|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dian0 | Structured version Visualization version GIF version | ||
| Description: The value of the partial isomorphism A is not empty. (Contributed by NM, 17-Jan-2014.) | 
| Ref | Expression | 
|---|---|
| dian0.b | ⊢ 𝐵 = (Base‘𝐾) | 
| dian0.l | ⊢ ≤ = (le‘𝐾) | 
| dian0.h | ⊢ 𝐻 = (LHyp‘𝐾) | 
| dian0.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | 
| Ref | Expression | 
|---|---|
| dian0 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ≠ ∅) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dian0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | dian0.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | eqid 2737 | . . . . 5 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
| 4 | 1, 2, 3 | idltrn 40152 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊)) | 
| 5 | 4 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊)) | 
| 6 | eqid 2737 | . . . . . 6 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 7 | eqid 2737 | . . . . . 6 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
| 8 | 1, 6, 2, 7 | trlid0 40178 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) = (0.‘𝐾)) | 
| 9 | 8 | adantr 480 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) = (0.‘𝐾)) | 
| 10 | hlatl 39361 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐾 ∈ AtLat) | 
| 12 | simpl 482 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) → 𝑋 ∈ 𝐵) | |
| 13 | dian0.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
| 14 | 1, 13, 6 | atl0le 39305 | . . . . 5 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → (0.‘𝐾) ≤ 𝑋) | 
| 15 | 11, 12, 14 | syl2an 596 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (0.‘𝐾) ≤ 𝑋) | 
| 16 | 9, 15 | eqbrtrd 5165 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) ≤ 𝑋) | 
| 17 | dian0.i | . . . 4 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
| 18 | 1, 13, 2, 3, 7, 17 | diaelval 41035 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (( I ↾ 𝐵) ∈ (𝐼‘𝑋) ↔ (( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) ≤ 𝑋))) | 
| 19 | 5, 16, 18 | mpbir2and 713 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → ( I ↾ 𝐵) ∈ (𝐼‘𝑋)) | 
| 20 | 19 | ne0d 4342 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ≠ ∅) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∅c0 4333 class class class wbr 5143 I cid 5577 ↾ cres 5687 ‘cfv 6561 Basecbs 17247 lecple 17304 0.cp0 18468 AtLatcal 39265 HLchlt 39351 LHypclh 39986 LTrncltrn 40103 trLctrl 40160 DIsoAcdia 41030 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8868 df-proset 18340 df-poset 18359 df-plt 18375 df-lub 18391 df-glb 18392 df-join 18393 df-meet 18394 df-p0 18470 df-p1 18471 df-lat 18477 df-clat 18544 df-oposet 39177 df-ol 39179 df-oml 39180 df-covers 39267 df-ats 39268 df-atl 39299 df-cvlat 39323 df-hlat 39352 df-lhyp 39990 df-laut 39991 df-ldil 40106 df-ltrn 40107 df-trl 40161 df-disoa 41031 | 
| This theorem is referenced by: dialss 41048 dibn0 41155 | 
| Copyright terms: Public domain | W3C validator |