![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elnoOLD | Structured version Visualization version GIF version |
Description: Obsolete version of elno 27716 as of 5-Jun-2025. (Contributed by Scott Fenton, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elnoOLD | ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3502 | . 2 ⊢ (𝐴 ∈ No → 𝐴 ∈ V) | |
2 | fex 7253 | . . . 4 ⊢ ((𝐴:𝑥⟶{1o, 2o} ∧ 𝑥 ∈ On) → 𝐴 ∈ V) | |
3 | 2 | ancoms 458 | . . 3 ⊢ ((𝑥 ∈ On ∧ 𝐴:𝑥⟶{1o, 2o}) → 𝐴 ∈ V) |
4 | 3 | rexlimiva 3147 | . 2 ⊢ (∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} → 𝐴 ∈ V) |
5 | feq1 6724 | . . . 4 ⊢ (𝑓 = 𝐴 → (𝑓:𝑥⟶{1o, 2o} ↔ 𝐴:𝑥⟶{1o, 2o})) | |
6 | 5 | rexbidv 3179 | . . 3 ⊢ (𝑓 = 𝐴 → (∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o} ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o})) |
7 | df-no 27713 | . . 3 ⊢ No = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o}} | |
8 | 6, 7 | elab2g 3686 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o})) |
9 | 1, 4, 8 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1539 ∈ wcel 2108 ∃wrex 3070 Vcvv 3481 {cpr 4636 Oncon0 6392 ⟶wf 6565 1oc1o 8507 2oc2o 8508 No csur 27710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-no 27713 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |