![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fex | Structured version Visualization version GIF version |
Description: If the domain of a mapping is a set, the function is a set. (Contributed by NM, 3-Oct-1999.) |
Ref | Expression |
---|---|
fex | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6747 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fnex 7254 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) | |
3 | 1, 2 | sylan 579 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3488 Fn wfn 6568 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 |
This theorem is referenced by: fexd 7264 f1oexrnex 7967 fsuppeq 8216 suppsnop 8219 f1domg 9032 ffsuppbi 9467 mapfienlem2 9475 oiexg 9604 infxpenc2lem2 10089 isf32lem10 10431 hasheqf1oi 14400 hashf1rn 14401 hashimarn 14489 iswrd 14564 climsup 15718 fsum 15768 supcvg 15904 fprod 15989 vdwmc 17025 vdwpc 17027 isghmOLD 19256 elsymgbas 19415 gsumval3a 19945 gsumval3lem1 19947 gsumval3lem2 19948 dmdprd 20042 cnfldfun 21401 cnfldfunALT 21402 cnfldfunOLD 21414 cnfldfunALTOLD 21415 cnfldfunALTOLDOLD 21416 tngngp3 24698 climcncf 24945 ulmval 26441 pserulm 26483 elnoOLD 27709 isismt 28560 isgrpoi 30530 isvcOLD 30611 isnv 30644 cnnvg 30710 cnnvs 30712 cnnvnm 30713 cncph 30851 ajval 30893 hvmulex 31043 hhph 31210 hlimi 31220 chlimi 31266 hhssva 31289 hhsssm 31290 hhssnm 31291 hhshsslem1 31299 elunop 31904 adjeq 31967 leoprf2 32159 fpwrelmapffslem 32746 ccatws1f1o 32918 lmdvg 33899 esumpfinvallem 34038 omsf 34261 eulerpartgbij 34337 eulerpartlemmf 34340 subfacp1lem5 35152 sinccvglem 35640 poimirlem24 37604 mbfresfi 37626 elghomlem2OLD 37846 islaut 40040 ispautN 40056 istendo 40717 binomcxplemnotnn0 44325 climexp 45526 climinf 45527 stirlinglem8 46002 fourierdlem70 46097 ismea 46372 meadjiunlem 46386 grtriclwlk3 47796 isassintop 47933 fdivmpt 48274 elbigolo1 48291 |
Copyright terms: Public domain | W3C validator |