Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcnlem9 Structured version   Visualization version   GIF version

Theorem knoppcnlem9 36524
Description: Lemma for knoppcn 36527. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppcnlem9.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppcnlem9.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppcnlem9.w 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
knoppcnlem9.n (𝜑𝑁 ∈ ℕ)
knoppcnlem9.1 (𝜑𝐶 ∈ ℝ)
knoppcnlem9.2 (𝜑 → (abs‘𝐶) < 1)
Assertion
Ref Expression
knoppcnlem9 (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑊)
Distinct variable groups:   𝐶,𝑚,𝑛,𝑦   𝑖,𝐹,𝑚,𝑤,𝑧   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑖,𝑚,𝑤,𝑧,𝑛,𝑦   𝑥,𝑖,𝑚,𝑤,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑧,𝑤,𝑖)   𝑇(𝑥,𝑧,𝑤,𝑖,𝑚)   𝐹(𝑥,𝑦,𝑛)   𝑁(𝑧,𝑤,𝑖,𝑚)   𝑊(𝑥,𝑦,𝑧,𝑤,𝑖,𝑚,𝑛)

Proof of Theorem knoppcnlem9
Dummy variables 𝑓 𝑘 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 knoppcnlem9.t . . . 4 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2 knoppcnlem9.f . . . 4 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
3 knoppcnlem9.n . . . 4 (𝜑𝑁 ∈ ℕ)
4 knoppcnlem9.1 . . . 4 (𝜑𝐶 ∈ ℝ)
5 knoppcnlem9.2 . . . 4 (𝜑 → (abs‘𝐶) < 1)
61, 2, 3, 4, 5knoppcnlem6 36521 . . 3 (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) ∈ dom (⇝𝑢‘ℝ))
7 seqex 14026 . . . 4 seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) ∈ V
87eldm 5885 . . 3 (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) ∈ dom (⇝𝑢‘ℝ) ↔ ∃𝑓seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓)
96, 8sylib 218 . 2 (𝜑 → ∃𝑓seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓)
10 simpr 484 . . . . 5 ((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓)
11 ulmcl 26347 . . . . . . . 8 (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓𝑓:ℝ⟶ℂ)
1211feqmptd 6952 . . . . . . 7 (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓𝑓 = (𝑤 ∈ ℝ ↦ (𝑓𝑤)))
1312adantl 481 . . . . . 6 ((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) → 𝑓 = (𝑤 ∈ ℝ ↦ (𝑓𝑤)))
14 nn0uz 12899 . . . . . . . . 9 0 = (ℤ‘0)
15 0zd 12605 . . . . . . . . 9 (((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) → 0 ∈ ℤ)
16 eqidd 2737 . . . . . . . . 9 ((((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → ((𝐹𝑤)‘𝑖) = ((𝐹𝑤)‘𝑖))
173ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → 𝑁 ∈ ℕ)
184ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → 𝐶 ∈ ℝ)
19 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → 𝑤 ∈ ℝ)
20 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
211, 2, 17, 18, 19, 20knoppcnlem3 36518 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → ((𝐹𝑤)‘𝑖) ∈ ℝ)
2221adantllr 719 . . . . . . . . . 10 ((((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → ((𝐹𝑤)‘𝑖) ∈ ℝ)
2322recnd 11268 . . . . . . . . 9 ((((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → ((𝐹𝑤)‘𝑖) ∈ ℂ)
241, 2, 3, 4knoppcnlem8 36523 . . . . . . . . . . 11 (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))):ℕ0⟶(ℂ ↑m ℝ))
2524ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))):ℕ0⟶(ℂ ↑m ℝ))
26 simpr 484 . . . . . . . . . 10 (((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ)
27 seqex 14026 . . . . . . . . . . 11 seq0( + , (𝐹𝑤)) ∈ V
2827a1i 11 . . . . . . . . . 10 (((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) → seq0( + , (𝐹𝑤)) ∈ V)
293ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → 𝑁 ∈ ℕ)
304ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ ℝ)
31 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
321, 2, 29, 30, 31knoppcnlem7 36522 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘) = (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘)))
3332adantllr 719 . . . . . . . . . . . 12 ((((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘) = (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘)))
3433fveq1d 6883 . . . . . . . . . . 11 ((((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → ((seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘)‘𝑤) = ((𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘))‘𝑤))
35 eqid 2736 . . . . . . . . . . . 12 (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘)) = (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘))
36 fveq2 6881 . . . . . . . . . . . . . 14 (𝑣 = 𝑤 → (𝐹𝑣) = (𝐹𝑤))
3736seqeq3d 14032 . . . . . . . . . . . . 13 (𝑣 = 𝑤 → seq0( + , (𝐹𝑣)) = seq0( + , (𝐹𝑤)))
3837fveq1d 6883 . . . . . . . . . . . 12 (𝑣 = 𝑤 → (seq0( + , (𝐹𝑣))‘𝑘) = (seq0( + , (𝐹𝑤))‘𝑘))
3926adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → 𝑤 ∈ ℝ)
40 fvexd 6896 . . . . . . . . . . . 12 ((((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → (seq0( + , (𝐹𝑤))‘𝑘) ∈ V)
4135, 38, 39, 40fvmptd3 7014 . . . . . . . . . . 11 ((((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → ((𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘))‘𝑤) = (seq0( + , (𝐹𝑤))‘𝑘))
4234, 41eqtrd 2771 . . . . . . . . . 10 ((((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → ((seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘)‘𝑤) = (seq0( + , (𝐹𝑤))‘𝑘))
43 simplr 768 . . . . . . . . . 10 (((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓)
4414, 15, 25, 26, 28, 42, 43ulmclm 26353 . . . . . . . . 9 (((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) → seq0( + , (𝐹𝑤)) ⇝ (𝑓𝑤))
4514, 15, 16, 23, 44isumclim 15778 . . . . . . . 8 (((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) → Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖) = (𝑓𝑤))
4645eqcomd 2742 . . . . . . 7 (((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) → (𝑓𝑤) = Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
4746mpteq2dva 5219 . . . . . 6 ((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) → (𝑤 ∈ ℝ ↦ (𝑓𝑤)) = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖)))
48 knoppcnlem9.w . . . . . . . 8 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
4948a1i 11 . . . . . . 7 ((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) → 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖)))
5049eqcomd 2742 . . . . . 6 ((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) → (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖)) = 𝑊)
5113, 47, 503eqtrd 2775 . . . . 5 ((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) → 𝑓 = 𝑊)
5210, 51breqtrd 5150 . . . 4 ((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑊)
5352ex 412 . . 3 (𝜑 → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑊))
5453exlimdv 1933 . 2 (𝜑 → (∃𝑓seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑊))
559, 54mpd 15 1 (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3464   class class class wbr 5124  cmpt 5206  dom cdm 5659  wf 6532  cfv 6536  (class class class)co 7410  f cof 7674  m cmap 8845  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139   < clt 11274  cmin 11471   / cdiv 11899  cn 12245  2c2 12300  0cn0 12506  cfl 13812  seqcseq 14024  cexp 14084  abscabs 15258  Σcsu 15707  𝑢culm 26342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-ico 13373  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ulm 26343
This theorem is referenced by:  knoppcn  36527  knoppndvlem4  36538
  Copyright terms: Public domain W3C validator