![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > noxp1o | Structured version Visualization version GIF version |
Description: The Cartesian product of an ordinal and {1o} is a surreal. (Contributed by Scott Fenton, 12-Jun-2011.) |
Ref | Expression |
---|---|
noxp1o | ⊢ (𝐴 ∈ On → (𝐴 × {1o}) ∈ No ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1oex 7966 | . . . . . 6 ⊢ 1o ∈ V | |
2 | 1 | prid1 4609 | . . . . 5 ⊢ 1o ∈ {1o, 2o} |
3 | 2 | fconst6 6442 | . . . 4 ⊢ (𝐴 × {1o}):𝐴⟶{1o, 2o} |
4 | 1 | snnz 4622 | . . . . . 6 ⊢ {1o} ≠ ∅ |
5 | dmxp 5686 | . . . . . 6 ⊢ ({1o} ≠ ∅ → dom (𝐴 × {1o}) = 𝐴) | |
6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ dom (𝐴 × {1o}) = 𝐴 |
7 | 6 | feq2i 6379 | . . . 4 ⊢ ((𝐴 × {1o}):dom (𝐴 × {1o})⟶{1o, 2o} ↔ (𝐴 × {1o}):𝐴⟶{1o, 2o}) |
8 | 3, 7 | mpbir 232 | . . 3 ⊢ (𝐴 × {1o}):dom (𝐴 × {1o})⟶{1o, 2o} |
9 | 8 | a1i 11 | . 2 ⊢ (𝐴 ∈ On → (𝐴 × {1o}):dom (𝐴 × {1o})⟶{1o, 2o}) |
10 | 6 | eleq1i 2873 | . . 3 ⊢ (dom (𝐴 × {1o}) ∈ On ↔ 𝐴 ∈ On) |
11 | 10 | biimpri 229 | . 2 ⊢ (𝐴 ∈ On → dom (𝐴 × {1o}) ∈ On) |
12 | elno3 32778 | . 2 ⊢ ((𝐴 × {1o}) ∈ No ↔ ((𝐴 × {1o}):dom (𝐴 × {1o})⟶{1o, 2o} ∧ dom (𝐴 × {1o}) ∈ On)) | |
13 | 9, 11, 12 | sylanbrc 583 | 1 ⊢ (𝐴 ∈ On → (𝐴 × {1o}) ∈ No ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1522 ∈ wcel 2081 ≠ wne 2984 ∅c0 4215 {csn 4476 {cpr 4478 × cxp 5446 dom cdm 5448 Oncon0 6071 ⟶wf 6226 1oc1o 7951 2oc2o 7952 No csur 32763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5086 ax-sep 5099 ax-nul 5106 ax-pr 5226 ax-un 7324 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3710 df-csb 3816 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-pss 3880 df-nul 4216 df-if 4386 df-pw 4459 df-sn 4477 df-pr 4479 df-tp 4481 df-op 4483 df-uni 4750 df-iun 4831 df-br 4967 df-opab 5029 df-mpt 5046 df-tr 5069 df-id 5353 df-eprel 5358 df-po 5367 df-so 5368 df-fr 5407 df-we 5409 df-xp 5454 df-rel 5455 df-cnv 5456 df-co 5457 df-dm 5458 df-rn 5459 df-res 5460 df-ima 5461 df-ord 6074 df-on 6075 df-suc 6077 df-iota 6194 df-fun 6232 df-fn 6233 df-f 6234 df-f1 6235 df-fo 6236 df-f1o 6237 df-fv 6238 df-1o 7958 df-no 32766 |
This theorem is referenced by: bdayfo 32798 |
Copyright terms: Public domain | W3C validator |