Step | Hyp | Ref
| Expression |
1 | | dihval.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
2 | | dihval.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
3 | | dihval.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
4 | | dihval.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
5 | | dihval.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
6 | | dihval.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
7 | | dihval.i |
. . . 4
⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
8 | | dihval.d |
. . . 4
⊢ 𝐷 = ((DIsoB‘𝐾)‘𝑊) |
9 | | dihval.c |
. . . 4
⊢ 𝐶 = ((DIsoC‘𝐾)‘𝑊) |
10 | | dihval.u |
. . . 4
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
11 | | dihval.s |
. . . 4
⊢ 𝑆 = (LSubSp‘𝑈) |
12 | | dihval.p |
. . . 4
⊢ ⊕ =
(LSSum‘𝑈) |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12 | dihfval 39172 |
. . 3
⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 = (𝑥 ∈ 𝐵 ↦ if(𝑥 ≤ 𝑊, (𝐷‘𝑥), (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑥 ∧ 𝑊)))))))) |
14 | 13 | fveq1d 6758 |
. 2
⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝐼‘𝑋) = ((𝑥 ∈ 𝐵 ↦ if(𝑥 ≤ 𝑊, (𝐷‘𝑥), (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑥 ∧ 𝑊)))))))‘𝑋)) |
15 | | breq1 5073 |
. . . 4
⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑊 ↔ 𝑋 ≤ 𝑊)) |
16 | | fveq2 6756 |
. . . 4
⊢ (𝑥 = 𝑋 → (𝐷‘𝑥) = (𝐷‘𝑋)) |
17 | | oveq1 7262 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → (𝑥 ∧ 𝑊) = (𝑋 ∧ 𝑊)) |
18 | 17 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝑞 ∨ (𝑥 ∧ 𝑊)) = (𝑞 ∨ (𝑋 ∧ 𝑊))) |
19 | | id 22 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) |
20 | 18, 19 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → ((𝑞 ∨ (𝑥 ∧ 𝑊)) = 𝑥 ↔ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) |
21 | 20 | anbi2d 628 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑥 ∧ 𝑊)) = 𝑥) ↔ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) |
22 | | fvoveq1 7278 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝐷‘(𝑥 ∧ 𝑊)) = (𝐷‘(𝑋 ∧ 𝑊))) |
23 | 22 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → ((𝐶‘𝑞) ⊕ (𝐷‘(𝑥 ∧ 𝑊))) = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))) |
24 | 23 | eqeq2d 2749 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑥 ∧ 𝑊))) ↔ 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))))) |
25 | 21, 24 | imbi12d 344 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑥 ∧ 𝑊)))) ↔ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) |
26 | 25 | ralbidv 3120 |
. . . . 5
⊢ (𝑥 = 𝑋 → (∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑥 ∧ 𝑊)))) ↔ ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) |
27 | 26 | riotabidv 7214 |
. . . 4
⊢ (𝑥 = 𝑋 → (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑥 ∧ 𝑊))))) = (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) |
28 | 15, 16, 27 | ifbieq12d 4484 |
. . 3
⊢ (𝑥 = 𝑋 → if(𝑥 ≤ 𝑊, (𝐷‘𝑥), (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑥 ∧ 𝑊)))))) = if(𝑋 ≤ 𝑊, (𝐷‘𝑋), (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))))))) |
29 | | eqid 2738 |
. . 3
⊢ (𝑥 ∈ 𝐵 ↦ if(𝑥 ≤ 𝑊, (𝐷‘𝑥), (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑥 ∧ 𝑊))))))) = (𝑥 ∈ 𝐵 ↦ if(𝑥 ≤ 𝑊, (𝐷‘𝑥), (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑥 ∧ 𝑊))))))) |
30 | | fvex 6769 |
. . . 4
⊢ (𝐷‘𝑋) ∈ V |
31 | | riotaex 7216 |
. . . 4
⊢
(℩𝑢
∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))))) ∈ V |
32 | 30, 31 | ifex 4506 |
. . 3
⊢ if(𝑋 ≤ 𝑊, (𝐷‘𝑋), (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) ∈ V |
33 | 28, 29, 32 | fvmpt 6857 |
. 2
⊢ (𝑋 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ if(𝑥 ≤ 𝑊, (𝐷‘𝑥), (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑥 ∧ 𝑊)))))))‘𝑋) = if(𝑋 ≤ 𝑊, (𝐷‘𝑋), (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))))))) |
34 | 14, 33 | sylan9eq 2799 |
1
⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐼‘𝑋) = if(𝑋 ≤ 𝑊, (𝐷‘𝑋), (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))))))) |