Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noxp1o Structured version   Visualization version   GIF version

Theorem noxp1o 33866
Description: The Cartesian product of an ordinal and {1o} is a surreal. (Contributed by Scott Fenton, 12-Jun-2011.)
Assertion
Ref Expression
noxp1o (𝐴 ∈ On → (𝐴 × {1o}) ∈ No )

Proof of Theorem noxp1o
StepHypRef Expression
1 1oex 8307 . . . . . 6 1o ∈ V
21prid1 4698 . . . . 5 1o ∈ {1o, 2o}
32fconst6 6664 . . . 4 (𝐴 × {1o}):𝐴⟶{1o, 2o}
41snnz 4712 . . . . . 6 {1o} ≠ ∅
5 dmxp 5838 . . . . . 6 ({1o} ≠ ∅ → dom (𝐴 × {1o}) = 𝐴)
64, 5ax-mp 5 . . . . 5 dom (𝐴 × {1o}) = 𝐴
76feq2i 6592 . . . 4 ((𝐴 × {1o}):dom (𝐴 × {1o})⟶{1o, 2o} ↔ (𝐴 × {1o}):𝐴⟶{1o, 2o})
83, 7mpbir 230 . . 3 (𝐴 × {1o}):dom (𝐴 × {1o})⟶{1o, 2o}
98a1i 11 . 2 (𝐴 ∈ On → (𝐴 × {1o}):dom (𝐴 × {1o})⟶{1o, 2o})
106eleq1i 2829 . . 3 (dom (𝐴 × {1o}) ∈ On ↔ 𝐴 ∈ On)
1110biimpri 227 . 2 (𝐴 ∈ On → dom (𝐴 × {1o}) ∈ On)
12 elno3 33858 . 2 ((𝐴 × {1o}) ∈ No ↔ ((𝐴 × {1o}):dom (𝐴 × {1o})⟶{1o, 2o} ∧ dom (𝐴 × {1o}) ∈ On))
139, 11, 12sylanbrc 583 1 (𝐴 ∈ On → (𝐴 × {1o}) ∈ No )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wne 2943  c0 4256  {csn 4561  {cpr 4563   × cxp 5587  dom cdm 5589  Oncon0 6266  wf 6429  1oc1o 8290  2oc2o 8291   No csur 33843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-1o 8297  df-no 33846
This theorem is referenced by:  bdayfo  33880
  Copyright terms: Public domain W3C validator