Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihvalc Structured version   Visualization version   GIF version

Theorem dihvalc 41200
Description: Value of isomorphism H for a lattice 𝐾 when ¬ 𝑋 𝑊. (Contributed by NM, 4-Mar-2014.)
Hypotheses
Ref Expression
dihval.b 𝐵 = (Base‘𝐾)
dihval.l = (le‘𝐾)
dihval.j = (join‘𝐾)
dihval.m = (meet‘𝐾)
dihval.a 𝐴 = (Atoms‘𝐾)
dihval.h 𝐻 = (LHyp‘𝐾)
dihval.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihval.d 𝐷 = ((DIsoB‘𝐾)‘𝑊)
dihval.c 𝐶 = ((DIsoC‘𝐾)‘𝑊)
dihval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihval.s 𝑆 = (LSubSp‘𝑈)
dihval.p = (LSSum‘𝑈)
Assertion
Ref Expression
dihvalc (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝐼𝑋) = (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))))
Distinct variable groups:   𝐴,𝑞   𝑢,𝑞,𝐾   𝑢,𝑆   𝑊,𝑞,𝑢   𝑋,𝑞,𝑢
Allowed substitution hints:   𝐴(𝑢)   𝐵(𝑢,𝑞)   𝐶(𝑢,𝑞)   𝐷(𝑢,𝑞)   (𝑢,𝑞)   𝑆(𝑞)   𝑈(𝑢,𝑞)   𝐻(𝑢,𝑞)   𝐼(𝑢,𝑞)   (𝑢,𝑞)   (𝑢,𝑞)   (𝑢,𝑞)   𝑉(𝑢,𝑞)

Proof of Theorem dihvalc
StepHypRef Expression
1 dihval.b . . . 4 𝐵 = (Base‘𝐾)
2 dihval.l . . . 4 = (le‘𝐾)
3 dihval.j . . . 4 = (join‘𝐾)
4 dihval.m . . . 4 = (meet‘𝐾)
5 dihval.a . . . 4 𝐴 = (Atoms‘𝐾)
6 dihval.h . . . 4 𝐻 = (LHyp‘𝐾)
7 dihval.i . . . 4 𝐼 = ((DIsoH‘𝐾)‘𝑊)
8 dihval.d . . . 4 𝐷 = ((DIsoB‘𝐾)‘𝑊)
9 dihval.c . . . 4 𝐶 = ((DIsoC‘𝐾)‘𝑊)
10 dihval.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
11 dihval.s . . . 4 𝑆 = (LSubSp‘𝑈)
12 dihval.p . . . 4 = (LSSum‘𝑈)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dihval 41199 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝑋𝐵) → (𝐼𝑋) = if(𝑋 𝑊, (𝐷𝑋), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊)))))))
14 iffalse 4493 . . 3 𝑋 𝑊 → if(𝑋 𝑊, (𝐷𝑋), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊)))))) = (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))))
1513, 14sylan9eq 2784 . 2 ((((𝐾𝑉𝑊𝐻) ∧ 𝑋𝐵) ∧ ¬ 𝑋 𝑊) → (𝐼𝑋) = (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))))
1615anasss 466 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝐼𝑋) = (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  ifcif 4484   class class class wbr 5102  cfv 6499  crio 7325  (class class class)co 7369  Basecbs 17155  lecple 17203  joincjn 18248  meetcmee 18249  LSSumclsm 19540  LSubSpclss 20813  Atomscatm 39229  LHypclh 39951  DVecHcdvh 41045  DIsoBcdib 41105  DIsoCcdic 41139  DIsoHcdih 41195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-dih 41196
This theorem is referenced by:  dihlsscpre  41201  dihvalcqpre  41202
  Copyright terms: Public domain W3C validator