Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elflim | Structured version Visualization version GIF version |
Description: The predicate "is a limit point of a filter." (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
elflim | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop 22062 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
2 | 1 | adantr 481 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐽 ∈ Top) |
3 | fvssunirn 6803 | . . . . 5 ⊢ (Fil‘𝑋) ⊆ ∪ ran Fil | |
4 | 3 | sseli 3917 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ ∪ ran Fil) |
5 | 4 | adantl 482 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐹 ∈ ∪ ran Fil) |
6 | filsspw 23002 | . . . . 5 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋) | |
7 | 6 | adantl 482 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐹 ⊆ 𝒫 𝑋) |
8 | toponuni 22063 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
9 | 8 | adantr 481 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝑋 = ∪ 𝐽) |
10 | 9 | pweqd 4552 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝒫 𝑋 = 𝒫 ∪ 𝐽) |
11 | 7, 10 | sseqtrd 3961 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐹 ⊆ 𝒫 ∪ 𝐽) |
12 | eqid 2738 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
13 | 12 | elflim2 23115 | . . . 4 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ 𝐹 ⊆ 𝒫 ∪ 𝐽) ∧ (𝐴 ∈ ∪ 𝐽 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))) |
14 | 13 | baib 536 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ 𝐹 ⊆ 𝒫 ∪ 𝐽) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ ∪ 𝐽 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))) |
15 | 2, 5, 11, 14 | syl3anc 1370 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ ∪ 𝐽 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))) |
16 | 9 | eleq2d 2824 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ 𝑋 ↔ 𝐴 ∈ ∪ 𝐽)) |
17 | 16 | anbi1d 630 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → ((𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹) ↔ (𝐴 ∈ ∪ 𝐽 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))) |
18 | 15, 17 | bitr4d 281 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 𝒫 cpw 4533 {csn 4561 ∪ cuni 4839 ran crn 5590 ‘cfv 6433 (class class class)co 7275 Topctop 22042 TopOnctopon 22059 neicnei 22248 Filcfil 22996 fLim cflim 23085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-fbas 20594 df-top 22043 df-topon 22060 df-fil 22997 df-flim 23090 |
This theorem is referenced by: flimss2 23123 flimss1 23124 neiflim 23125 flimopn 23126 hausflim 23132 flimclslem 23135 flfnei 23142 fclsfnflim 23178 |
Copyright terms: Public domain | W3C validator |