MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noxp1o Structured version   Visualization version   GIF version

Theorem noxp1o 27632
Description: The Cartesian product of an ordinal and {1o} is a surreal. (Contributed by Scott Fenton, 12-Jun-2011.)
Assertion
Ref Expression
noxp1o (𝐴 ∈ On → (𝐴 × {1o}) ∈ No )

Proof of Theorem noxp1o
StepHypRef Expression
1 1oex 8495 . . . . . 6 1o ∈ V
21prid1 4743 . . . . 5 1o ∈ {1o, 2o}
32fconst6 6773 . . . 4 (𝐴 × {1o}):𝐴⟶{1o, 2o}
41snnz 4757 . . . . . 6 {1o} ≠ ∅
5 dmxp 5913 . . . . . 6 ({1o} ≠ ∅ → dom (𝐴 × {1o}) = 𝐴)
64, 5ax-mp 5 . . . . 5 dom (𝐴 × {1o}) = 𝐴
76feq2i 6703 . . . 4 ((𝐴 × {1o}):dom (𝐴 × {1o})⟶{1o, 2o} ↔ (𝐴 × {1o}):𝐴⟶{1o, 2o})
83, 7mpbir 231 . . 3 (𝐴 × {1o}):dom (𝐴 × {1o})⟶{1o, 2o}
98a1i 11 . 2 (𝐴 ∈ On → (𝐴 × {1o}):dom (𝐴 × {1o})⟶{1o, 2o})
106eleq1i 2826 . . 3 (dom (𝐴 × {1o}) ∈ On ↔ 𝐴 ∈ On)
1110biimpri 228 . 2 (𝐴 ∈ On → dom (𝐴 × {1o}) ∈ On)
12 elno3 27624 . 2 ((𝐴 × {1o}) ∈ No ↔ ((𝐴 × {1o}):dom (𝐴 × {1o})⟶{1o, 2o} ∧ dom (𝐴 × {1o}) ∈ On))
139, 11, 12sylanbrc 583 1 (𝐴 ∈ On → (𝐴 × {1o}) ∈ No )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2933  c0 4313  {csn 4606  {cpr 4608   × cxp 5657  dom cdm 5659  Oncon0 6357  wf 6532  1oc1o 8478  2oc2o 8479   No csur 27608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-suc 6363  df-fun 6538  df-fn 6539  df-f 6540  df-1o 8485  df-no 27611
This theorem is referenced by:  bdayfo  27646
  Copyright terms: Public domain W3C validator