MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noxp1o Structured version   Visualization version   GIF version

Theorem noxp1o 27726
Description: The Cartesian product of an ordinal and {1o} is a surreal. (Contributed by Scott Fenton, 12-Jun-2011.)
Assertion
Ref Expression
noxp1o (𝐴 ∈ On → (𝐴 × {1o}) ∈ No )

Proof of Theorem noxp1o
StepHypRef Expression
1 1oex 8532 . . . . . 6 1o ∈ V
21prid1 4787 . . . . 5 1o ∈ {1o, 2o}
32fconst6 6811 . . . 4 (𝐴 × {1o}):𝐴⟶{1o, 2o}
41snnz 4801 . . . . . 6 {1o} ≠ ∅
5 dmxp 5953 . . . . . 6 ({1o} ≠ ∅ → dom (𝐴 × {1o}) = 𝐴)
64, 5ax-mp 5 . . . . 5 dom (𝐴 × {1o}) = 𝐴
76feq2i 6739 . . . 4 ((𝐴 × {1o}):dom (𝐴 × {1o})⟶{1o, 2o} ↔ (𝐴 × {1o}):𝐴⟶{1o, 2o})
83, 7mpbir 231 . . 3 (𝐴 × {1o}):dom (𝐴 × {1o})⟶{1o, 2o}
98a1i 11 . 2 (𝐴 ∈ On → (𝐴 × {1o}):dom (𝐴 × {1o})⟶{1o, 2o})
106eleq1i 2835 . . 3 (dom (𝐴 × {1o}) ∈ On ↔ 𝐴 ∈ On)
1110biimpri 228 . 2 (𝐴 ∈ On → dom (𝐴 × {1o}) ∈ On)
12 elno3 27718 . 2 ((𝐴 × {1o}) ∈ No ↔ ((𝐴 × {1o}):dom (𝐴 × {1o})⟶{1o, 2o} ∧ dom (𝐴 × {1o}) ∈ On))
139, 11, 12sylanbrc 582 1 (𝐴 ∈ On → (𝐴 × {1o}) ∈ No )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wne 2946  c0 4352  {csn 4648  {cpr 4650   × cxp 5698  dom cdm 5700  Oncon0 6395  wf 6569  1oc1o 8515  2oc2o 8516   No csur 27702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-suc 6401  df-fun 6575  df-fn 6576  df-f 6577  df-1o 8522  df-no 27705
This theorem is referenced by:  bdayfo  27740
  Copyright terms: Public domain W3C validator