Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fex | Structured version Visualization version GIF version |
Description: If the domain of a mapping is a set, the function is a set. (Contributed by NM, 3-Oct-1999.) |
Ref | Expression |
---|---|
fex | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6584 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fnex 7075 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) | |
3 | 1, 2 | sylan 579 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3422 Fn wfn 6413 ⟶wf 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 |
This theorem is referenced by: fexd 7085 f1oexrnex 7748 frnsuppeq 7962 suppsnop 7965 f1domg 8715 frnfsuppbi 9087 mapfienlem2 9095 oiexg 9224 infxpenc2lem2 9707 isf32lem10 10049 focdmex 13993 hasheqf1oi 13994 hashf1rn 13995 hashimarn 14083 iswrd 14147 climsup 15309 fsum 15360 supcvg 15496 fprod 15579 vdwmc 16607 vdwpc 16609 isghm 18749 elsymgbas 18896 gsumval3a 19419 gsumval3lem1 19421 gsumval3lem2 19422 dmdprd 19516 cnfldfun 20522 cnfldfunALT 20523 tngngp3 23726 climcncf 23969 ulmval 25444 pserulm 25486 isismt 26799 isgrpoi 28761 isvcOLD 28842 isnv 28875 cnnvg 28941 cnnvs 28943 cnnvnm 28944 cncph 29082 ajval 29124 hvmulex 29274 hhph 29441 hlimi 29451 chlimi 29497 hhssva 29520 hhsssm 29521 hhssnm 29522 hhshsslem1 29530 elunop 30135 adjeq 30198 leoprf2 30390 fpwrelmapffslem 30969 lmdvg 31805 esumpfinvallem 31942 omsf 32163 eulerpartgbij 32239 eulerpartlemmf 32242 subfacp1lem5 33046 sinccvglem 33530 elno 33776 poimirlem24 35728 mbfresfi 35750 elghomlem2OLD 35971 islaut 38024 ispautN 38040 istendo 38701 binomcxplemnotnn0 41863 climexp 43036 climinf 43037 stirlinglem8 43512 fourierdlem70 43607 ismea 43879 meadjiunlem 43893 isassintop 45292 fdivmpt 45774 elbigolo1 45791 |
Copyright terms: Public domain | W3C validator |