Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diafval Structured version   Visualization version   GIF version

Theorem diafval 41032
Description: The partial isomorphism A for a lattice 𝐾. (Contributed by NM, 15-Oct-2013.)
Hypotheses
Ref Expression
diaval.b 𝐵 = (Base‘𝐾)
diaval.l = (le‘𝐾)
diaval.h 𝐻 = (LHyp‘𝐾)
diaval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
diaval.r 𝑅 = ((trL‘𝐾)‘𝑊)
diaval.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
diafval ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑥 ∈ {𝑦𝐵𝑦 𝑊} ↦ {𝑓𝑇 ∣ (𝑅𝑓) 𝑥}))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝐵,𝑦   𝑥,𝑓,𝑦,𝐾   𝑥,𝑅   𝑇,𝑓,𝑥   𝑓,𝑊,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑓)   𝑅(𝑦,𝑓)   𝑇(𝑦)   𝐻(𝑥,𝑦,𝑓)   𝐼(𝑥,𝑦,𝑓)   (𝑓)   𝑉(𝑥,𝑦,𝑓)

Proof of Theorem diafval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 diaval.i . . 3 𝐼 = ((DIsoA‘𝐾)‘𝑊)
2 diaval.b . . . . 5 𝐵 = (Base‘𝐾)
3 diaval.l . . . . 5 = (le‘𝐾)
4 diaval.h . . . . 5 𝐻 = (LHyp‘𝐾)
52, 3, 4diaffval 41031 . . . 4 (𝐾𝑉 → (DIsoA‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥})))
65fveq1d 6863 . . 3 (𝐾𝑉 → ((DIsoA‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥}))‘𝑊))
71, 6eqtrid 2777 . 2 (𝐾𝑉𝐼 = ((𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥}))‘𝑊))
8 breq2 5114 . . . . 5 (𝑤 = 𝑊 → (𝑦 𝑤𝑦 𝑊))
98rabbidv 3416 . . . 4 (𝑤 = 𝑊 → {𝑦𝐵𝑦 𝑤} = {𝑦𝐵𝑦 𝑊})
10 fveq2 6861 . . . . . 6 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = ((LTrn‘𝐾)‘𝑊))
11 diaval.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
1210, 11eqtr4di 2783 . . . . 5 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = 𝑇)
13 fveq2 6861 . . . . . . . 8 (𝑤 = 𝑊 → ((trL‘𝐾)‘𝑤) = ((trL‘𝐾)‘𝑊))
14 diaval.r . . . . . . . 8 𝑅 = ((trL‘𝐾)‘𝑊)
1513, 14eqtr4di 2783 . . . . . . 7 (𝑤 = 𝑊 → ((trL‘𝐾)‘𝑤) = 𝑅)
1615fveq1d 6863 . . . . . 6 (𝑤 = 𝑊 → (((trL‘𝐾)‘𝑤)‘𝑓) = (𝑅𝑓))
1716breq1d 5120 . . . . 5 (𝑤 = 𝑊 → ((((trL‘𝐾)‘𝑤)‘𝑓) 𝑥 ↔ (𝑅𝑓) 𝑥))
1812, 17rabeqbidv 3427 . . . 4 (𝑤 = 𝑊 → {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥} = {𝑓𝑇 ∣ (𝑅𝑓) 𝑥})
199, 18mpteq12dv 5197 . . 3 (𝑤 = 𝑊 → (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥}) = (𝑥 ∈ {𝑦𝐵𝑦 𝑊} ↦ {𝑓𝑇 ∣ (𝑅𝑓) 𝑥}))
20 eqid 2730 . . 3 (𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥})) = (𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥}))
212fvexi 6875 . . . 4 𝐵 ∈ V
2221mptrabex 7202 . . 3 (𝑥 ∈ {𝑦𝐵𝑦 𝑊} ↦ {𝑓𝑇 ∣ (𝑅𝑓) 𝑥}) ∈ V
2319, 20, 22fvmpt 6971 . 2 (𝑊𝐻 → ((𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥}))‘𝑊) = (𝑥 ∈ {𝑦𝐵𝑦 𝑊} ↦ {𝑓𝑇 ∣ (𝑅𝑓) 𝑥}))
247, 23sylan9eq 2785 1 ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑥 ∈ {𝑦𝐵𝑦 𝑊} ↦ {𝑓𝑇 ∣ (𝑅𝑓) 𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3408   class class class wbr 5110  cmpt 5191  cfv 6514  Basecbs 17186  lecple 17234  LHypclh 39985  LTrncltrn 40102  trLctrl 40159  DIsoAcdia 41029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-disoa 41030
This theorem is referenced by:  diaval  41033  diafn  41035
  Copyright terms: Public domain W3C validator