Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihval Structured version   Visualization version   GIF version

Theorem dihval 40406
Description: Value of isomorphism H for a lattice 𝐾. Definition of isomorphism map in [Crawley] p. 122 line 3. (Contributed by NM, 3-Feb-2014.)
Hypotheses
Ref Expression
dihval.b 𝐡 = (Baseβ€˜πΎ)
dihval.l ≀ = (leβ€˜πΎ)
dihval.j ∨ = (joinβ€˜πΎ)
dihval.m ∧ = (meetβ€˜πΎ)
dihval.a 𝐴 = (Atomsβ€˜πΎ)
dihval.h 𝐻 = (LHypβ€˜πΎ)
dihval.i 𝐼 = ((DIsoHβ€˜πΎ)β€˜π‘Š)
dihval.d 𝐷 = ((DIsoBβ€˜πΎ)β€˜π‘Š)
dihval.c 𝐢 = ((DIsoCβ€˜πΎ)β€˜π‘Š)
dihval.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
dihval.s 𝑆 = (LSubSpβ€˜π‘ˆ)
dihval.p βŠ• = (LSSumβ€˜π‘ˆ)
Assertion
Ref Expression
dihval (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐡) β†’ (πΌβ€˜π‘‹) = if(𝑋 ≀ π‘Š, (π·β€˜π‘‹), (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(𝑋 ∧ π‘Š)))))))
Distinct variable groups:   𝐴,π‘ž   𝑒,π‘ž,𝐾   𝑒,𝑆   π‘Š,π‘ž,𝑒   𝑋,π‘ž,𝑒
Allowed substitution hints:   𝐴(𝑒)   𝐡(𝑒,π‘ž)   𝐢(𝑒,π‘ž)   𝐷(𝑒,π‘ž)   βŠ• (𝑒,π‘ž)   𝑆(π‘ž)   π‘ˆ(𝑒,π‘ž)   𝐻(𝑒,π‘ž)   𝐼(𝑒,π‘ž)   ∨ (𝑒,π‘ž)   ≀ (𝑒,π‘ž)   ∧ (𝑒,π‘ž)   𝑉(𝑒,π‘ž)

Proof of Theorem dihval
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 dihval.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 dihval.l . . . 4 ≀ = (leβ€˜πΎ)
3 dihval.j . . . 4 ∨ = (joinβ€˜πΎ)
4 dihval.m . . . 4 ∧ = (meetβ€˜πΎ)
5 dihval.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
6 dihval.h . . . 4 𝐻 = (LHypβ€˜πΎ)
7 dihval.i . . . 4 𝐼 = ((DIsoHβ€˜πΎ)β€˜π‘Š)
8 dihval.d . . . 4 𝐷 = ((DIsoBβ€˜πΎ)β€˜π‘Š)
9 dihval.c . . . 4 𝐢 = ((DIsoCβ€˜πΎ)β€˜π‘Š)
10 dihval.u . . . 4 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
11 dihval.s . . . 4 𝑆 = (LSubSpβ€˜π‘ˆ)
12 dihval.p . . . 4 βŠ• = (LSSumβ€˜π‘ˆ)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dihfval 40405 . . 3 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ 𝐼 = (π‘₯ ∈ 𝐡 ↦ if(π‘₯ ≀ π‘Š, (π·β€˜π‘₯), (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(π‘₯ ∧ π‘Š))))))))
1413fveq1d 6893 . 2 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ (πΌβ€˜π‘‹) = ((π‘₯ ∈ 𝐡 ↦ if(π‘₯ ≀ π‘Š, (π·β€˜π‘₯), (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(π‘₯ ∧ π‘Š)))))))β€˜π‘‹))
15 breq1 5151 . . . 4 (π‘₯ = 𝑋 β†’ (π‘₯ ≀ π‘Š ↔ 𝑋 ≀ π‘Š))
16 fveq2 6891 . . . 4 (π‘₯ = 𝑋 β†’ (π·β€˜π‘₯) = (π·β€˜π‘‹))
17 oveq1 7418 . . . . . . . . . 10 (π‘₯ = 𝑋 β†’ (π‘₯ ∧ π‘Š) = (𝑋 ∧ π‘Š))
1817oveq2d 7427 . . . . . . . . 9 (π‘₯ = 𝑋 β†’ (π‘ž ∨ (π‘₯ ∧ π‘Š)) = (π‘ž ∨ (𝑋 ∧ π‘Š)))
19 id 22 . . . . . . . . 9 (π‘₯ = 𝑋 β†’ π‘₯ = 𝑋)
2018, 19eqeq12d 2748 . . . . . . . 8 (π‘₯ = 𝑋 β†’ ((π‘ž ∨ (π‘₯ ∧ π‘Š)) = π‘₯ ↔ (π‘ž ∨ (𝑋 ∧ π‘Š)) = 𝑋))
2120anbi2d 629 . . . . . . 7 (π‘₯ = 𝑋 β†’ ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (π‘₯ ∧ π‘Š)) = π‘₯) ↔ (Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (𝑋 ∧ π‘Š)) = 𝑋)))
