Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diafval Structured version   Visualization version   GIF version

Theorem diafval 39024
Description: The partial isomorphism A for a lattice 𝐾. (Contributed by NM, 15-Oct-2013.)
Hypotheses
Ref Expression
diaval.b 𝐵 = (Base‘𝐾)
diaval.l = (le‘𝐾)
diaval.h 𝐻 = (LHyp‘𝐾)
diaval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
diaval.r 𝑅 = ((trL‘𝐾)‘𝑊)
diaval.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
diafval ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑥 ∈ {𝑦𝐵𝑦 𝑊} ↦ {𝑓𝑇 ∣ (𝑅𝑓) 𝑥}))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝐵,𝑦   𝑥,𝑓,𝑦,𝐾   𝑥,𝑅   𝑇,𝑓,𝑥   𝑓,𝑊,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑓)   𝑅(𝑦,𝑓)   𝑇(𝑦)   𝐻(𝑥,𝑦,𝑓)   𝐼(𝑥,𝑦,𝑓)   (𝑓)   𝑉(𝑥,𝑦,𝑓)

Proof of Theorem diafval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 diaval.i . . 3 𝐼 = ((DIsoA‘𝐾)‘𝑊)
2 diaval.b . . . . 5 𝐵 = (Base‘𝐾)
3 diaval.l . . . . 5 = (le‘𝐾)
4 diaval.h . . . . 5 𝐻 = (LHyp‘𝐾)
52, 3, 4diaffval 39023 . . . 4 (𝐾𝑉 → (DIsoA‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥})))
65fveq1d 6770 . . 3 (𝐾𝑉 → ((DIsoA‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥}))‘𝑊))
71, 6eqtrid 2791 . 2 (𝐾𝑉𝐼 = ((𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥}))‘𝑊))
8 breq2 5082 . . . . 5 (𝑤 = 𝑊 → (𝑦 𝑤𝑦 𝑊))
98rabbidv 3412 . . . 4 (𝑤 = 𝑊 → {𝑦𝐵𝑦 𝑤} = {𝑦𝐵𝑦 𝑊})
10 fveq2 6768 . . . . . 6 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = ((LTrn‘𝐾)‘𝑊))
11 diaval.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
1210, 11eqtr4di 2797 . . . . 5 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = 𝑇)
13 fveq2 6768 . . . . . . . 8 (𝑤 = 𝑊 → ((trL‘𝐾)‘𝑤) = ((trL‘𝐾)‘𝑊))
14 diaval.r . . . . . . . 8 𝑅 = ((trL‘𝐾)‘𝑊)
1513, 14eqtr4di 2797 . . . . . . 7 (𝑤 = 𝑊 → ((trL‘𝐾)‘𝑤) = 𝑅)
1615fveq1d 6770 . . . . . 6 (𝑤 = 𝑊 → (((trL‘𝐾)‘𝑤)‘𝑓) = (𝑅𝑓))
1716breq1d 5088 . . . . 5 (𝑤 = 𝑊 → ((((trL‘𝐾)‘𝑤)‘𝑓) 𝑥 ↔ (𝑅𝑓) 𝑥))
1812, 17rabeqbidv 3418 . . . 4 (𝑤 = 𝑊 → {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥} = {𝑓𝑇 ∣ (𝑅𝑓) 𝑥})
199, 18mpteq12dv 5169 . . 3 (𝑤 = 𝑊 → (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥}) = (𝑥 ∈ {𝑦𝐵𝑦 𝑊} ↦ {𝑓𝑇 ∣ (𝑅𝑓) 𝑥}))
20 eqid 2739 . . 3 (𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥})) = (𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥}))
212fvexi 6782 . . . 4 𝐵 ∈ V
2221mptrabex 7095 . . 3 (𝑥 ∈ {𝑦𝐵𝑦 𝑊} ↦ {𝑓𝑇 ∣ (𝑅𝑓) 𝑥}) ∈ V
2319, 20, 22fvmpt 6869 . 2 (𝑊𝐻 → ((𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥}))‘𝑊) = (𝑥 ∈ {𝑦𝐵𝑦 𝑊} ↦ {𝑓𝑇 ∣ (𝑅𝑓) 𝑥}))
247, 23sylan9eq 2799 1 ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑥 ∈ {𝑦𝐵𝑦 𝑊} ↦ {𝑓𝑇 ∣ (𝑅𝑓) 𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  {crab 3069   class class class wbr 5078  cmpt 5161  cfv 6430  Basecbs 16893  lecple 16950  LHypclh 37977  LTrncltrn 38094  trLctrl 38151  DIsoAcdia 39021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-disoa 39022
This theorem is referenced by:  diaval  39025  diafn  39027
  Copyright terms: Public domain W3C validator