Step | Hyp | Ref
| Expression |
1 | | topontop 22635 |
. . . 4
β’ (π½ β (TopOnβπ) β π½ β Top) |
2 | 1 | adantr 481 |
. . 3
β’ ((π½ β (TopOnβπ) β§ πΉ β (Filβπ)) β π½ β Top) |
3 | | fvssunirn 6924 |
. . . . 5
β’
(Filβπ)
β βͺ ran Fil |
4 | 3 | sseli 3978 |
. . . 4
β’ (πΉ β (Filβπ) β πΉ β βͺ ran
Fil) |
5 | 4 | adantl 482 |
. . 3
β’ ((π½ β (TopOnβπ) β§ πΉ β (Filβπ)) β πΉ β βͺ ran
Fil) |
6 | | filsspw 23575 |
. . . . 5
β’ (πΉ β (Filβπ) β πΉ β π« π) |
7 | 6 | adantl 482 |
. . . 4
β’ ((π½ β (TopOnβπ) β§ πΉ β (Filβπ)) β πΉ β π« π) |
8 | | toponuni 22636 |
. . . . . 6
β’ (π½ β (TopOnβπ) β π = βͺ π½) |
9 | 8 | adantr 481 |
. . . . 5
β’ ((π½ β (TopOnβπ) β§ πΉ β (Filβπ)) β π = βͺ π½) |
10 | 9 | pweqd 4619 |
. . . 4
β’ ((π½ β (TopOnβπ) β§ πΉ β (Filβπ)) β π« π = π« βͺ
π½) |
11 | 7, 10 | sseqtrd 4022 |
. . 3
β’ ((π½ β (TopOnβπ) β§ πΉ β (Filβπ)) β πΉ β π« βͺ π½) |
12 | | eqid 2732 |
. . . . 5
β’ βͺ π½ =
βͺ π½ |
13 | 12 | elflim2 23688 |
. . . 4
β’ (π΄ β (π½ fLim πΉ) β ((π½ β Top β§ πΉ β βͺ ran Fil
β§ πΉ β π«
βͺ π½) β§ (π΄ β βͺ π½ β§ ((neiβπ½)β{π΄}) β πΉ))) |
14 | 13 | baib 536 |
. . 3
β’ ((π½ β Top β§ πΉ β βͺ ran Fil β§ πΉ β π« βͺ π½)
β (π΄ β (π½ fLim πΉ) β (π΄ β βͺ π½ β§ ((neiβπ½)β{π΄}) β πΉ))) |
15 | 2, 5, 11, 14 | syl3anc 1371 |
. 2
β’ ((π½ β (TopOnβπ) β§ πΉ β (Filβπ)) β (π΄ β (π½ fLim πΉ) β (π΄ β βͺ π½ β§ ((neiβπ½)β{π΄}) β πΉ))) |
16 | 9 | eleq2d 2819 |
. . 3
β’ ((π½ β (TopOnβπ) β§ πΉ β (Filβπ)) β (π΄ β π β π΄ β βͺ π½)) |
17 | 16 | anbi1d 630 |
. 2
β’ ((π½ β (TopOnβπ) β§ πΉ β (Filβπ)) β ((π΄ β π β§ ((neiβπ½)β{π΄}) β πΉ) β (π΄ β βͺ π½ β§ ((neiβπ½)β{π΄}) β πΉ))) |
18 | 15, 17 | bitr4d 281 |
1
β’ ((π½ β (TopOnβπ) β§ πΉ β (Filβπ)) β (π΄ β (π½ fLim πΉ) β (π΄ β π β§ ((neiβπ½)β{π΄}) β πΉ))) |