22 fvoveq1 7434 . . . . . . . . 9 (π‘₯ = 𝑋 β†’ (π·β€˜(π‘₯ ∧ π‘Š)) = (π·β€˜(𝑋 ∧ π‘Š)))
2322oveq2d 7427 . . . . . . . 8 (π‘₯ = 𝑋 β†’ ((πΆβ€˜π‘ž) βŠ• (π·β€˜(π‘₯ ∧ π‘Š))) = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(𝑋 ∧ π‘Š))))
2423eqeq2d 2743 . . . . . . 7 (π‘₯ = 𝑋 β†’ (𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(π‘₯ ∧ π‘Š))) ↔ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(𝑋 ∧ π‘Š)))))
2521, 24imbi12d 344 . . . . . 6 (π‘₯ = 𝑋 β†’ (((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(π‘₯ ∧ π‘Š)))) ↔ ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(𝑋 ∧ π‘Š))))))
2625ralbidv 3177 . . . . 5 (π‘₯ = 𝑋 β†’ (βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(π‘₯ ∧ π‘Š)))) ↔ βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(𝑋 ∧ π‘Š))))))
2726riotabidv 7369 . . . 4 (π‘₯ = 𝑋 β†’ (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(π‘₯ ∧ π‘Š))))) = (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(𝑋 ∧ π‘Š))))))
2815, 16, 27ifbieq12d 4556 . . 3 (π‘₯ = 𝑋 β†’ if(π‘₯ ≀ π‘Š, (π·β€˜π‘₯), (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(π‘₯ ∧ π‘Š)))))) = if(𝑋 ≀ π‘Š, (π·β€˜π‘‹), (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(𝑋 ∧ π‘Š)))))))
29 eqid 2732 . . 3 (π‘₯ ∈ 𝐡 ↦ if(π‘₯ ≀ π‘Š, (π·β€˜π‘₯), (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(π‘₯ ∧ π‘Š))))))) = (π‘₯ ∈ 𝐡 ↦ if(π‘₯ ≀ π‘Š, (π·β€˜π‘₯), (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(π‘₯ ∧ π‘Š)))))))
30 fvex 6904 . . . 4 (π·β€˜π‘‹) ∈ V
31 riotaex 7371 . . . 4 (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(𝑋 ∧ π‘Š))))) ∈ V
3230, 31ifex 4578 . . 3 if(𝑋 ≀ π‘Š, (π·β€˜π‘‹), (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(𝑋 ∧ π‘Š)))))) ∈ V
3328, 29, 32fvmpt 6998 . 2 (𝑋 ∈ 𝐡 β†’ ((π‘₯ ∈ 𝐡 ↦ if(π‘₯ ≀ π‘Š, (π·β€˜π‘₯), (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(π‘₯ ∧ π‘Š)))))))β€˜π‘‹) = if(𝑋 ≀ π‘Š, (π·β€˜π‘‹), (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(𝑋 ∧ π‘Š)))))))
3414, 33sylan9eq 2792 1 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐡) β†’ (πΌβ€˜π‘‹) = if(𝑋 ≀ π‘Š, (π·β€˜π‘‹), (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(𝑋 ∧ π‘Š)))))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  ifcif 4528   class class class wbr 5148   ↦ cmpt 5231  β€˜cfv 6543  β„©crio 7366  (class class class)co 7411  Basecbs 17148  lecple 17208  joincjn 18268  meetcmee 18269  LSSumclsm 19543  LSubSpclss 20686  Atomscatm 38436  LHypclh 39158  DVecHcdvh 40252  DIsoBcdib 40312  DIsoCcdic 40346  DIsoHcdih 40402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-dih 40403
This theorem is referenced by:  dihvalc  40407  dihvalb  40411
  Copyright terms: Public domain W3C validator