| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fex | Structured version Visualization version GIF version | ||
| Description: If the domain of a mapping is a set, the function is a set. (Contributed by NM, 3-Oct-1999.) |
| Ref | Expression |
|---|---|
| fex | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6659 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnex 7160 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 Vcvv 3437 Fn wfn 6484 ⟶wf 6485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 |
| This theorem is referenced by: fexd 7170 f1oexrnex 7866 fsuppeq 8114 suppsnop 8117 f1domg 8904 ffsuppbi 9293 mapfienlem2 9301 oiexg 9432 infxpenc2lem2 9922 isf32lem10 10264 hasheqf1oi 14265 hashf1rn 14266 hashimarn 14354 iswrd 14429 climsup 15584 fsum 15634 supcvg 15770 fprod 15855 vdwmc 16897 vdwpc 16899 isghmOLD 19136 elsymgbas 19294 gsumval3a 19823 gsumval3lem1 19825 gsumval3lem2 19826 dmdprd 19920 cnfldfun 21314 cnfldfunALT 21315 cnfldfunOLD 21327 cnfldfunALTOLD 21328 tngngp3 24591 climcncf 24840 ulmval 26336 pserulm 26378 elnoOLD 27605 isismt 28532 isgrpoi 30499 isvcOLD 30580 isnv 30613 cnnvg 30679 cnnvs 30681 cnnvnm 30682 cncph 30820 ajval 30862 hvmulex 31012 hhph 31179 hlimi 31189 chlimi 31235 hhssva 31258 hhsssm 31259 hhssnm 31260 hhshsslem1 31268 elunop 31873 adjeq 31936 leoprf2 32128 fpwrelmapffslem 32739 ccatws1f1o 32961 lmdvg 34038 esumpfinvallem 34159 omsf 34381 eulerpartgbij 34457 eulerpartlemmf 34460 subfacp1lem5 35300 sinccvglem 35788 poimirlem24 37757 mbfresfi 37779 elghomlem2OLD 37999 islaut 40255 ispautN 40271 istendo 40932 binomcxplemnotnn0 44513 climexp 45767 climinf 45768 stirlinglem8 46241 fourierdlem70 46336 ismea 46611 meadjiunlem 46625 grtriclwlk3 48107 isassintop 48372 fdivmpt 48702 elbigolo1 48719 fucofvalne 49486 |
| Copyright terms: Public domain | W3C validator |