to be empty ((1...0)). (Contributed by Stefan O'Rear, 8-Oct-2014.)
((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝐴𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)))
 
20.29.10  Diophantine sets 1: definitions
 
Syntaxcdioph 40584 Extend class notation to include the family of Diophantine sets.
class Dioph
 
Definitiondf-dioph 40585* A Diophantine set is a set of positive integers which is a projection of the zero set of some polynomial. This definition somewhat awkwardly mixes (via mzPoly) and 0 (to define the zero sets); the former could be avoided by considering coincidence sets of 0 polynomials at the cost of requiring two, and the second is driven by consistency with our mu-recursive functions and the requirements of the Davis-Putnam-Robinson-Matiyasevich proof. Both are avoidable at a complexity cost. In particular, it is a consequence of 4sq 16674 that implicitly restricting variables to 0 adds no expressive power over allowing them to range over . While this definition stipulates a specific index set for the polynomials, there is actually flexibility here, see eldioph2b 40592. (Contributed by Stefan O'Rear, 5-Oct-2014.)
Dioph = (𝑛 ∈ ℕ0 ↦ ran (𝑘 ∈ (ℤ𝑛), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝𝑢) = 0)}))
 
Theoremeldiophb 40586* Initial expression of Diophantine property of a set. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
(𝐷 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘))𝐷 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
 
Theoremeldioph 40587* Condition for a set to be Diophantine (unpacking existential quantifier). (Contributed by Stefan O'Rear, 5-Oct-2014.)
((𝑁 ∈ ℕ0𝐾 ∈ (ℤ𝑁) ∧ 𝑃 ∈ (mzPoly‘(1...𝐾))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁))
 
Theoremdiophrw 40588* Renaming and adding unused witness variables does not change the Diophantine set coded by a polynomial. (Contributed by Stefan O'Rear, 7-Oct-2014.)
((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) → {𝑎 ∣ ∃𝑏 ∈ (ℕ0m 𝑆)(𝑎 = (𝑏𝑂) ∧ ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘𝑏) = 0)} = {𝑎 ∣ ∃𝑐 ∈ (ℕ0m 𝑇)(𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)})
 
Theoremeldioph2lem1 40589* Lemma for eldioph2 40591. Construct necessary renaming function for one direction. (Contributed by Stefan O'Rear, 8-Oct-2014.)
((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ∃𝑑 ∈ (ℤ𝑁)∃𝑒 ∈ V (𝑒:(1...𝑑)–1-1-onto𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
 
Theoremeldioph2lem2 40590* Lemma for eldioph2 40591. Construct necessary renaming function for one direction. (Contributed by Stefan O'Rear, 8-Oct-2014.)
(((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) → ∃𝑐(𝑐:(1...𝐴)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
 
Theoremeldioph2 40591* Construct a Diophantine set from a polynomial with witness variables drawn from any set whatsoever, via mzpcompact2 40581. (Contributed by Stefan O'Rear, 8-Oct-2014.) (Revised by Stefan O'Rear, 5-Jun-2015.)
((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁))
 
Theoremeldioph2b 40592* While Diophantine sets were defined to have a finite number of witness variables consequtively following the observable variables, this is not necessary; they can equivalently be taken to use any witness set (𝑆 ∖ (1...𝑁)). For instance, in diophin 40601 we use this to take the two input sets to have disjoint witness sets. (Contributed by Stefan O'Rear, 8-Oct-2014.)
(((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) → (𝐴 ∈ (Dioph‘𝑁) ↔ ∃𝑝 ∈ (mzPoly‘𝑆)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
 
Theoremeldiophelnn0 40593 Remove antecedent on 𝐵 from Diophantine set constructors. (Contributed by Stefan O'Rear, 10-Oct-2014.)
(𝐴 ∈ (Dioph‘𝐵) → 𝐵 ∈ ℕ0)
 
Theoremeldioph3b 40594* Define Diophantine sets in terms of polynomials with variables indexed by . This avoids a quantifier over the number of witness variables and will be easier to use than eldiophb 40586 in most cases. (Contributed by Stefan O'Rear, 10-Oct-2014.)
(𝐴 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘ℕ)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
 
Theoremeldioph3 40595* Inference version of eldioph3b 40594 with quantifier expanded. (Contributed by Stefan O'Rear, 10-Oct-2014.)
((𝑁 ∈ ℕ0𝑃 ∈ (mzPoly‘ℕ)) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁))
 
20.29.11  Diophantine sets 2 miscellanea
 
Theoremellz1 40596 Membership in a lower set of integers. (Contributed by Stefan O'Rear, 9-Oct-2014.)
(𝐵 ∈ ℤ → (𝐴 ∈ (ℤ ∖ (ℤ‘(𝐵 + 1))) ↔ (𝐴 ∈ ℤ ∧ 𝐴𝐵)))
 
Theoremlzunuz 40597 The union of a lower set of integers and an upper set of integers which abut or overlap is all of the integers. (Contributed by Stefan O'Rear, 9-Oct-2014.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → ((ℤ ∖ (ℤ‘(𝐴 + 1))) ∪ (ℤ𝐵)) = ℤ)
 
Theoremfz1eqin 40598 Express a one-based finite range as the intersection of lower integers with . (Contributed by Stefan O'Rear, 9-Oct-2014.)
(𝑁 ∈ ℕ0 → (1...𝑁) = ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ))
 
Theoremlzenom 40599 Lower integers are countably infinite. (Contributed by Stefan O'Rear, 10-Oct-2014.)
(𝑁 ∈ ℤ → (ℤ ∖ (ℤ‘(𝑁 + 1))) ≈ ω)
 
Theoremelmapresaunres2 40600 fresaunres2 6655 transposed to mappings. (Contributed by Stefan O'Rear, 9-Oct-2014.)
((𝐹 ∈ (𝐶m 𝐴) ∧ 𝐺 ∈ (𝐶m 𝐵) ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹𝐺) ↾ 𝐵) = 𝐺)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46532
  Copyright terms: Public domain < Previous  Next >