| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fex | Structured version Visualization version GIF version | ||
| Description: If the domain of a mapping is a set, the function is a set. (Contributed by NM, 3-Oct-1999.) |
| Ref | Expression |
|---|---|
| fex | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6691 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnex 7194 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3450 Fn wfn 6509 ⟶wf 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 |
| This theorem is referenced by: fexd 7204 f1oexrnex 7906 fsuppeq 8157 suppsnop 8160 f1domg 8946 ffsuppbi 9356 mapfienlem2 9364 oiexg 9495 infxpenc2lem2 9980 isf32lem10 10322 hasheqf1oi 14323 hashf1rn 14324 hashimarn 14412 iswrd 14487 climsup 15643 fsum 15693 supcvg 15829 fprod 15914 vdwmc 16956 vdwpc 16958 isghmOLD 19155 elsymgbas 19311 gsumval3a 19840 gsumval3lem1 19842 gsumval3lem2 19843 dmdprd 19937 cnfldfun 21285 cnfldfunALT 21286 cnfldfunOLD 21298 cnfldfunALTOLD 21299 tngngp3 24551 climcncf 24800 ulmval 26296 pserulm 26338 elnoOLD 27565 isismt 28468 isgrpoi 30434 isvcOLD 30515 isnv 30548 cnnvg 30614 cnnvs 30616 cnnvnm 30617 cncph 30755 ajval 30797 hvmulex 30947 hhph 31114 hlimi 31124 chlimi 31170 hhssva 31193 hhsssm 31194 hhssnm 31195 hhshsslem1 31203 elunop 31808 adjeq 31871 leoprf2 32063 fpwrelmapffslem 32662 ccatws1f1o 32880 lmdvg 33950 esumpfinvallem 34071 omsf 34294 eulerpartgbij 34370 eulerpartlemmf 34373 subfacp1lem5 35178 sinccvglem 35666 poimirlem24 37645 mbfresfi 37667 elghomlem2OLD 37887 islaut 40084 ispautN 40100 istendo 40761 binomcxplemnotnn0 44352 climexp 45610 climinf 45611 stirlinglem8 46086 fourierdlem70 46181 ismea 46456 meadjiunlem 46470 grtriclwlk3 47948 isassintop 48202 fdivmpt 48533 elbigolo1 48550 fucofvalne 49318 |
| Copyright terms: Public domain | W3C validator |