![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fex | Structured version Visualization version GIF version |
Description: If the domain of a mapping is a set, the function is a set. (Contributed by NM, 3-Oct-1999.) |
Ref | Expression |
---|---|
fex | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6282 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fnex 6742 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) | |
3 | 1, 2 | sylan 575 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∈ wcel 2164 Vcvv 3414 Fn wfn 6122 ⟶wf 6123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 |
This theorem is referenced by: f1oexrnex 7382 frnsuppeq 7576 suppsnop 7578 f1domg 8248 fdmfisuppfi 8559 frnfsuppbi 8579 fsuppco2 8583 fsuppcor 8584 mapfienlem2 8586 ordtypelem10 8708 oiexg 8716 cnfcom3clem 8886 infxpenc2lem2 9163 fin23lem32 9488 isf32lem10 9506 focdmex 13438 hasheqf1oi 13439 hashf1rn 13440 hasheqf1od 13441 hashimarn 13523 hashf1lem1 13535 fz1isolem 13541 iswrd 13583 climsup 14784 fsum 14835 supcvg 14969 fprod 15051 vdwmc 16060 vdwpc 16062 ramval 16090 imasval 16531 imasle 16543 pwsco1mhm 17730 isghm 18018 elsymgbas 18159 gsumval3a 18664 gsumval3lem1 18666 gsumval3lem2 18667 gsumzres 18670 gsumzf1o 18673 gsumzaddlem 18681 gsumzadd 18682 gsumzmhm 18697 gsumzoppg 18704 gsumpt 18721 gsum2dlem2 18730 dmdprd 18758 prdslmodd 19335 gsumply1subr 19971 cnfldfun 20125 cnfldfunALT 20126 dsmmsubg 20457 dsmmlss 20458 islindf2 20527 f1lindf 20535 islindf4 20551 prdstps 21810 qtopval2 21877 tsmsres 22324 tngngp3 22837 climcncf 23080 itg2gt0 23933 ulmval 24540 pserulm 24582 jensen 25135 isismt 25853 isgrpoi 27904 isvcOLD 27985 isnv 28018 cnnvg 28084 cnnvs 28086 cnnvnm 28087 cncph 28225 ajval 28268 hvmulex 28419 hhph 28586 hlimi 28596 chlimi 28642 hhssva 28665 hhsssm 28666 hhssnm 28667 hhshsslem1 28675 elunop 29282 adjeq 29345 leoprf2 29537 fpwrelmapffslem 30051 lmdvg 30540 esumpfinvallem 30677 ofcfval4 30708 omsfval 30897 omsf 30899 omssubadd 30903 carsgval 30906 eulerpartgbij 30975 eulerpartlemmf 30978 sseqval 30992 subfacp1lem5 31708 sinccvglem 32106 elno 32333 filnetlem4 32909 bj-finsumval0 33694 poimirlem24 33972 mbfresfi 33994 elghomlem2OLD 34222 isrngod 34234 isgrpda 34291 iscringd 34334 islaut 36153 ispautN 36169 istendo 36830 binomcxplemnotnn0 39390 fexd 40106 fidmfisupp 40192 climexp 40626 climinf 40627 limsupre 40662 stirlinglem8 41086 fourierdlem70 41181 fourierdlem71 41182 fourierdlem80 41191 sge0val 41368 sge0f1o 41384 ismea 41453 meadjiunlem 41467 isomennd 41533 isassintop 42707 fdivmpt 43195 elbigolo1 43212 |
Copyright terms: Public domain | W3C validator |