| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > noxp1o | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of an ordinal and {1o} is a surreal. (Contributed by Scott Fenton, 12-Jun-2011.) |
| Ref | Expression |
|---|---|
| noxp1o | ⊢ (𝐴 ∈ On → (𝐴 × {1o}) ∈ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oex 8398 | . . . . . 6 ⊢ 1o ∈ V | |
| 2 | 1 | prid1 4714 | . . . . 5 ⊢ 1o ∈ {1o, 2o} |
| 3 | 2 | fconst6 6714 | . . . 4 ⊢ (𝐴 × {1o}):𝐴⟶{1o, 2o} |
| 4 | 1 | snnz 4728 | . . . . . 6 ⊢ {1o} ≠ ∅ |
| 5 | dmxp 5871 | . . . . . 6 ⊢ ({1o} ≠ ∅ → dom (𝐴 × {1o}) = 𝐴) | |
| 6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ dom (𝐴 × {1o}) = 𝐴 |
| 7 | 6 | feq2i 6644 | . . . 4 ⊢ ((𝐴 × {1o}):dom (𝐴 × {1o})⟶{1o, 2o} ↔ (𝐴 × {1o}):𝐴⟶{1o, 2o}) |
| 8 | 3, 7 | mpbir 231 | . . 3 ⊢ (𝐴 × {1o}):dom (𝐴 × {1o})⟶{1o, 2o} |
| 9 | 8 | a1i 11 | . 2 ⊢ (𝐴 ∈ On → (𝐴 × {1o}):dom (𝐴 × {1o})⟶{1o, 2o}) |
| 10 | 6 | eleq1i 2819 | . . 3 ⊢ (dom (𝐴 × {1o}) ∈ On ↔ 𝐴 ∈ On) |
| 11 | 10 | biimpri 228 | . 2 ⊢ (𝐴 ∈ On → dom (𝐴 × {1o}) ∈ On) |
| 12 | elno3 27565 | . 2 ⊢ ((𝐴 × {1o}) ∈ No ↔ ((𝐴 × {1o}):dom (𝐴 × {1o})⟶{1o, 2o} ∧ dom (𝐴 × {1o}) ∈ On)) | |
| 13 | 9, 11, 12 | sylanbrc 583 | 1 ⊢ (𝐴 ∈ On → (𝐴 × {1o}) ∈ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∅c0 4284 {csn 4577 {cpr 4579 × cxp 5617 dom cdm 5619 Oncon0 6307 ⟶wf 6478 1oc1o 8381 2oc2o 8382 No csur 27549 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-suc 6313 df-fun 6484 df-fn 6485 df-f 6486 df-1o 8388 df-no 27552 |
| This theorem is referenced by: bdayfo 27587 |
| Copyright terms: Public domain | W3C validator |