| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fex | Structured version Visualization version GIF version | ||
| Description: If the domain of a mapping is a set, the function is a set. (Contributed by NM, 3-Oct-1999.) |
| Ref | Expression |
|---|---|
| fex | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6656 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnex 7157 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3438 Fn wfn 6481 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 |
| This theorem is referenced by: fexd 7167 f1oexrnex 7867 fsuppeq 8115 suppsnop 8118 f1domg 8904 ffsuppbi 9307 mapfienlem2 9315 oiexg 9446 infxpenc2lem2 9933 isf32lem10 10275 hasheqf1oi 14277 hashf1rn 14278 hashimarn 14366 iswrd 14441 climsup 15596 fsum 15646 supcvg 15782 fprod 15867 vdwmc 16909 vdwpc 16911 isghmOLD 19114 elsymgbas 19272 gsumval3a 19801 gsumval3lem1 19803 gsumval3lem2 19804 dmdprd 19898 cnfldfun 21294 cnfldfunALT 21295 cnfldfunOLD 21307 cnfldfunALTOLD 21308 tngngp3 24561 climcncf 24810 ulmval 26306 pserulm 26348 elnoOLD 27575 isismt 28498 isgrpoi 30461 isvcOLD 30542 isnv 30575 cnnvg 30641 cnnvs 30643 cnnvnm 30644 cncph 30782 ajval 30824 hvmulex 30974 hhph 31141 hlimi 31151 chlimi 31197 hhssva 31220 hhsssm 31221 hhssnm 31222 hhshsslem1 31230 elunop 31835 adjeq 31898 leoprf2 32090 fpwrelmapffslem 32694 ccatws1f1o 32912 lmdvg 33939 esumpfinvallem 34060 omsf 34283 eulerpartgbij 34359 eulerpartlemmf 34362 subfacp1lem5 35176 sinccvglem 35664 poimirlem24 37643 mbfresfi 37665 elghomlem2OLD 37885 islaut 40082 ispautN 40098 istendo 40759 binomcxplemnotnn0 44349 climexp 45606 climinf 45607 stirlinglem8 46082 fourierdlem70 46177 ismea 46452 meadjiunlem 46466 grtriclwlk3 47949 isassintop 48214 fdivmpt 48545 elbigolo1 48562 fucofvalne 49330 |
| Copyright terms: Public domain | W3C validator |