![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > noxp1o | Structured version Visualization version GIF version |
Description: The Cartesian product of an ordinal and {1o} is a surreal. (Contributed by Scott Fenton, 12-Jun-2011.) |
Ref | Expression |
---|---|
noxp1o | ⊢ (𝐴 ∈ On → (𝐴 × {1o}) ∈ No ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1oex 8475 | . . . . . 6 ⊢ 1o ∈ V | |
2 | 1 | prid1 4766 | . . . . 5 ⊢ 1o ∈ {1o, 2o} |
3 | 2 | fconst6 6781 | . . . 4 ⊢ (𝐴 × {1o}):𝐴⟶{1o, 2o} |
4 | 1 | snnz 4780 | . . . . . 6 ⊢ {1o} ≠ ∅ |
5 | dmxp 5928 | . . . . . 6 ⊢ ({1o} ≠ ∅ → dom (𝐴 × {1o}) = 𝐴) | |
6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ dom (𝐴 × {1o}) = 𝐴 |
7 | 6 | feq2i 6709 | . . . 4 ⊢ ((𝐴 × {1o}):dom (𝐴 × {1o})⟶{1o, 2o} ↔ (𝐴 × {1o}):𝐴⟶{1o, 2o}) |
8 | 3, 7 | mpbir 230 | . . 3 ⊢ (𝐴 × {1o}):dom (𝐴 × {1o})⟶{1o, 2o} |
9 | 8 | a1i 11 | . 2 ⊢ (𝐴 ∈ On → (𝐴 × {1o}):dom (𝐴 × {1o})⟶{1o, 2o}) |
10 | 6 | eleq1i 2824 | . . 3 ⊢ (dom (𝐴 × {1o}) ∈ On ↔ 𝐴 ∈ On) |
11 | 10 | biimpri 227 | . 2 ⊢ (𝐴 ∈ On → dom (𝐴 × {1o}) ∈ On) |
12 | elno3 27155 | . 2 ⊢ ((𝐴 × {1o}) ∈ No ↔ ((𝐴 × {1o}):dom (𝐴 × {1o})⟶{1o, 2o} ∧ dom (𝐴 × {1o}) ∈ On)) | |
13 | 9, 11, 12 | sylanbrc 583 | 1 ⊢ (𝐴 ∈ On → (𝐴 × {1o}) ∈ No ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∅c0 4322 {csn 4628 {cpr 4630 × cxp 5674 dom cdm 5676 Oncon0 6364 ⟶wf 6539 1oc1o 8458 2oc2o 8459 No csur 27140 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-1o 8465 df-no 27143 |
This theorem is referenced by: bdayfo 27177 |
Copyright terms: Public domain | W3C validator |