| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fex | Structured version Visualization version GIF version | ||
| Description: If the domain of a mapping is a set, the function is a set. (Contributed by NM, 3-Oct-1999.) |
| Ref | Expression |
|---|---|
| fex | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6646 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnex 7146 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 Vcvv 3436 Fn wfn 6471 ⟶wf 6472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 |
| This theorem is referenced by: fexd 7156 f1oexrnex 7852 fsuppeq 8100 suppsnop 8103 f1domg 8889 ffsuppbi 9277 mapfienlem2 9285 oiexg 9416 infxpenc2lem2 9906 isf32lem10 10248 hasheqf1oi 14253 hashf1rn 14254 hashimarn 14342 iswrd 14417 climsup 15572 fsum 15622 supcvg 15758 fprod 15843 vdwmc 16885 vdwpc 16887 isghmOLD 19123 elsymgbas 19281 gsumval3a 19810 gsumval3lem1 19812 gsumval3lem2 19813 dmdprd 19907 cnfldfun 21300 cnfldfunALT 21301 cnfldfunOLD 21313 cnfldfunALTOLD 21314 tngngp3 24566 climcncf 24815 ulmval 26311 pserulm 26353 elnoOLD 27580 isismt 28507 isgrpoi 30470 isvcOLD 30551 isnv 30584 cnnvg 30650 cnnvs 30652 cnnvnm 30653 cncph 30791 ajval 30833 hvmulex 30983 hhph 31150 hlimi 31160 chlimi 31206 hhssva 31229 hhsssm 31230 hhssnm 31231 hhshsslem1 31239 elunop 31844 adjeq 31907 leoprf2 32099 fpwrelmapffslem 32707 ccatws1f1o 32924 lmdvg 33958 esumpfinvallem 34079 omsf 34301 eulerpartgbij 34377 eulerpartlemmf 34380 subfacp1lem5 35220 sinccvglem 35708 poimirlem24 37684 mbfresfi 37706 elghomlem2OLD 37926 islaut 40122 ispautN 40138 istendo 40799 binomcxplemnotnn0 44389 climexp 45645 climinf 45646 stirlinglem8 46119 fourierdlem70 46214 ismea 46489 meadjiunlem 46503 grtriclwlk3 47976 isassintop 48241 fdivmpt 48572 elbigolo1 48589 fucofvalne 49357 |
| Copyright terms: Public domain | W3C validator |