Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fex | Structured version Visualization version GIF version |
Description: If the domain of a mapping is a set, the function is a set. (Contributed by NM, 3-Oct-1999.) |
Ref | Expression |
---|---|
fex | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6600 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fnex 7093 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) | |
3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 Vcvv 3432 Fn wfn 6428 ⟶wf 6429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 |
This theorem is referenced by: fexd 7103 f1oexrnex 7774 frnsuppeq 7991 suppsnop 7994 f1domg 8760 frnfsuppbi 9157 mapfienlem2 9165 oiexg 9294 infxpenc2lem2 9776 isf32lem10 10118 focdmex 14065 hasheqf1oi 14066 hashf1rn 14067 hashimarn 14155 iswrd 14219 climsup 15381 fsum 15432 supcvg 15568 fprod 15651 vdwmc 16679 vdwpc 16681 isghm 18834 elsymgbas 18981 gsumval3a 19504 gsumval3lem1 19506 gsumval3lem2 19507 dmdprd 19601 cnfldfun 20609 cnfldfunALT 20610 cnfldfunALTOLD 20611 tngngp3 23820 climcncf 24063 ulmval 25539 pserulm 25581 isismt 26895 isgrpoi 28860 isvcOLD 28941 isnv 28974 cnnvg 29040 cnnvs 29042 cnnvnm 29043 cncph 29181 ajval 29223 hvmulex 29373 hhph 29540 hlimi 29550 chlimi 29596 hhssva 29619 hhsssm 29620 hhssnm 29621 hhshsslem1 29629 elunop 30234 adjeq 30297 leoprf2 30489 fpwrelmapffslem 31067 lmdvg 31903 esumpfinvallem 32042 omsf 32263 eulerpartgbij 32339 eulerpartlemmf 32342 subfacp1lem5 33146 sinccvglem 33630 elno 33849 poimirlem24 35801 mbfresfi 35823 elghomlem2OLD 36044 islaut 38097 ispautN 38113 istendo 38774 binomcxplemnotnn0 41974 climexp 43146 climinf 43147 stirlinglem8 43622 fourierdlem70 43717 ismea 43989 meadjiunlem 44003 isassintop 45404 fdivmpt 45886 elbigolo1 45903 |
Copyright terms: Public domain | W3C validator |