| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dihvalc | Structured version Visualization version GIF version | ||
| Description: Value of isomorphism H for a lattice 𝐾 when ¬ 𝑋 ≤ 𝑊. (Contributed by NM, 4-Mar-2014.) |
| Ref | Expression |
|---|---|
| dihval.b | ⊢ 𝐵 = (Base‘𝐾) |
| dihval.l | ⊢ ≤ = (le‘𝐾) |
| dihval.j | ⊢ ∨ = (join‘𝐾) |
| dihval.m | ⊢ ∧ = (meet‘𝐾) |
| dihval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dihval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dihval.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
| dihval.d | ⊢ 𝐷 = ((DIsoB‘𝐾)‘𝑊) |
| dihval.c | ⊢ 𝐶 = ((DIsoC‘𝐾)‘𝑊) |
| dihval.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| dihval.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
| dihval.p | ⊢ ⊕ = (LSSum‘𝑈) |
| Ref | Expression |
|---|---|
| dihvalc | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dihval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | dihval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | dihval.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 4 | dihval.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 5 | dihval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | dihval.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | dihval.i | . . . 4 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
| 8 | dihval.d | . . . 4 ⊢ 𝐷 = ((DIsoB‘𝐾)‘𝑊) | |
| 9 | dihval.c | . . . 4 ⊢ 𝐶 = ((DIsoC‘𝐾)‘𝑊) | |
| 10 | dihval.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 11 | dihval.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑈) | |
| 12 | dihval.p | . . . 4 ⊢ ⊕ = (LSSum‘𝑈) | |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | dihval 41279 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐼‘𝑋) = if(𝑋 ≤ 𝑊, (𝐷‘𝑋), (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))))))) |
| 14 | iffalse 4481 | . . 3 ⊢ (¬ 𝑋 ≤ 𝑊 → if(𝑋 ≤ 𝑊, (𝐷‘𝑋), (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) = (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) | |
| 15 | 13, 14 | sylan9eq 2786 | . 2 ⊢ ((((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑋 ≤ 𝑊) → (𝐼‘𝑋) = (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) |
| 16 | 15 | anasss 466 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ifcif 4472 class class class wbr 5089 ‘cfv 6481 ℩crio 7302 (class class class)co 7346 Basecbs 17120 lecple 17168 joincjn 18217 meetcmee 18218 LSSumclsm 19546 LSubSpclss 20864 Atomscatm 39310 LHypclh 40031 DVecHcdvh 41125 DIsoBcdib 41185 DIsoCcdic 41219 DIsoHcdih 41275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-dih 41276 |
| This theorem is referenced by: dihlsscpre 41281 dihvalcqpre 41282 |
| Copyright terms: Public domain | W3C validator |