Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihvalc Structured version   Visualization version   GIF version

Theorem dihvalc 41280
Description: Value of isomorphism H for a lattice 𝐾 when ¬ 𝑋 𝑊. (Contributed by NM, 4-Mar-2014.)
Hypotheses
Ref Expression
dihval.b 𝐵 = (Base‘𝐾)
dihval.l = (le‘𝐾)
dihval.j = (join‘𝐾)
dihval.m = (meet‘𝐾)
dihval.a 𝐴 = (Atoms‘𝐾)
dihval.h 𝐻 = (LHyp‘𝐾)
dihval.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihval.d 𝐷 = ((DIsoB‘𝐾)‘𝑊)
dihval.c 𝐶 = ((DIsoC‘𝐾)‘𝑊)
dihval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihval.s 𝑆 = (LSubSp‘𝑈)
dihval.p = (LSSum‘𝑈)
Assertion
Ref Expression
dihvalc (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝐼𝑋) = (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))))
Distinct variable groups:   𝐴,𝑞   𝑢,𝑞,𝐾   𝑢,𝑆   𝑊,𝑞,𝑢   𝑋,𝑞,𝑢
Allowed substitution hints:   𝐴(𝑢)   𝐵(𝑢,𝑞)   𝐶(𝑢,𝑞)   𝐷(𝑢,𝑞)   (𝑢,𝑞)   𝑆(𝑞)   𝑈(𝑢,𝑞)   𝐻(𝑢,𝑞)   𝐼(𝑢,𝑞)   (𝑢,𝑞)   (𝑢,𝑞)   (𝑢,𝑞)   𝑉(𝑢,𝑞)

Proof of Theorem dihvalc
StepHypRef Expression
1 dihval.b . . . 4 𝐵 = (Base‘𝐾)
2 dihval.l . . . 4 = (le‘𝐾)
3 dihval.j . . . 4 = (join‘𝐾)
4 dihval.m . . . 4 = (meet‘𝐾)
5 dihval.a . . . 4 𝐴 = (Atoms‘𝐾)
6 dihval.h . . . 4 𝐻 = (LHyp‘𝐾)
7 dihval.i . . . 4 𝐼 = ((DIsoH‘𝐾)‘𝑊)
8 dihval.d . . . 4 𝐷 = ((DIsoB‘𝐾)‘𝑊)
9 dihval.c . . . 4 𝐶 = ((DIsoC‘𝐾)‘𝑊)
10 dihval.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
11 dihval.s . . . 4 𝑆 = (LSubSp‘𝑈)
12 dihval.p . . . 4 = (LSSum‘𝑈)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dihval 41279 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝑋𝐵) → (𝐼𝑋) = if(𝑋 𝑊, (𝐷𝑋), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊)))))))
14 iffalse 4481 . . 3 𝑋 𝑊 → if(𝑋 𝑊, (𝐷𝑋), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊)))))) = (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))))
1513, 14sylan9eq 2786 . 2 ((((𝐾𝑉𝑊𝐻) ∧ 𝑋𝐵) ∧ ¬ 𝑋 𝑊) → (𝐼𝑋) = (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))))
1615anasss 466 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝐼𝑋) = (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  ifcif 4472   class class class wbr 5089  cfv 6481  crio 7302  (class class class)co 7346  Basecbs 17120  lecple 17168  joincjn 18217  meetcmee 18218  LSSumclsm 19546  LSubSpclss 20864  Atomscatm 39310  LHypclh 40031  DVecHcdvh 41125  DIsoBcdib 41185  DIsoCcdic 41219  DIsoHcdih 41275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-dih 41276
This theorem is referenced by:  dihlsscpre  41281  dihvalcqpre  41282
  Copyright terms: Public domain W3C validator