Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diafval Structured version   Visualization version   GIF version

Theorem diafval 41203
Description: The partial isomorphism A for a lattice 𝐾. (Contributed by NM, 15-Oct-2013.)
Hypotheses
Ref Expression
diaval.b 𝐵 = (Base‘𝐾)
diaval.l = (le‘𝐾)
diaval.h 𝐻 = (LHyp‘𝐾)
diaval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
diaval.r 𝑅 = ((trL‘𝐾)‘𝑊)
diaval.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
diafval ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑥 ∈ {𝑦𝐵𝑦 𝑊} ↦ {𝑓𝑇 ∣ (𝑅𝑓) 𝑥}))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝐵,𝑦   𝑥,𝑓,𝑦,𝐾   𝑥,𝑅   𝑇,𝑓,𝑥   𝑓,𝑊,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑓)   𝑅(𝑦,𝑓)   𝑇(𝑦)   𝐻(𝑥,𝑦,𝑓)   𝐼(𝑥,𝑦,𝑓)   (𝑓)   𝑉(𝑥,𝑦,𝑓)

Proof of Theorem diafval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 diaval.i . . 3 𝐼 = ((DIsoA‘𝐾)‘𝑊)
2 diaval.b . . . . 5 𝐵 = (Base‘𝐾)
3 diaval.l . . . . 5 = (le‘𝐾)
4 diaval.h . . . . 5 𝐻 = (LHyp‘𝐾)
52, 3, 4diaffval 41202 . . . 4 (𝐾𝑉 → (DIsoA‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥})))
65fveq1d 6833 . . 3 (𝐾𝑉 → ((DIsoA‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥}))‘𝑊))
71, 6eqtrid 2780 . 2 (𝐾𝑉𝐼 = ((𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥}))‘𝑊))
8 breq2 5099 . . . . 5 (𝑤 = 𝑊 → (𝑦 𝑤𝑦 𝑊))
98rabbidv 3403 . . . 4 (𝑤 = 𝑊 → {𝑦𝐵𝑦 𝑤} = {𝑦𝐵𝑦 𝑊})
10 fveq2 6831 . . . . . 6 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = ((LTrn‘𝐾)‘𝑊))
11 diaval.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
1210, 11eqtr4di 2786 . . . . 5 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = 𝑇)
13 fveq2 6831 . . . . . . . 8 (𝑤 = 𝑊 → ((trL‘𝐾)‘𝑤) = ((trL‘𝐾)‘𝑊))
14 diaval.r . . . . . . . 8 𝑅 = ((trL‘𝐾)‘𝑊)
1513, 14eqtr4di 2786 . . . . . . 7 (𝑤 = 𝑊 → ((trL‘𝐾)‘𝑤) = 𝑅)
1615fveq1d 6833 . . . . . 6 (𝑤 = 𝑊 → (((trL‘𝐾)‘𝑤)‘𝑓) = (𝑅𝑓))
1716breq1d 5105 . . . . 5 (𝑤 = 𝑊 → ((((trL‘𝐾)‘𝑤)‘𝑓) 𝑥 ↔ (𝑅𝑓) 𝑥))
1812, 17rabeqbidv 3414 . . . 4 (𝑤 = 𝑊 → {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥} = {𝑓𝑇 ∣ (𝑅𝑓) 𝑥})
199, 18mpteq12dv 5182 . . 3 (𝑤 = 𝑊 → (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥}) = (𝑥 ∈ {𝑦𝐵𝑦 𝑊} ↦ {𝑓𝑇 ∣ (𝑅𝑓) 𝑥}))
20 eqid 2733 . . 3 (𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥})) = (𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥}))
212fvexi 6845 . . . 4 𝐵 ∈ V
2221mptrabex 7168 . . 3 (𝑥 ∈ {𝑦𝐵𝑦 𝑊} ↦ {𝑓𝑇 ∣ (𝑅𝑓) 𝑥}) ∈ V
2319, 20, 22fvmpt 6938 . 2 (𝑊𝐻 → ((𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥}))‘𝑊) = (𝑥 ∈ {𝑦𝐵𝑦 𝑊} ↦ {𝑓𝑇 ∣ (𝑅𝑓) 𝑥}))
247, 23sylan9eq 2788 1 ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑥 ∈ {𝑦𝐵𝑦 𝑊} ↦ {𝑓𝑇 ∣ (𝑅𝑓) 𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {crab 3396   class class class wbr 5095  cmpt 5176  cfv 6489  Basecbs 17127  lecple 17175  LHypclh 40156  LTrncltrn 40273  trLctrl 40330  DIsoAcdia 41200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-disoa 41201
This theorem is referenced by:  diaval  41204  diafn  41206
  Copyright terms: Public domain W3C validator