| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > noxp1o | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of an ordinal and {1o} is a surreal. (Contributed by Scott Fenton, 12-Jun-2011.) |
| Ref | Expression |
|---|---|
| noxp1o | ⊢ (𝐴 ∈ On → (𝐴 × {1o}) ∈ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oex 8395 | . . . . . 6 ⊢ 1o ∈ V | |
| 2 | 1 | prid1 4712 | . . . . 5 ⊢ 1o ∈ {1o, 2o} |
| 3 | 2 | fconst6 6713 | . . . 4 ⊢ (𝐴 × {1o}):𝐴⟶{1o, 2o} |
| 4 | 1 | snnz 4726 | . . . . . 6 ⊢ {1o} ≠ ∅ |
| 5 | dmxp 5868 | . . . . . 6 ⊢ ({1o} ≠ ∅ → dom (𝐴 × {1o}) = 𝐴) | |
| 6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ dom (𝐴 × {1o}) = 𝐴 |
| 7 | 6 | feq2i 6643 | . . . 4 ⊢ ((𝐴 × {1o}):dom (𝐴 × {1o})⟶{1o, 2o} ↔ (𝐴 × {1o}):𝐴⟶{1o, 2o}) |
| 8 | 3, 7 | mpbir 231 | . . 3 ⊢ (𝐴 × {1o}):dom (𝐴 × {1o})⟶{1o, 2o} |
| 9 | 8 | a1i 11 | . 2 ⊢ (𝐴 ∈ On → (𝐴 × {1o}):dom (𝐴 × {1o})⟶{1o, 2o}) |
| 10 | 6 | eleq1i 2822 | . . 3 ⊢ (dom (𝐴 × {1o}) ∈ On ↔ 𝐴 ∈ On) |
| 11 | 10 | biimpri 228 | . 2 ⊢ (𝐴 ∈ On → dom (𝐴 × {1o}) ∈ On) |
| 12 | elno3 27594 | . 2 ⊢ ((𝐴 × {1o}) ∈ No ↔ ((𝐴 × {1o}):dom (𝐴 × {1o})⟶{1o, 2o} ∧ dom (𝐴 × {1o}) ∈ On)) | |
| 13 | 9, 11, 12 | sylanbrc 583 | 1 ⊢ (𝐴 ∈ On → (𝐴 × {1o}) ∈ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∅c0 4280 {csn 4573 {cpr 4575 × cxp 5612 dom cdm 5614 Oncon0 6306 ⟶wf 6477 1oc1o 8378 2oc2o 8379 No csur 27578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-suc 6312 df-fun 6483 df-fn 6484 df-f 6485 df-1o 8385 df-no 27581 |
| This theorem is referenced by: bdayfo 27616 |
| Copyright terms: Public domain | W3C validator |