Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dian0 Structured version   Visualization version   GIF version

Theorem dian0 39032
Description: The value of the partial isomorphism A is not empty. (Contributed by NM, 17-Jan-2014.)
Hypotheses
Ref Expression
dian0.b 𝐵 = (Base‘𝐾)
dian0.l = (le‘𝐾)
dian0.h 𝐻 = (LHyp‘𝐾)
dian0.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
dian0 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ≠ ∅)

Proof of Theorem dian0
StepHypRef Expression
1 dian0.b . . . . 5 𝐵 = (Base‘𝐾)
2 dian0.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 eqid 2739 . . . . 5 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
41, 2, 3idltrn 38143 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊))
54adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊))
6 eqid 2739 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
7 eqid 2739 . . . . . 6 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
81, 6, 2, 7trlid0 38169 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) = (0.‘𝐾))
98adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) = (0.‘𝐾))
10 hlatl 37353 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
1110adantr 480 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐾 ∈ AtLat)
12 simpl 482 . . . . 5 ((𝑋𝐵𝑋 𝑊) → 𝑋𝐵)
13 dian0.l . . . . . 6 = (le‘𝐾)
141, 13, 6atl0le 37297 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → (0.‘𝐾) 𝑋)
1511, 12, 14syl2an 595 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (0.‘𝐾) 𝑋)
169, 15eqbrtrd 5100 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) 𝑋)
17 dian0.i . . . 4 𝐼 = ((DIsoA‘𝐾)‘𝑊)
181, 13, 2, 3, 7, 17diaelval 39026 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (( I ↾ 𝐵) ∈ (𝐼𝑋) ↔ (( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) 𝑋)))
195, 16, 18mpbir2and 709 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → ( I ↾ 𝐵) ∈ (𝐼𝑋))
2019ne0d 4274 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  wne 2944  c0 4261   class class class wbr 5078   I cid 5487  cres 5590  cfv 6430  Basecbs 16893  lecple 16950  0.cp0 18122  AtLatcal 37257  HLchlt 37343  LHypclh 37977  LTrncltrn 38094  trLctrl 38151  DIsoAcdia 39021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-map 8591  df-proset 17994  df-poset 18012  df-plt 18029  df-lub 18045  df-glb 18046  df-join 18047  df-meet 18048  df-p0 18124  df-p1 18125  df-lat 18131  df-clat 18198  df-oposet 37169  df-ol 37171  df-oml 37172  df-covers 37259  df-ats 37260  df-atl 37291  df-cvlat 37315  df-hlat 37344  df-lhyp 37981  df-laut 37982  df-ldil 38097  df-ltrn 38098  df-trl 38152  df-disoa 39022
This theorem is referenced by:  dialss  39039  dibn0  39146
  Copyright terms: Public domain W3C validator