Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihval Structured version   Visualization version   GIF version

Theorem dihval 39695
Description: Value of isomorphism H for a lattice 𝐾. Definition of isomorphism map in [Crawley] p. 122 line 3. (Contributed by NM, 3-Feb-2014.)
Hypotheses
Ref Expression
dihval.b 𝐵 = (Base‘𝐾)
dihval.l = (le‘𝐾)
dihval.j = (join‘𝐾)
dihval.m = (meet‘𝐾)
dihval.a 𝐴 = (Atoms‘𝐾)
dihval.h 𝐻 = (LHyp‘𝐾)
dihval.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihval.d 𝐷 = ((DIsoB‘𝐾)‘𝑊)
dihval.c 𝐶 = ((DIsoC‘𝐾)‘𝑊)
dihval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihval.s 𝑆 = (LSubSp‘𝑈)
dihval.p = (LSSum‘𝑈)
Assertion
Ref Expression
dihval (((𝐾𝑉𝑊𝐻) ∧ 𝑋𝐵) → (𝐼𝑋) = if(𝑋 𝑊, (𝐷𝑋), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊)))))))
Distinct variable groups:   𝐴,𝑞   𝑢,𝑞,𝐾   𝑢,𝑆   𝑊,𝑞,𝑢   𝑋,𝑞,𝑢
Allowed substitution hints:   𝐴(𝑢)   𝐵(𝑢,𝑞)   𝐶(𝑢,𝑞)   𝐷(𝑢,𝑞)   (𝑢,𝑞)   𝑆(𝑞)   𝑈(𝑢,𝑞)   𝐻(𝑢,𝑞)   𝐼(𝑢,𝑞)   (𝑢,𝑞)   (𝑢,𝑞)   (𝑢,𝑞)   𝑉(𝑢,𝑞)

Proof of Theorem dihval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dihval.b . . . 4 𝐵 = (Base‘𝐾)
2 dihval.l . . . 4 = (le‘𝐾)
3 dihval.j . . . 4 = (join‘𝐾)
4 dihval.m . . . 4 = (meet‘𝐾)
5 dihval.a . . . 4 𝐴 = (Atoms‘𝐾)
6 dihval.h . . . 4 𝐻 = (LHyp‘𝐾)
7 dihval.i . . . 4 𝐼 = ((DIsoH‘𝐾)‘𝑊)
8 dihval.d . . . 4 𝐷 = ((DIsoB‘𝐾)‘𝑊)
9 dihval.c . . . 4 𝐶 = ((DIsoC‘𝐾)‘𝑊)
10 dihval.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
11 dihval.s . . . 4 𝑆 = (LSubSp‘𝑈)
12 dihval.p . . . 4 = (LSSum‘𝑈)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dihfval 39694 . . 3 ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑥𝐵 ↦ if(𝑥 𝑊, (𝐷𝑥), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊))))))))
1413fveq1d 6844 . 2 ((𝐾𝑉𝑊𝐻) → (𝐼𝑋) = ((𝑥𝐵 ↦ if(𝑥 𝑊, (𝐷𝑥), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊)))))))‘𝑋))
15 breq1 5108 . . . 4 (𝑥 = 𝑋 → (𝑥 𝑊𝑋 𝑊))
16 fveq2 6842 . . . 4 (𝑥 = 𝑋 → (𝐷𝑥) = (𝐷𝑋))
17 oveq1 7364 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥 𝑊) = (𝑋 𝑊))
1817oveq2d 7373 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑞 (𝑥 𝑊)) = (𝑞 (𝑋 𝑊)))
19 id 22 . . . . . . . . 9 (𝑥 = 𝑋𝑥 = 𝑋)
2018, 19eqeq12d 2752 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑞 (𝑥 𝑊)) = 𝑥 ↔ (𝑞 (𝑋 𝑊)) = 𝑋))
2120anbi2d 629 . . . . . . 7 (𝑥 = 𝑋 → ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) ↔ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)))
22 fvoveq1 7380 . . . . . . . . 9 (𝑥 = 𝑋 → (𝐷‘(𝑥 𝑊)) = (𝐷‘(𝑋 𝑊)))
2322oveq2d 7373 . . . . . . . 8 (𝑥 = 𝑋 → ((𝐶𝑞) (𝐷‘(𝑥 𝑊))) = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))
2423eqeq2d 2747 . . . . . . 7 (𝑥 = 𝑋 → (𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊))) ↔ 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊)))))
2521, 24imbi12d 344 . . . . . 6 (𝑥 = 𝑋 → (((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊)))) ↔ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))))
2625ralbidv 3174 . . . . 5 (𝑥 = 𝑋 → (∀𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊)))) ↔ ∀𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))))
2726riotabidv 7315 . . . 4 (𝑥 = 𝑋 → (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊))))) = (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))))
2815, 16, 27ifbieq12d 4514 . . 3 (𝑥 = 𝑋 → if(𝑥 𝑊, (𝐷𝑥), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊)))))) = if(𝑋 𝑊, (𝐷𝑋), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊)))))))
29 eqid 2736 . . 3 (𝑥𝐵 ↦ if(𝑥 𝑊, (𝐷𝑥), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊))))))) = (𝑥𝐵 ↦ if(𝑥 𝑊, (𝐷𝑥), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊)))))))
30 fvex 6855 . . . 4 (𝐷𝑋) ∈ V
31 riotaex 7317 . . . 4 (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))) ∈ V
3230, 31ifex 4536 . . 3 if(𝑋 𝑊, (𝐷𝑋), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊)))))) ∈ V
3328, 29, 32fvmpt 6948 . 2 (𝑋𝐵 → ((𝑥𝐵 ↦ if(𝑥 𝑊, (𝐷𝑥), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊)))))))‘𝑋) = if(𝑋 𝑊, (𝐷𝑋), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊)))))))
3414, 33sylan9eq 2796 1 (((𝐾𝑉𝑊𝐻) ∧ 𝑋𝐵) → (𝐼𝑋) = if(𝑋 𝑊, (𝐷𝑋), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊)))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3064  ifcif 4486   class class class wbr 5105  cmpt 5188  cfv 6496  crio 7312  (class class class)co 7357  Basecbs 17083  lecple 17140  joincjn 18200  meetcmee 18201  LSSumclsm 19416  LSubSpclss 20392  Atomscatm 37725  LHypclh 38447  DVecHcdvh 39541  DIsoBcdib 39601  DIsoCcdic 39635  DIsoHcdih 39691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-dih 39692
This theorem is referenced by:  dihvalc  39696  dihvalb  39700
  Copyright terms: Public domain W3C validator