| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dian0 | Structured version Visualization version GIF version | ||
| Description: The value of the partial isomorphism A is not empty. (Contributed by NM, 17-Jan-2014.) |
| Ref | Expression |
|---|---|
| dian0.b | ⊢ 𝐵 = (Base‘𝐾) |
| dian0.l | ⊢ ≤ = (le‘𝐾) |
| dian0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dian0.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dian0 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dian0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | dian0.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | eqid 2730 | . . . . 5 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
| 4 | 1, 2, 3 | idltrn 40151 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊)) |
| 5 | 4 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊)) |
| 6 | eqid 2730 | . . . . . 6 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 7 | eqid 2730 | . . . . . 6 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
| 8 | 1, 6, 2, 7 | trlid0 40177 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) = (0.‘𝐾)) |
| 9 | 8 | adantr 480 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) = (0.‘𝐾)) |
| 10 | hlatl 39360 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐾 ∈ AtLat) |
| 12 | simpl 482 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) → 𝑋 ∈ 𝐵) | |
| 13 | dian0.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
| 14 | 1, 13, 6 | atl0le 39304 | . . . . 5 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → (0.‘𝐾) ≤ 𝑋) |
| 15 | 11, 12, 14 | syl2an 596 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (0.‘𝐾) ≤ 𝑋) |
| 16 | 9, 15 | eqbrtrd 5132 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) ≤ 𝑋) |
| 17 | dian0.i | . . . 4 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
| 18 | 1, 13, 2, 3, 7, 17 | diaelval 41034 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (( I ↾ 𝐵) ∈ (𝐼‘𝑋) ↔ (( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) ≤ 𝑋))) |
| 19 | 5, 16, 18 | mpbir2and 713 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → ( I ↾ 𝐵) ∈ (𝐼‘𝑋)) |
| 20 | 19 | ne0d 4308 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∅c0 4299 class class class wbr 5110 I cid 5535 ↾ cres 5643 ‘cfv 6514 Basecbs 17186 lecple 17234 0.cp0 18389 AtLatcal 39264 HLchlt 39350 LHypclh 39985 LTrncltrn 40102 trLctrl 40159 DIsoAcdia 41029 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-proset 18262 df-poset 18281 df-plt 18296 df-lub 18312 df-glb 18313 df-join 18314 df-meet 18315 df-p0 18391 df-p1 18392 df-lat 18398 df-clat 18465 df-oposet 39176 df-ol 39178 df-oml 39179 df-covers 39266 df-ats 39267 df-atl 39298 df-cvlat 39322 df-hlat 39351 df-lhyp 39989 df-laut 39990 df-ldil 40105 df-ltrn 40106 df-trl 40160 df-disoa 41030 |
| This theorem is referenced by: dialss 41047 dibn0 41154 |
| Copyright terms: Public domain | W3C validator |