| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fex | Structured version Visualization version GIF version | ||
| Description: If the domain of a mapping is a set, the function is a set. (Contributed by NM, 3-Oct-1999.) |
| Ref | Expression |
|---|---|
| fex | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6670 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnex 7173 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3444 Fn wfn 6494 ⟶wf 6495 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 |
| This theorem is referenced by: fexd 7183 f1oexrnex 7883 fsuppeq 8131 suppsnop 8134 f1domg 8920 ffsuppbi 9325 mapfienlem2 9333 oiexg 9464 infxpenc2lem2 9949 isf32lem10 10291 hasheqf1oi 14292 hashf1rn 14293 hashimarn 14381 iswrd 14456 climsup 15612 fsum 15662 supcvg 15798 fprod 15883 vdwmc 16925 vdwpc 16927 isghmOLD 19124 elsymgbas 19280 gsumval3a 19809 gsumval3lem1 19811 gsumval3lem2 19812 dmdprd 19906 cnfldfun 21254 cnfldfunALT 21255 cnfldfunOLD 21267 cnfldfunALTOLD 21268 tngngp3 24520 climcncf 24769 ulmval 26265 pserulm 26307 elnoOLD 27534 isismt 28437 isgrpoi 30400 isvcOLD 30481 isnv 30514 cnnvg 30580 cnnvs 30582 cnnvnm 30583 cncph 30721 ajval 30763 hvmulex 30913 hhph 31080 hlimi 31090 chlimi 31136 hhssva 31159 hhsssm 31160 hhssnm 31161 hhshsslem1 31169 elunop 31774 adjeq 31837 leoprf2 32029 fpwrelmapffslem 32628 ccatws1f1o 32846 lmdvg 33916 esumpfinvallem 34037 omsf 34260 eulerpartgbij 34336 eulerpartlemmf 34339 subfacp1lem5 35144 sinccvglem 35632 poimirlem24 37611 mbfresfi 37633 elghomlem2OLD 37853 islaut 40050 ispautN 40066 istendo 40727 binomcxplemnotnn0 44318 climexp 45576 climinf 45577 stirlinglem8 46052 fourierdlem70 46147 ismea 46422 meadjiunlem 46436 grtriclwlk3 47917 isassintop 48171 fdivmpt 48502 elbigolo1 48519 fucofvalne 49287 |
| Copyright terms: Public domain | W3C validator |