Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dian0 Structured version   Visualization version   GIF version

Theorem dian0 41028
Description: The value of the partial isomorphism A is not empty. (Contributed by NM, 17-Jan-2014.)
Hypotheses
Ref Expression
dian0.b 𝐵 = (Base‘𝐾)
dian0.l = (le‘𝐾)
dian0.h 𝐻 = (LHyp‘𝐾)
dian0.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
dian0 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ≠ ∅)

Proof of Theorem dian0
StepHypRef Expression
1 dian0.b . . . . 5 𝐵 = (Base‘𝐾)
2 dian0.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 eqid 2729 . . . . 5 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
41, 2, 3idltrn 40139 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊))
54adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊))
6 eqid 2729 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
7 eqid 2729 . . . . . 6 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
81, 6, 2, 7trlid0 40165 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) = (0.‘𝐾))
98adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) = (0.‘𝐾))
10 hlatl 39349 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
1110adantr 480 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐾 ∈ AtLat)
12 simpl 482 . . . . 5 ((𝑋𝐵𝑋 𝑊) → 𝑋𝐵)
13 dian0.l . . . . . 6 = (le‘𝐾)
141, 13, 6atl0le 39293 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → (0.‘𝐾) 𝑋)
1511, 12, 14syl2an 596 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (0.‘𝐾) 𝑋)
169, 15eqbrtrd 5114 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) 𝑋)
17 dian0.i . . . 4 𝐼 = ((DIsoA‘𝐾)‘𝑊)
181, 13, 2, 3, 7, 17diaelval 41022 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (( I ↾ 𝐵) ∈ (𝐼𝑋) ↔ (( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) 𝑋)))
195, 16, 18mpbir2and 713 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → ( I ↾ 𝐵) ∈ (𝐼𝑋))
2019ne0d 4293 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  c0 4284   class class class wbr 5092   I cid 5513  cres 5621  cfv 6482  Basecbs 17120  lecple 17168  0.cp0 18327  AtLatcal 39253  HLchlt 39339  LHypclh 39973  LTrncltrn 40090  trLctrl 40147  DIsoAcdia 41017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-map 8755  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39165  df-ol 39167  df-oml 39168  df-covers 39255  df-ats 39256  df-atl 39287  df-cvlat 39311  df-hlat 39340  df-lhyp 39977  df-laut 39978  df-ldil 40093  df-ltrn 40094  df-trl 40148  df-disoa 41018
This theorem is referenced by:  dialss  41035  dibn0  41142
  Copyright terms: Public domain W3C validator