Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihvalc Structured version   Visualization version   GIF version

Theorem dihvalc 40568
Description: Value of isomorphism H for a lattice 𝐾 when Β¬ 𝑋 ≀ π‘Š. (Contributed by NM, 4-Mar-2014.)
Hypotheses
Ref Expression
dihval.b 𝐡 = (Baseβ€˜πΎ)
dihval.l ≀ = (leβ€˜πΎ)
dihval.j ∨ = (joinβ€˜πΎ)
dihval.m ∧ = (meetβ€˜πΎ)
dihval.a 𝐴 = (Atomsβ€˜πΎ)
dihval.h 𝐻 = (LHypβ€˜πΎ)
dihval.i 𝐼 = ((DIsoHβ€˜πΎ)β€˜π‘Š)
dihval.d 𝐷 = ((DIsoBβ€˜πΎ)β€˜π‘Š)
dihval.c 𝐢 = ((DIsoCβ€˜πΎ)β€˜π‘Š)
dihval.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
dihval.s 𝑆 = (LSubSpβ€˜π‘ˆ)
dihval.p βŠ• = (LSSumβ€˜π‘ˆ)
Assertion
Ref Expression
dihvalc (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) β†’ (πΌβ€˜π‘‹) = (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(𝑋 ∧ π‘Š))))))
Distinct variable groups:   𝐴,π‘ž   𝑒,π‘ž,𝐾   𝑒,𝑆   π‘Š,π‘ž,𝑒   𝑋,π‘ž,𝑒
Allowed substitution hints:   𝐴(𝑒)   𝐡(𝑒,π‘ž)   𝐢(𝑒,π‘ž)   𝐷(𝑒,π‘ž)   βŠ• (𝑒,π‘ž)   𝑆(π‘ž)   π‘ˆ(𝑒,π‘ž)   𝐻(𝑒,π‘ž)   𝐼(𝑒,π‘ž)   ∨ (𝑒,π‘ž)   ≀ (𝑒,π‘ž)   ∧ (𝑒,π‘ž)   𝑉(𝑒,π‘ž)

Proof of Theorem dihvalc
StepHypRef Expression
1 dihval.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 dihval.l . . . 4 ≀ = (leβ€˜πΎ)
3 dihval.j . . . 4 ∨ = (joinβ€˜πΎ)
4 dihval.m . . . 4 ∧ = (meetβ€˜πΎ)
5 dihval.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
6 dihval.h . . . 4 𝐻 = (LHypβ€˜πΎ)
7 dihval.i . . . 4 𝐼 = ((DIsoHβ€˜πΎ)β€˜π‘Š)
8 dihval.d . . . 4 𝐷 = ((DIsoBβ€˜πΎ)β€˜π‘Š)
9 dihval.c . . . 4 𝐢 = ((DIsoCβ€˜πΎ)β€˜π‘Š)
10 dihval.u . . . 4 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
11 dihval.s . . . 4 𝑆 = (LSubSpβ€˜π‘ˆ)
12 dihval.p . . . 4 βŠ• = (LSSumβ€˜π‘ˆ)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dihval 40567 . . 3 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐡) β†’ (πΌβ€˜π‘‹) = if(𝑋 ≀ π‘Š, (π·β€˜π‘‹), (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(𝑋 ∧ π‘Š)))))))
14 iffalse 4537 . . 3 (Β¬ 𝑋 ≀ π‘Š β†’ if(𝑋 ≀ π‘Š, (π·β€˜π‘‹), (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(𝑋 ∧ π‘Š)))))) = (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(𝑋 ∧ π‘Š))))))
1513, 14sylan9eq 2791 . 2 ((((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐡) ∧ Β¬ 𝑋 ≀ π‘Š) β†’ (πΌβ€˜π‘‹) = (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(𝑋 ∧ π‘Š))))))
1615anasss 466 1 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) β†’ (πΌβ€˜π‘‹) = (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(𝑋 ∧ π‘Š))))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060  ifcif 4528   class class class wbr 5148  β€˜cfv 6543  β„©crio 7367  (class class class)co 7412  Basecbs 17151  lecple 17211  joincjn 18274  meetcmee 18275  LSSumclsm 19550  LSubSpclss 20774  Atomscatm 38597  LHypclh 39319  DVecHcdvh 40413  DIsoBcdib 40473  DIsoCcdic 40507  DIsoHcdih 40563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-dih 40564
This theorem is referenced by:  dihlsscpre  40569  dihvalcqpre  40570
  Copyright terms: Public domain W3C validator