![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elnoOLD | Structured version Visualization version GIF version |
Description: Obsolete version of elno 27672 as of 5-Jun-2025. (Contributed by Scott Fenton, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elnoOLD | ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3482 | . 2 ⊢ (𝐴 ∈ No → 𝐴 ∈ V) | |
2 | fex 7235 | . . . 4 ⊢ ((𝐴:𝑥⟶{1o, 2o} ∧ 𝑥 ∈ On) → 𝐴 ∈ V) | |
3 | 2 | ancoms 457 | . . 3 ⊢ ((𝑥 ∈ On ∧ 𝐴:𝑥⟶{1o, 2o}) → 𝐴 ∈ V) |
4 | 3 | rexlimiva 3137 | . 2 ⊢ (∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} → 𝐴 ∈ V) |
5 | feq1 6701 | . . . 4 ⊢ (𝑓 = 𝐴 → (𝑓:𝑥⟶{1o, 2o} ↔ 𝐴:𝑥⟶{1o, 2o})) | |
6 | 5 | rexbidv 3169 | . . 3 ⊢ (𝑓 = 𝐴 → (∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o} ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o})) |
7 | df-no 27669 | . . 3 ⊢ No = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o}} | |
8 | 6, 7 | elab2g 3667 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o})) |
9 | 1, 4, 8 | pm5.21nii 377 | 1 ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1534 ∈ wcel 2099 ∃wrex 3060 Vcvv 3462 {cpr 4625 Oncon0 6368 ⟶wf 6542 1oc1o 8481 2oc2o 8482 No csur 27666 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-no 27669 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |