![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihvalc | Structured version Visualization version GIF version |
Description: Value of isomorphism H for a lattice 𝐾 when ¬ 𝑋 ≤ 𝑊. (Contributed by NM, 4-Mar-2014.) |
Ref | Expression |
---|---|
dihval.b | ⊢ 𝐵 = (Base‘𝐾) |
dihval.l | ⊢ ≤ = (le‘𝐾) |
dihval.j | ⊢ ∨ = (join‘𝐾) |
dihval.m | ⊢ ∧ = (meet‘𝐾) |
dihval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dihval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihval.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
dihval.d | ⊢ 𝐷 = ((DIsoB‘𝐾)‘𝑊) |
dihval.c | ⊢ 𝐶 = ((DIsoC‘𝐾)‘𝑊) |
dihval.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dihval.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
dihval.p | ⊢ ⊕ = (LSSum‘𝑈) |
Ref | Expression |
---|---|
dihvalc | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | dihval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | dihval.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
4 | dihval.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
5 | dihval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | dihval.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | dihval.i | . . . 4 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
8 | dihval.d | . . . 4 ⊢ 𝐷 = ((DIsoB‘𝐾)‘𝑊) | |
9 | dihval.c | . . . 4 ⊢ 𝐶 = ((DIsoC‘𝐾)‘𝑊) | |
10 | dihval.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
11 | dihval.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑈) | |
12 | dihval.p | . . . 4 ⊢ ⊕ = (LSSum‘𝑈) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | dihval 41189 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐼‘𝑋) = if(𝑋 ≤ 𝑊, (𝐷‘𝑋), (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))))))) |
14 | iffalse 4557 | . . 3 ⊢ (¬ 𝑋 ≤ 𝑊 → if(𝑋 ≤ 𝑊, (𝐷‘𝑋), (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) = (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) | |
15 | 13, 14 | sylan9eq 2800 | . 2 ⊢ ((((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑋 ≤ 𝑊) → (𝐼‘𝑋) = (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) |
16 | 15 | anasss 466 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ifcif 4548 class class class wbr 5166 ‘cfv 6573 ℩crio 7403 (class class class)co 7448 Basecbs 17258 lecple 17318 joincjn 18381 meetcmee 18382 LSSumclsm 19676 LSubSpclss 20952 Atomscatm 39219 LHypclh 39941 DVecHcdvh 41035 DIsoBcdib 41095 DIsoCcdic 41129 DIsoHcdih 41185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-dih 41186 |
This theorem is referenced by: dihlsscpre 41191 dihvalcqpre 41192 |
Copyright terms: Public domain | W3C validator |