Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihval Structured version   Visualization version   GIF version

Theorem dihval 40041
Description: Value of isomorphism H for a lattice 𝐾. Definition of isomorphism map in [Crawley] p. 122 line 3. (Contributed by NM, 3-Feb-2014.)
Hypotheses
Ref Expression
dihval.b 𝐡 = (Baseβ€˜πΎ)
dihval.l ≀ = (leβ€˜πΎ)
dihval.j ∨ = (joinβ€˜πΎ)
dihval.m ∧ = (meetβ€˜πΎ)
dihval.a 𝐴 = (Atomsβ€˜πΎ)
dihval.h 𝐻 = (LHypβ€˜πΎ)
dihval.i 𝐼 = ((DIsoHβ€˜πΎ)β€˜π‘Š)
dihval.d 𝐷 = ((DIsoBβ€˜πΎ)β€˜π‘Š)
dihval.c 𝐢 = ((DIsoCβ€˜πΎ)β€˜π‘Š)
dihval.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
dihval.s 𝑆 = (LSubSpβ€˜π‘ˆ)
dihval.p βŠ• = (LSSumβ€˜π‘ˆ)
Assertion
Ref Expression
dihval (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐡) β†’ (πΌβ€˜π‘‹) = if(𝑋 ≀ π‘Š, (π·β€˜π‘‹), (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(𝑋 ∧ π‘Š)))))))
Distinct variable groups:   𝐴,π‘ž   𝑒,π‘ž,𝐾   𝑒,𝑆   π‘Š,π‘ž,𝑒   𝑋,π‘ž,𝑒
Allowed substitution hints:   𝐴(𝑒)   𝐡(𝑒,π‘ž)   𝐢(𝑒,π‘ž)   𝐷(𝑒,π‘ž)   βŠ• (𝑒,π‘ž)   𝑆(π‘ž)   π‘ˆ(𝑒,π‘ž)   𝐻(𝑒,π‘ž)   𝐼(𝑒,π‘ž)   ∨ (𝑒,π‘ž)   ≀ (𝑒,π‘ž)   ∧ (𝑒,π‘ž)   𝑉(𝑒,π‘ž)

Proof of Theorem dihval
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 dihval.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 dihval.l . . . 4 ≀ = (leβ€˜πΎ)
3 dihval.j . . . 4 ∨ = (joinβ€˜πΎ)
4 dihval.m . . . 4 ∧ = (meetβ€˜πΎ)
5 dihval.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
6 dihval.h . . . 4 𝐻 = (LHypβ€˜πΎ)
7 dihval.i . . . 4 𝐼 = ((DIsoHβ€˜πΎ)β€˜π‘Š)
8 dihval.d . . . 4 𝐷 = ((DIsoBβ€˜πΎ)β€˜π‘Š)
9 dihval.c . . . 4 𝐢 = ((DIsoCβ€˜πΎ)β€˜π‘Š)
10 dihval.u . . . 4 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
11 dihval.s . . . 4 𝑆 = (LSubSpβ€˜π‘ˆ)
12 dihval.p . . . 4 βŠ• = (LSSumβ€˜π‘ˆ)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dihfval 40040 . . 3 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ 𝐼 = (π‘₯ ∈ 𝐡 ↦ if(π‘₯ ≀ π‘Š, (π·β€˜π‘₯), (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(π‘₯ ∧ π‘Š))))))))
1413fveq1d 6890 . 2 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ (πΌβ€˜π‘‹) = ((π‘₯ ∈ 𝐡 ↦ if(π‘₯ ≀ π‘Š, (π·β€˜π‘₯), (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(π‘₯ ∧ π‘Š)))))))β€˜π‘‹))
15 breq1 5150 . . . 4 (π‘₯ = 𝑋 β†’ (π‘₯ ≀ π‘Š ↔ 𝑋 ≀ π‘Š))
16 fveq2 6888 . . . 4 (π‘₯ = 𝑋 β†’ (π·β€˜π‘₯) = (π·β€˜π‘‹))
17 oveq1 7411 . . . . . . . . . 10 (π‘₯ = 𝑋 β†’ (π‘₯ ∧ π‘Š) = (𝑋 ∧ π‘Š))
1817oveq2d 7420 . . . . . . . . 9 (π‘₯ = 𝑋 β†’ (π‘ž ∨ (π‘₯ ∧ π‘Š)) = (π‘ž ∨ (𝑋 ∧ π‘Š)))
19 id 22 . . . . . . . . 9 (π‘₯ = 𝑋 β†’ π‘₯ = 𝑋)
2018, 19eqeq12d 2749 . . . . . . . 8 (π‘₯ = 𝑋 β†’ ((π‘ž ∨ (π‘₯ ∧ π‘Š)) = π‘₯ ↔ (π‘ž ∨ (𝑋 ∧ π‘Š)) = 𝑋))
2120anbi2d 630 . . . . . . 7 (π‘₯ = 𝑋 β†’ ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (π‘₯ ∧ π‘Š)) = π‘₯) ↔ (Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (𝑋 ∧ π‘Š)) = 𝑋)))
