Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dian0 | Structured version Visualization version GIF version |
Description: The value of the partial isomorphism A is not empty. (Contributed by NM, 17-Jan-2014.) |
Ref | Expression |
---|---|
dian0.b | ⊢ 𝐵 = (Base‘𝐾) |
dian0.l | ⊢ ≤ = (le‘𝐾) |
dian0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dian0.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dian0 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dian0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | dian0.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | eqid 2736 | . . . . 5 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
4 | 1, 2, 3 | idltrn 38206 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊)) |
5 | 4 | adantr 482 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊)) |
6 | eqid 2736 | . . . . . 6 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
7 | eqid 2736 | . . . . . 6 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
8 | 1, 6, 2, 7 | trlid0 38232 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) = (0.‘𝐾)) |
9 | 8 | adantr 482 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) = (0.‘𝐾)) |
10 | hlatl 37416 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
11 | 10 | adantr 482 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐾 ∈ AtLat) |
12 | simpl 484 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) → 𝑋 ∈ 𝐵) | |
13 | dian0.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
14 | 1, 13, 6 | atl0le 37360 | . . . . 5 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → (0.‘𝐾) ≤ 𝑋) |
15 | 11, 12, 14 | syl2an 597 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (0.‘𝐾) ≤ 𝑋) |
16 | 9, 15 | eqbrtrd 5103 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) ≤ 𝑋) |
17 | dian0.i | . . . 4 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
18 | 1, 13, 2, 3, 7, 17 | diaelval 39089 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (( I ↾ 𝐵) ∈ (𝐼‘𝑋) ↔ (( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) ≤ 𝑋))) |
19 | 5, 16, 18 | mpbir2and 711 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → ( I ↾ 𝐵) ∈ (𝐼‘𝑋)) |
20 | 19 | ne0d 4275 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 ∅c0 4262 class class class wbr 5081 I cid 5499 ↾ cres 5602 ‘cfv 6458 Basecbs 16957 lecple 17014 0.cp0 18186 AtLatcal 37320 HLchlt 37406 LHypclh 38040 LTrncltrn 38157 trLctrl 38214 DIsoAcdia 39084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-map 8648 df-proset 18058 df-poset 18076 df-plt 18093 df-lub 18109 df-glb 18110 df-join 18111 df-meet 18112 df-p0 18188 df-p1 18189 df-lat 18195 df-clat 18262 df-oposet 37232 df-ol 37234 df-oml 37235 df-covers 37322 df-ats 37323 df-atl 37354 df-cvlat 37378 df-hlat 37407 df-lhyp 38044 df-laut 38045 df-ldil 38160 df-ltrn 38161 df-trl 38215 df-disoa 39085 |
This theorem is referenced by: dialss 39102 dibn0 39209 |
Copyright terms: Public domain | W3C validator |