Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihvalc | Structured version Visualization version GIF version |
Description: Value of isomorphism H for a lattice 𝐾 when ¬ 𝑋 ≤ 𝑊. (Contributed by NM, 4-Mar-2014.) |
Ref | Expression |
---|---|
dihval.b | ⊢ 𝐵 = (Base‘𝐾) |
dihval.l | ⊢ ≤ = (le‘𝐾) |
dihval.j | ⊢ ∨ = (join‘𝐾) |
dihval.m | ⊢ ∧ = (meet‘𝐾) |
dihval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dihval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihval.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
dihval.d | ⊢ 𝐷 = ((DIsoB‘𝐾)‘𝑊) |
dihval.c | ⊢ 𝐶 = ((DIsoC‘𝐾)‘𝑊) |
dihval.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dihval.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
dihval.p | ⊢ ⊕ = (LSSum‘𝑈) |
Ref | Expression |
---|---|
dihvalc | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | dihval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | dihval.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
4 | dihval.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
5 | dihval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | dihval.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | dihval.i | . . . 4 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
8 | dihval.d | . . . 4 ⊢ 𝐷 = ((DIsoB‘𝐾)‘𝑊) | |
9 | dihval.c | . . . 4 ⊢ 𝐶 = ((DIsoC‘𝐾)‘𝑊) | |
10 | dihval.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
11 | dihval.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑈) | |
12 | dihval.p | . . . 4 ⊢ ⊕ = (LSSum‘𝑈) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | dihval 39493 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐼‘𝑋) = if(𝑋 ≤ 𝑊, (𝐷‘𝑋), (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))))))) |
14 | iffalse 4481 | . . 3 ⊢ (¬ 𝑋 ≤ 𝑊 → if(𝑋 ≤ 𝑊, (𝐷‘𝑋), (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) = (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) | |
15 | 13, 14 | sylan9eq 2796 | . 2 ⊢ ((((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑋 ≤ 𝑊) → (𝐼‘𝑋) = (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) |
16 | 15 | anasss 467 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ifcif 4472 class class class wbr 5089 ‘cfv 6473 ℩crio 7285 (class class class)co 7329 Basecbs 17001 lecple 17058 joincjn 18118 meetcmee 18119 LSSumclsm 19327 LSubSpclss 20291 Atomscatm 37523 LHypclh 38245 DVecHcdvh 39339 DIsoBcdib 39399 DIsoCcdic 39433 DIsoHcdih 39489 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pr 5369 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-dih 39490 |
This theorem is referenced by: dihlsscpre 39495 dihvalcqpre 39496 |
Copyright terms: Public domain | W3C validator |