| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dian0 | Structured version Visualization version GIF version | ||
| Description: The value of the partial isomorphism A is not empty. (Contributed by NM, 17-Jan-2014.) |
| Ref | Expression |
|---|---|
| dian0.b | ⊢ 𝐵 = (Base‘𝐾) |
| dian0.l | ⊢ ≤ = (le‘𝐾) |
| dian0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dian0.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dian0 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dian0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | dian0.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | eqid 2729 | . . . . 5 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
| 4 | 1, 2, 3 | idltrn 40137 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊)) |
| 5 | 4 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊)) |
| 6 | eqid 2729 | . . . . . 6 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 7 | eqid 2729 | . . . . . 6 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
| 8 | 1, 6, 2, 7 | trlid0 40163 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) = (0.‘𝐾)) |
| 9 | 8 | adantr 480 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) = (0.‘𝐾)) |
| 10 | hlatl 39346 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐾 ∈ AtLat) |
| 12 | simpl 482 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) → 𝑋 ∈ 𝐵) | |
| 13 | dian0.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
| 14 | 1, 13, 6 | atl0le 39290 | . . . . 5 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → (0.‘𝐾) ≤ 𝑋) |
| 15 | 11, 12, 14 | syl2an 596 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (0.‘𝐾) ≤ 𝑋) |
| 16 | 9, 15 | eqbrtrd 5124 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) ≤ 𝑋) |
| 17 | dian0.i | . . . 4 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
| 18 | 1, 13, 2, 3, 7, 17 | diaelval 41020 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (( I ↾ 𝐵) ∈ (𝐼‘𝑋) ↔ (( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) ≤ 𝑋))) |
| 19 | 5, 16, 18 | mpbir2and 713 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → ( I ↾ 𝐵) ∈ (𝐼‘𝑋)) |
| 20 | 19 | ne0d 4301 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∅c0 4292 class class class wbr 5102 I cid 5525 ↾ cres 5633 ‘cfv 6499 Basecbs 17155 lecple 17203 0.cp0 18362 AtLatcal 39250 HLchlt 39336 LHypclh 39971 LTrncltrn 40088 trLctrl 40145 DIsoAcdia 41015 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 df-proset 18235 df-poset 18254 df-plt 18269 df-lub 18285 df-glb 18286 df-join 18287 df-meet 18288 df-p0 18364 df-p1 18365 df-lat 18373 df-clat 18440 df-oposet 39162 df-ol 39164 df-oml 39165 df-covers 39252 df-ats 39253 df-atl 39284 df-cvlat 39308 df-hlat 39337 df-lhyp 39975 df-laut 39976 df-ldil 40091 df-ltrn 40092 df-trl 40146 df-disoa 41016 |
| This theorem is referenced by: dialss 41033 dibn0 41140 |
| Copyright terms: Public domain | W3C validator |