![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fex | Structured version Visualization version GIF version |
Description: If the domain of a mapping is a set, the function is a set. (Contributed by NM, 3-Oct-1999.) |
Ref | Expression |
---|---|
fex | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6736 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fnex 7236 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) | |
3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 Vcvv 3477 Fn wfn 6557 ⟶wf 6558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 |
This theorem is referenced by: fexd 7246 f1oexrnex 7949 fsuppeq 8198 suppsnop 8201 f1domg 9010 ffsuppbi 9435 mapfienlem2 9443 oiexg 9572 infxpenc2lem2 10057 isf32lem10 10399 hasheqf1oi 14386 hashf1rn 14387 hashimarn 14475 iswrd 14550 climsup 15702 fsum 15752 supcvg 15888 fprod 15973 vdwmc 17011 vdwpc 17013 isghmOLD 19246 elsymgbas 19405 gsumval3a 19935 gsumval3lem1 19937 gsumval3lem2 19938 dmdprd 20032 cnfldfun 21395 cnfldfunALT 21396 cnfldfunOLD 21408 cnfldfunALTOLD 21409 cnfldfunALTOLDOLD 21410 tngngp3 24692 climcncf 24939 ulmval 26437 pserulm 26479 elnoOLD 27705 isismt 28556 isgrpoi 30526 isvcOLD 30607 isnv 30640 cnnvg 30706 cnnvs 30708 cnnvnm 30709 cncph 30847 ajval 30889 hvmulex 31039 hhph 31206 hlimi 31216 chlimi 31262 hhssva 31285 hhsssm 31286 hhssnm 31287 hhshsslem1 31295 elunop 31900 adjeq 31963 leoprf2 32155 fpwrelmapffslem 32749 ccatws1f1o 32920 lmdvg 33913 esumpfinvallem 34054 omsf 34277 eulerpartgbij 34353 eulerpartlemmf 34356 subfacp1lem5 35168 sinccvglem 35656 poimirlem24 37630 mbfresfi 37652 elghomlem2OLD 37872 islaut 40065 ispautN 40081 istendo 40742 binomcxplemnotnn0 44351 climexp 45560 climinf 45561 stirlinglem8 46036 fourierdlem70 46131 ismea 46406 meadjiunlem 46420 grtriclwlk3 47849 isassintop 48053 fdivmpt 48389 elbigolo1 48406 |
Copyright terms: Public domain | W3C validator |