Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihvalc Structured version   Visualization version   GIF version

Theorem dihvalc 39494
Description: Value of isomorphism H for a lattice 𝐾 when ¬ 𝑋 𝑊. (Contributed by NM, 4-Mar-2014.)
Hypotheses
Ref Expression
dihval.b 𝐵 = (Base‘𝐾)
dihval.l = (le‘𝐾)
dihval.j = (join‘𝐾)
dihval.m = (meet‘𝐾)
dihval.a 𝐴 = (Atoms‘𝐾)
dihval.h 𝐻 = (LHyp‘𝐾)
dihval.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihval.d 𝐷 = ((DIsoB‘𝐾)‘𝑊)
dihval.c 𝐶 = ((DIsoC‘𝐾)‘𝑊)
dihval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihval.s 𝑆 = (LSubSp‘𝑈)
dihval.p = (LSSum‘𝑈)
Assertion
Ref Expression
dihvalc (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝐼𝑋) = (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))))
Distinct variable groups:   𝐴,𝑞   𝑢,𝑞,𝐾   𝑢,𝑆   𝑊,𝑞,𝑢   𝑋,𝑞,𝑢
Allowed substitution hints:   𝐴(𝑢)   𝐵(𝑢,𝑞)   𝐶(𝑢,𝑞)   𝐷(𝑢,𝑞)   (𝑢,𝑞)   𝑆(𝑞)   𝑈(𝑢,𝑞)   𝐻(𝑢,𝑞)   𝐼(𝑢,𝑞)   (𝑢,𝑞)   (𝑢,𝑞)   (𝑢,𝑞)   𝑉(𝑢,𝑞)

Proof of Theorem dihvalc
StepHypRef Expression
1 dihval.b . . . 4 𝐵 = (Base‘𝐾)
2 dihval.l . . . 4 = (le‘𝐾)
3 dihval.j . . . 4 = (join‘𝐾)
4 dihval.m . . . 4 = (meet‘𝐾)
5 dihval.a . . . 4 𝐴 = (Atoms‘𝐾)
6 dihval.h . . . 4 𝐻 = (LHyp‘𝐾)
7 dihval.i . . . 4 𝐼 = ((DIsoH‘𝐾)‘𝑊)
8 dihval.d . . . 4 𝐷 = ((DIsoB‘𝐾)‘𝑊)
9 dihval.c . . . 4 𝐶 = ((DIsoC‘𝐾)‘𝑊)
10 dihval.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
11 dihval.s . . . 4 𝑆 = (LSubSp‘𝑈)
12 dihval.p . . . 4 = (LSSum‘𝑈)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dihval 39493 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝑋𝐵) → (𝐼𝑋) = if(𝑋 𝑊, (𝐷𝑋), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊)))))))
14 iffalse 4481 . . 3 𝑋 𝑊 → if(𝑋 𝑊, (𝐷𝑋), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊)))))) = (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))))
1513, 14sylan9eq 2796 . 2 ((((𝐾𝑉𝑊𝐻) ∧ 𝑋𝐵) ∧ ¬ 𝑋 𝑊) → (𝐼𝑋) = (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))))
1615anasss 467 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝐼𝑋) = (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1540  wcel 2105  wral 3061  ifcif 4472   class class class wbr 5089  cfv 6473  crio 7285  (class class class)co 7329  Basecbs 17001  lecple 17058  joincjn 18118  meetcmee 18119  LSSumclsm 19327  LSubSpclss 20291  Atomscatm 37523  LHypclh 38245  DVecHcdvh 39339  DIsoBcdib 39399  DIsoCcdic 39433  DIsoHcdih 39489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pr 5369
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-id 5512  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-dih 39490
This theorem is referenced by:  dihlsscpre  39495  dihvalcqpre  39496
  Copyright terms: Public domain W3C validator