MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elflim Structured version   Visualization version   GIF version

Theorem elflim 22580
Description: The predicate "is a limit point of a filter." (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
elflim ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))

Proof of Theorem elflim
StepHypRef Expression
1 topontop 21522 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
21adantr 484 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐽 ∈ Top)
3 fvssunirn 6678 . . . . 5 (Fil‘𝑋) ⊆ ran Fil
43sseli 3914 . . . 4 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ran Fil)
54adantl 485 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐹 ran Fil)
6 filsspw 22460 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋)
76adantl 485 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐹 ⊆ 𝒫 𝑋)
8 toponuni 21523 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
98adantr 484 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝑋 = 𝐽)
109pweqd 4519 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝒫 𝑋 = 𝒫 𝐽)
117, 10sseqtrd 3958 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐹 ⊆ 𝒫 𝐽)
12 eqid 2801 . . . . 5 𝐽 = 𝐽
1312elflim2 22573 . . . 4 (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ 𝐹 ⊆ 𝒫 𝐽) ∧ (𝐴 𝐽 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
1413baib 539 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ 𝐹 ⊆ 𝒫 𝐽) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 𝐽 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
152, 5, 11, 14syl3anc 1368 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 𝐽 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
169eleq2d 2878 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴𝑋𝐴 𝐽))
1716anbi1d 632 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → ((𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹) ↔ (𝐴 𝐽 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
1815, 17bitr4d 285 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wss 3884  𝒫 cpw 4500  {csn 4528   cuni 4803  ran crn 5524  cfv 6328  (class class class)co 7139  Topctop 21502  TopOnctopon 21519  neicnei 21706  Filcfil 22454   fLim cflim 22543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-fbas 20092  df-top 21503  df-topon 21520  df-fil 22455  df-flim 22548
This theorem is referenced by:  flimss2  22581  flimss1  22582  neiflim  22583  flimopn  22584  hausflim  22590  flimclslem  22593  flfnei  22600  fclsfnflim  22636
  Copyright terms: Public domain W3C validator