MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elflim Structured version   Visualization version   GIF version

Theorem elflim 22295
Description: The predicate "is a limit point of a filter." (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
elflim ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))

Proof of Theorem elflim
StepHypRef Expression
1 topontop 21237 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
21adantr 473 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐽 ∈ Top)
3 fvssunirn 6525 . . . . 5 (Fil‘𝑋) ⊆ ran Fil
43sseli 3848 . . . 4 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ran Fil)
54adantl 474 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐹 ran Fil)
6 filsspw 22175 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋)
76adantl 474 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐹 ⊆ 𝒫 𝑋)
8 toponuni 21238 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
98adantr 473 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝑋 = 𝐽)
109pweqd 4421 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝒫 𝑋 = 𝒫 𝐽)
117, 10sseqtrd 3891 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐹 ⊆ 𝒫 𝐽)
12 eqid 2772 . . . . 5 𝐽 = 𝐽
1312elflim2 22288 . . . 4 (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ 𝐹 ⊆ 𝒫 𝐽) ∧ (𝐴 𝐽 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
1413baib 528 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ 𝐹 ⊆ 𝒫 𝐽) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 𝐽 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
152, 5, 11, 14syl3anc 1351 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 𝐽 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
169eleq2d 2845 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴𝑋𝐴 𝐽))
1716anbi1d 620 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → ((𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹) ↔ (𝐴 𝐽 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
1815, 17bitr4d 274 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wss 3823  𝒫 cpw 4416  {csn 4435   cuni 4708  ran crn 5404  cfv 6185  (class class class)co 6974  Topctop 21217  TopOnctopon 21234  neicnei 21421  Filcfil 22169   fLim cflim 22258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4709  df-br 4926  df-opab 4988  df-mpt 5005  df-id 5308  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-iota 6149  df-fun 6187  df-fv 6193  df-ov 6977  df-oprab 6978  df-mpo 6979  df-fbas 20256  df-top 21218  df-topon 21235  df-fil 22170  df-flim 22263
This theorem is referenced by:  flimss2  22296  flimss1  22297  neiflim  22298  flimopn  22299  hausflim  22305  flimclslem  22308  flfnei  22315  fclsfnflim  22351
  Copyright terms: Public domain W3C validator