Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dian0 Structured version   Visualization version   GIF version

Theorem dian0 41042
Description: The value of the partial isomorphism A is not empty. (Contributed by NM, 17-Jan-2014.)
Hypotheses
Ref Expression
dian0.b 𝐵 = (Base‘𝐾)
dian0.l = (le‘𝐾)
dian0.h 𝐻 = (LHyp‘𝐾)
dian0.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
dian0 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ≠ ∅)

Proof of Theorem dian0
StepHypRef Expression
1 dian0.b . . . . 5 𝐵 = (Base‘𝐾)
2 dian0.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 eqid 2736 . . . . 5 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
41, 2, 3idltrn 40153 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊))
54adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊))
6 eqid 2736 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
7 eqid 2736 . . . . . 6 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
81, 6, 2, 7trlid0 40179 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) = (0.‘𝐾))
98adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) = (0.‘𝐾))
10 hlatl 39362 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
1110adantr 480 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐾 ∈ AtLat)
12 simpl 482 . . . . 5 ((𝑋𝐵𝑋 𝑊) → 𝑋𝐵)
13 dian0.l . . . . . 6 = (le‘𝐾)
141, 13, 6atl0le 39306 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → (0.‘𝐾) 𝑋)
1511, 12, 14syl2an 596 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (0.‘𝐾) 𝑋)
169, 15eqbrtrd 5164 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) 𝑋)
17 dian0.i . . . 4 𝐼 = ((DIsoA‘𝐾)‘𝑊)
181, 13, 2, 3, 7, 17diaelval 41036 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (( I ↾ 𝐵) ∈ (𝐼𝑋) ↔ (( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) 𝑋)))
195, 16, 18mpbir2and 713 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → ( I ↾ 𝐵) ∈ (𝐼𝑋))
2019ne0d 4341 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2939  c0 4332   class class class wbr 5142   I cid 5576  cres 5686  cfv 6560  Basecbs 17248  lecple 17305  0.cp0 18469  AtLatcal 39266  HLchlt 39352  LHypclh 39987  LTrncltrn 40104  trLctrl 40161  DIsoAcdia 41031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-map 8869  df-proset 18341  df-poset 18360  df-plt 18376  df-lub 18392  df-glb 18393  df-join 18394  df-meet 18395  df-p0 18471  df-p1 18472  df-lat 18478  df-clat 18545  df-oposet 39178  df-ol 39180  df-oml 39181  df-covers 39268  df-ats 39269  df-atl 39300  df-cvlat 39324  df-hlat 39353  df-lhyp 39991  df-laut 39992  df-ldil 40107  df-ltrn 40108  df-trl 40162  df-disoa 41032
This theorem is referenced by:  dialss  41049  dibn0  41156
  Copyright terms: Public domain W3C validator