Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noxp1o Structured version   Visualization version   GIF version

Theorem noxp1o 33552
Description: The Cartesian product of an ordinal and {1o} is a surreal. (Contributed by Scott Fenton, 12-Jun-2011.)
Assertion
Ref Expression
noxp1o (𝐴 ∈ On → (𝐴 × {1o}) ∈ No )

Proof of Theorem noxp1o
StepHypRef Expression
1 1oex 8193 . . . . . 6 1o ∈ V
21prid1 4664 . . . . 5 1o ∈ {1o, 2o}
32fconst6 6587 . . . 4 (𝐴 × {1o}):𝐴⟶{1o, 2o}
41snnz 4678 . . . . . 6 {1o} ≠ ∅
5 dmxp 5783 . . . . . 6 ({1o} ≠ ∅ → dom (𝐴 × {1o}) = 𝐴)
64, 5ax-mp 5 . . . . 5 dom (𝐴 × {1o}) = 𝐴
76feq2i 6515 . . . 4 ((𝐴 × {1o}):dom (𝐴 × {1o})⟶{1o, 2o} ↔ (𝐴 × {1o}):𝐴⟶{1o, 2o})
83, 7mpbir 234 . . 3 (𝐴 × {1o}):dom (𝐴 × {1o})⟶{1o, 2o}
98a1i 11 . 2 (𝐴 ∈ On → (𝐴 × {1o}):dom (𝐴 × {1o})⟶{1o, 2o})
106eleq1i 2821 . . 3 (dom (𝐴 × {1o}) ∈ On ↔ 𝐴 ∈ On)
1110biimpri 231 . 2 (𝐴 ∈ On → dom (𝐴 × {1o}) ∈ On)
12 elno3 33544 . 2 ((𝐴 × {1o}) ∈ No ↔ ((𝐴 × {1o}):dom (𝐴 × {1o})⟶{1o, 2o} ∧ dom (𝐴 × {1o}) ∈ On))
139, 11, 12sylanbrc 586 1 (𝐴 ∈ On → (𝐴 × {1o}) ∈ No )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2112  wne 2932  c0 4223  {csn 4527  {cpr 4529   × cxp 5534  dom cdm 5536  Oncon0 6191  wf 6354  1oc1o 8173  2oc2o 8174   No csur 33529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-1o 8180  df-no 33532
This theorem is referenced by:  bdayfo  33566
  Copyright terms: Public domain W3C validator