22 fvoveq1 7427 . . . . . . . . 9 (π‘₯ = 𝑋 β†’ (π·β€˜(π‘₯ ∧ π‘Š)) = (π·β€˜(𝑋 ∧ π‘Š)))
2322oveq2d 7420 . . . . . . . 8 (π‘₯ = 𝑋 β†’ ((πΆβ€˜π‘ž) βŠ• (π·β€˜(π‘₯ ∧ π‘Š))) = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(𝑋 ∧ π‘Š))))
2423eqeq2d 2744 . . . . . . 7 (π‘₯ = 𝑋 β†’ (𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(π‘₯ ∧ π‘Š))) ↔ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(𝑋 ∧ π‘Š)))))
2521, 24imbi12d 345 . . . . . 6 (π‘₯ = 𝑋 β†’ (((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(π‘₯ ∧ π‘Š)))) ↔ ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(𝑋 ∧ π‘Š))))))
2625ralbidv 3178 . . . . 5 (π‘₯ = 𝑋 β†’ (βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(π‘₯ ∧ π‘Š)))) ↔ βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(𝑋 ∧ π‘Š))))))
2726riotabidv 7362 . . . 4 (π‘₯ = 𝑋 β†’ (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(π‘₯ ∧ π‘Š))))) = (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(𝑋 ∧ π‘Š))))))
2815, 16, 27ifbieq12d 4555 . . 3 (π‘₯ = 𝑋 β†’ if(π‘₯ ≀ π‘Š, (π·β€˜π‘₯), (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(π‘₯ ∧ π‘Š)))))) = if(𝑋 ≀ π‘Š, (π·β€˜π‘‹), (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(𝑋 ∧ π‘Š)))))))
29 eqid 2733 . . 3 (π‘₯ ∈ 𝐡 ↦ if(π‘₯ ≀ π‘Š, (π·β€˜π‘₯), (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(π‘₯ ∧ π‘Š))))))) = (π‘₯ ∈ 𝐡 ↦ if(π‘₯ ≀ π‘Š, (π·β€˜π‘₯), (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(π‘₯ ∧ π‘Š)))))))
30 fvex 6901 . . . 4 (π·β€˜π‘‹) ∈ V
31 riotaex 7364 . . . 4 (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(𝑋 ∧ π‘Š))))) ∈ V
3230, 31ifex 4577 . . 3 if(𝑋 ≀ π‘Š, (π·β€˜π‘‹), (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(𝑋 ∧ π‘Š)))))) ∈ V
3328, 29, 32fvmpt 6994 . 2 (𝑋 ∈ 𝐡 β†’ ((π‘₯ ∈ 𝐡 ↦ if(π‘₯ ≀ π‘Š, (π·β€˜π‘₯), (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(π‘₯ ∧ π‘Š)))))))β€˜π‘‹) = if(𝑋 ≀ π‘Š, (π·β€˜π‘‹), (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(𝑋 ∧ π‘Š)))))))
3414, 33sylan9eq 2793 1 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐡) β†’ (πΌβ€˜π‘‹) = if(𝑋 ≀ π‘Š, (π·β€˜π‘‹), (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(𝑋 ∧ π‘Š)))))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  ifcif 4527   class class class wbr 5147   ↦ cmpt 5230  β€˜cfv 6540  β„©crio 7359  (class class class)co 7404  Basecbs 17140  lecple 17200  joincjn 18260  meetcmee 18261  LSSumclsm 19495  LSubSpclss 20530  Atomscatm 38071  LHypclh 38793  DVecHcdvh 39887  DIsoBcdib 39947  DIsoCcdic 39981  DIsoHcdih 40037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-dih 40038
This theorem is referenced by:  dihvalc  40042  dihvalb  40046
  Copyright terms: Public domain W3C validator