![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > quseccl0 | Structured version Visualization version GIF version |
Description: Closure of the quotient map for a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) Generalization of quseccl 19150 for arbitrary sets 𝐺. (Revised by AV, 24-Feb-2025.) |
Ref | Expression |
---|---|
quseccl0.e | ⊢ ∼ = (𝐺 ~QG 𝑆) |
quseccl0.h | ⊢ 𝐻 = (𝐺 /s ∼ ) |
quseccl0.c | ⊢ 𝐶 = (Base‘𝐺) |
quseccl0.b | ⊢ 𝐵 = (Base‘𝐻) |
Ref | Expression |
---|---|
quseccl0 | ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶) → [𝑋] ∼ ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | quseccl0.e | . . . . 5 ⊢ ∼ = (𝐺 ~QG 𝑆) | |
2 | 1 | ovexi 7453 | . . . 4 ⊢ ∼ ∈ V |
3 | 2 | ecelqsi 8792 | . . 3 ⊢ (𝑋 ∈ 𝐶 → [𝑋] ∼ ∈ (𝐶 / ∼ )) |
4 | 3 | adantl 480 | . 2 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶) → [𝑋] ∼ ∈ (𝐶 / ∼ )) |
5 | quseccl0.h | . . . . 5 ⊢ 𝐻 = (𝐺 /s ∼ ) | |
6 | 5 | a1i 11 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶) → 𝐻 = (𝐺 /s ∼ )) |
7 | quseccl0.c | . . . . 5 ⊢ 𝐶 = (Base‘𝐺) | |
8 | 7 | a1i 11 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶) → 𝐶 = (Base‘𝐺)) |
9 | 2 | a1i 11 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶) → ∼ ∈ V) |
10 | simpl 481 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶) → 𝐺 ∈ 𝑉) | |
11 | 6, 8, 9, 10 | qusbas 17530 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶) → (𝐶 / ∼ ) = (Base‘𝐻)) |
12 | quseccl0.b | . . 3 ⊢ 𝐵 = (Base‘𝐻) | |
13 | 11, 12 | eqtr4di 2783 | . 2 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶) → (𝐶 / ∼ ) = 𝐵) |
14 | 4, 13 | eleqtrd 2827 | 1 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶) → [𝑋] ∼ ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3461 ‘cfv 6549 (class class class)co 7419 [cec 8723 / cqs 8724 Basecbs 17183 /s cqus 17490 ~QG cqg 19085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-ec 8727 df-qs 8731 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9467 df-inf 9468 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-z 12592 df-dec 12711 df-uz 12856 df-fz 13520 df-struct 17119 df-slot 17154 df-ndx 17166 df-base 17184 df-plusg 17249 df-mulr 17250 df-sca 17252 df-vsca 17253 df-ip 17254 df-tset 17255 df-ple 17256 df-ds 17258 df-imas 17493 df-qus 17494 |
This theorem is referenced by: quseccl 19150 ecqusaddcl 19156 rngqiprnglinlem3 21200 rngqiprngghm 21206 rngqiprnglin 21209 |
Copyright terms: Public domain | W3C validator |