Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihvalc Structured version   Visualization version   GIF version

Theorem dihvalc 40092
Description: Value of isomorphism H for a lattice 𝐾 when Β¬ 𝑋 ≀ π‘Š. (Contributed by NM, 4-Mar-2014.)
Hypotheses
Ref Expression
dihval.b 𝐡 = (Baseβ€˜πΎ)
dihval.l ≀ = (leβ€˜πΎ)
dihval.j ∨ = (joinβ€˜πΎ)
dihval.m ∧ = (meetβ€˜πΎ)
dihval.a 𝐴 = (Atomsβ€˜πΎ)
dihval.h 𝐻 = (LHypβ€˜πΎ)
dihval.i 𝐼 = ((DIsoHβ€˜πΎ)β€˜π‘Š)
dihval.d 𝐷 = ((DIsoBβ€˜πΎ)β€˜π‘Š)
dihval.c 𝐢 = ((DIsoCβ€˜πΎ)β€˜π‘Š)
dihval.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
dihval.s 𝑆 = (LSubSpβ€˜π‘ˆ)
dihval.p βŠ• = (LSSumβ€˜π‘ˆ)
Assertion
Ref Expression
dihvalc (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) β†’ (πΌβ€˜π‘‹) = (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(𝑋 ∧ π‘Š))))))
Distinct variable groups:   𝐴,π‘ž   𝑒,π‘ž,𝐾   𝑒,𝑆   π‘Š,π‘ž,𝑒   𝑋,π‘ž,𝑒
Allowed substitution hints:   𝐴(𝑒)   𝐡(𝑒,π‘ž)   𝐢(𝑒,π‘ž)   𝐷(𝑒,π‘ž)   βŠ• (𝑒,π‘ž)   𝑆(π‘ž)   π‘ˆ(𝑒,π‘ž)   𝐻(𝑒,π‘ž)   𝐼(𝑒,π‘ž)   ∨ (𝑒,π‘ž)   ≀ (𝑒,π‘ž)   ∧ (𝑒,π‘ž)   𝑉(𝑒,π‘ž)

Proof of Theorem dihvalc
StepHypRef Expression
1 dihval.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 dihval.l . . . 4 ≀ = (leβ€˜πΎ)
3 dihval.j . . . 4 ∨ = (joinβ€˜πΎ)
4 dihval.m . . . 4 ∧ = (meetβ€˜πΎ)
5 dihval.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
6 dihval.h . . . 4 𝐻 = (LHypβ€˜πΎ)
7 dihval.i . . . 4 𝐼 = ((DIsoHβ€˜πΎ)β€˜π‘Š)
8 dihval.d . . . 4 𝐷 = ((DIsoBβ€˜πΎ)β€˜π‘Š)
9 dihval.c . . . 4 𝐢 = ((DIsoCβ€˜πΎ)β€˜π‘Š)
10 dihval.u . . . 4 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
11 dihval.s . . . 4 𝑆 = (LSubSpβ€˜π‘ˆ)
12 dihval.p . . . 4 βŠ• = (LSSumβ€˜π‘ˆ)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dihval 40091 . . 3 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐡) β†’ (πΌβ€˜π‘‹) = if(𝑋 ≀ π‘Š, (π·β€˜π‘‹), (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(𝑋 ∧ π‘Š)))))))
14 iffalse 4536 . . 3 (Β¬ 𝑋 ≀ π‘Š β†’ if(𝑋 ≀ π‘Š, (π·β€˜π‘‹), (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(𝑋 ∧ π‘Š)))))) = (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(𝑋 ∧ π‘Š))))))
1513, 14sylan9eq 2792 . 2 ((((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐡) ∧ Β¬ 𝑋 ≀ π‘Š) β†’ (πΌβ€˜π‘‹) = (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(𝑋 ∧ π‘Š))))))
1615anasss 467 1 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) β†’ (πΌβ€˜π‘‹) = (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(𝑋 ∧ π‘Š))))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  ifcif 4527   class class class wbr 5147  β€˜cfv 6540  β„©crio 7360  (class class class)co 7405  Basecbs 17140  lecple 17200  joincjn 18260  meetcmee 18261  LSSumclsm 19496  LSubSpclss 20534  Atomscatm 38121  LHypclh 38843  DVecHcdvh 39937  DIsoBcdib 39997  DIsoCcdic 40031  DIsoHcdih 40087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-dih 40088
This theorem is referenced by:  dihlsscpre  40093  dihvalcqpre  40094
  Copyright terms: Public domain W3C validator