| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fex | Structured version Visualization version GIF version | ||
| Description: If the domain of a mapping is a set, the function is a set. (Contributed by NM, 3-Oct-1999.) |
| Ref | Expression |
|---|---|
| fex | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6706 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnex 7209 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3459 Fn wfn 6526 ⟶wf 6527 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 |
| This theorem is referenced by: fexd 7219 f1oexrnex 7923 fsuppeq 8174 suppsnop 8177 f1domg 8986 ffsuppbi 9410 mapfienlem2 9418 oiexg 9549 infxpenc2lem2 10034 isf32lem10 10376 hasheqf1oi 14369 hashf1rn 14370 hashimarn 14458 iswrd 14533 climsup 15686 fsum 15736 supcvg 15872 fprod 15957 vdwmc 16998 vdwpc 17000 isghmOLD 19199 elsymgbas 19355 gsumval3a 19884 gsumval3lem1 19886 gsumval3lem2 19887 dmdprd 19981 cnfldfun 21329 cnfldfunALT 21330 cnfldfunOLD 21342 cnfldfunALTOLD 21343 tngngp3 24595 climcncf 24844 ulmval 26341 pserulm 26383 elnoOLD 27610 isismt 28513 isgrpoi 30479 isvcOLD 30560 isnv 30593 cnnvg 30659 cnnvs 30661 cnnvnm 30662 cncph 30800 ajval 30842 hvmulex 30992 hhph 31159 hlimi 31169 chlimi 31215 hhssva 31238 hhsssm 31239 hhssnm 31240 hhshsslem1 31248 elunop 31853 adjeq 31916 leoprf2 32108 fpwrelmapffslem 32709 ccatws1f1o 32927 lmdvg 33984 esumpfinvallem 34105 omsf 34328 eulerpartgbij 34404 eulerpartlemmf 34407 subfacp1lem5 35206 sinccvglem 35694 poimirlem24 37668 mbfresfi 37690 elghomlem2OLD 37910 islaut 40102 ispautN 40118 istendo 40779 binomcxplemnotnn0 44380 climexp 45634 climinf 45635 stirlinglem8 46110 fourierdlem70 46205 ismea 46480 meadjiunlem 46494 grtriclwlk3 47957 isassintop 48185 fdivmpt 48520 elbigolo1 48537 fucofvalne 49236 |
| Copyright terms: Public domain | W3C validator |