![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihvalc | Structured version Visualization version GIF version |
Description: Value of isomorphism H for a lattice 𝐾 when ¬ 𝑋 ≤ 𝑊. (Contributed by NM, 4-Mar-2014.) |
Ref | Expression |
---|---|
dihval.b | ⊢ 𝐵 = (Base‘𝐾) |
dihval.l | ⊢ ≤ = (le‘𝐾) |
dihval.j | ⊢ ∨ = (join‘𝐾) |
dihval.m | ⊢ ∧ = (meet‘𝐾) |
dihval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dihval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihval.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
dihval.d | ⊢ 𝐷 = ((DIsoB‘𝐾)‘𝑊) |
dihval.c | ⊢ 𝐶 = ((DIsoC‘𝐾)‘𝑊) |
dihval.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dihval.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
dihval.p | ⊢ ⊕ = (LSSum‘𝑈) |
Ref | Expression |
---|---|
dihvalc | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | dihval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | dihval.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
4 | dihval.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
5 | dihval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | dihval.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | dihval.i | . . . 4 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
8 | dihval.d | . . . 4 ⊢ 𝐷 = ((DIsoB‘𝐾)‘𝑊) | |
9 | dihval.c | . . . 4 ⊢ 𝐶 = ((DIsoC‘𝐾)‘𝑊) | |
10 | dihval.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
11 | dihval.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑈) | |
12 | dihval.p | . . . 4 ⊢ ⊕ = (LSSum‘𝑈) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | dihval 40931 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐼‘𝑋) = if(𝑋 ≤ 𝑊, (𝐷‘𝑋), (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))))))) |
14 | iffalse 4542 | . . 3 ⊢ (¬ 𝑋 ≤ 𝑊 → if(𝑋 ≤ 𝑊, (𝐷‘𝑋), (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) = (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) | |
15 | 13, 14 | sylan9eq 2786 | . 2 ⊢ ((((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑋 ≤ 𝑊) → (𝐼‘𝑋) = (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) |
16 | 15 | anasss 465 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∀wral 3051 ifcif 4533 class class class wbr 5153 ‘cfv 6554 ℩crio 7379 (class class class)co 7424 Basecbs 17213 lecple 17273 joincjn 18336 meetcmee 18337 LSSumclsm 19632 LSubSpclss 20908 Atomscatm 38961 LHypclh 39683 DVecHcdvh 40777 DIsoBcdib 40837 DIsoCcdic 40871 DIsoHcdih 40927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-dih 40928 |
This theorem is referenced by: dihlsscpre 40933 dihvalcqpre 40934 |
Copyright terms: Public domain | W3C validator |