| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fex | Structured version Visualization version GIF version | ||
| Description: If the domain of a mapping is a set, the function is a set. (Contributed by NM, 3-Oct-1999.) |
| Ref | Expression |
|---|---|
| fex | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6736 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnex 7237 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3480 Fn wfn 6556 ⟶wf 6557 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 |
| This theorem is referenced by: fexd 7247 f1oexrnex 7949 fsuppeq 8200 suppsnop 8203 f1domg 9012 ffsuppbi 9438 mapfienlem2 9446 oiexg 9575 infxpenc2lem2 10060 isf32lem10 10402 hasheqf1oi 14390 hashf1rn 14391 hashimarn 14479 iswrd 14554 climsup 15706 fsum 15756 supcvg 15892 fprod 15977 vdwmc 17016 vdwpc 17018 isghmOLD 19234 elsymgbas 19391 gsumval3a 19921 gsumval3lem1 19923 gsumval3lem2 19924 dmdprd 20018 cnfldfun 21378 cnfldfunALT 21379 cnfldfunOLD 21391 cnfldfunALTOLD 21392 cnfldfunALTOLDOLD 21393 tngngp3 24677 climcncf 24926 ulmval 26423 pserulm 26465 elnoOLD 27691 isismt 28542 isgrpoi 30517 isvcOLD 30598 isnv 30631 cnnvg 30697 cnnvs 30699 cnnvnm 30700 cncph 30838 ajval 30880 hvmulex 31030 hhph 31197 hlimi 31207 chlimi 31253 hhssva 31276 hhsssm 31277 hhssnm 31278 hhshsslem1 31286 elunop 31891 adjeq 31954 leoprf2 32146 fpwrelmapffslem 32743 ccatws1f1o 32936 lmdvg 33952 esumpfinvallem 34075 omsf 34298 eulerpartgbij 34374 eulerpartlemmf 34377 subfacp1lem5 35189 sinccvglem 35677 poimirlem24 37651 mbfresfi 37673 elghomlem2OLD 37893 islaut 40085 ispautN 40101 istendo 40762 binomcxplemnotnn0 44375 climexp 45620 climinf 45621 stirlinglem8 46096 fourierdlem70 46191 ismea 46466 meadjiunlem 46480 grtriclwlk3 47912 isassintop 48126 fdivmpt 48461 elbigolo1 48478 fucofvalne 49020 |
| Copyright terms: Public domain | W3C validator |