| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fex | Structured version Visualization version GIF version | ||
| Description: If the domain of a mapping is a set, the function is a set. (Contributed by NM, 3-Oct-1999.) |
| Ref | Expression |
|---|---|
| fex | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6688 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnex 7191 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3447 Fn wfn 6506 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 |
| This theorem is referenced by: fexd 7201 f1oexrnex 7903 fsuppeq 8154 suppsnop 8157 f1domg 8943 ffsuppbi 9349 mapfienlem2 9357 oiexg 9488 infxpenc2lem2 9973 isf32lem10 10315 hasheqf1oi 14316 hashf1rn 14317 hashimarn 14405 iswrd 14480 climsup 15636 fsum 15686 supcvg 15822 fprod 15907 vdwmc 16949 vdwpc 16951 isghmOLD 19148 elsymgbas 19304 gsumval3a 19833 gsumval3lem1 19835 gsumval3lem2 19836 dmdprd 19930 cnfldfun 21278 cnfldfunALT 21279 cnfldfunOLD 21291 cnfldfunALTOLD 21292 tngngp3 24544 climcncf 24793 ulmval 26289 pserulm 26331 elnoOLD 27558 isismt 28461 isgrpoi 30427 isvcOLD 30508 isnv 30541 cnnvg 30607 cnnvs 30609 cnnvnm 30610 cncph 30748 ajval 30790 hvmulex 30940 hhph 31107 hlimi 31117 chlimi 31163 hhssva 31186 hhsssm 31187 hhssnm 31188 hhshsslem1 31196 elunop 31801 adjeq 31864 leoprf2 32056 fpwrelmapffslem 32655 ccatws1f1o 32873 lmdvg 33943 esumpfinvallem 34064 omsf 34287 eulerpartgbij 34363 eulerpartlemmf 34366 subfacp1lem5 35171 sinccvglem 35659 poimirlem24 37638 mbfresfi 37660 elghomlem2OLD 37880 islaut 40077 ispautN 40093 istendo 40754 binomcxplemnotnn0 44345 climexp 45603 climinf 45604 stirlinglem8 46079 fourierdlem70 46174 ismea 46449 meadjiunlem 46463 grtriclwlk3 47944 isassintop 48198 fdivmpt 48529 elbigolo1 48546 fucofvalne 49314 |
| Copyright terms: Public domain | W3C validator |