| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > noxp1o | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of an ordinal and {1o} is a surreal. (Contributed by Scott Fenton, 12-Jun-2011.) |
| Ref | Expression |
|---|---|
| noxp1o | ⊢ (𝐴 ∈ On → (𝐴 × {1o}) ∈ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oex 8495 | . . . . . 6 ⊢ 1o ∈ V | |
| 2 | 1 | prid1 4743 | . . . . 5 ⊢ 1o ∈ {1o, 2o} |
| 3 | 2 | fconst6 6773 | . . . 4 ⊢ (𝐴 × {1o}):𝐴⟶{1o, 2o} |
| 4 | 1 | snnz 4757 | . . . . . 6 ⊢ {1o} ≠ ∅ |
| 5 | dmxp 5913 | . . . . . 6 ⊢ ({1o} ≠ ∅ → dom (𝐴 × {1o}) = 𝐴) | |
| 6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ dom (𝐴 × {1o}) = 𝐴 |
| 7 | 6 | feq2i 6703 | . . . 4 ⊢ ((𝐴 × {1o}):dom (𝐴 × {1o})⟶{1o, 2o} ↔ (𝐴 × {1o}):𝐴⟶{1o, 2o}) |
| 8 | 3, 7 | mpbir 231 | . . 3 ⊢ (𝐴 × {1o}):dom (𝐴 × {1o})⟶{1o, 2o} |
| 9 | 8 | a1i 11 | . 2 ⊢ (𝐴 ∈ On → (𝐴 × {1o}):dom (𝐴 × {1o})⟶{1o, 2o}) |
| 10 | 6 | eleq1i 2826 | . . 3 ⊢ (dom (𝐴 × {1o}) ∈ On ↔ 𝐴 ∈ On) |
| 11 | 10 | biimpri 228 | . 2 ⊢ (𝐴 ∈ On → dom (𝐴 × {1o}) ∈ On) |
| 12 | elno3 27624 | . 2 ⊢ ((𝐴 × {1o}) ∈ No ↔ ((𝐴 × {1o}):dom (𝐴 × {1o})⟶{1o, 2o} ∧ dom (𝐴 × {1o}) ∈ On)) | |
| 13 | 9, 11, 12 | sylanbrc 583 | 1 ⊢ (𝐴 ∈ On → (𝐴 × {1o}) ∈ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∅c0 4313 {csn 4606 {cpr 4608 × cxp 5657 dom cdm 5659 Oncon0 6357 ⟶wf 6532 1oc1o 8478 2oc2o 8479 No csur 27608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-suc 6363 df-fun 6538 df-fn 6539 df-f 6540 df-1o 8485 df-no 27611 |
| This theorem is referenced by: bdayfo 27646 |
| Copyright terms: Public domain | W3C validator |