MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmph0 Structured version   Visualization version   GIF version

Theorem hmph0 23711
Description: A topology homeomorphic to the empty set is empty. (Contributed by FL, 18-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
hmph0 (𝐽 ≃ {∅} ↔ 𝐽 = {∅})

Proof of Theorem hmph0
StepHypRef Expression
1 hmphen 23701 . . . 4 (𝐽 ≃ {∅} → 𝐽 ≈ {∅})
2 df1o2 8398 . . . 4 1o = {∅}
31, 2breqtrrdi 5135 . . 3 (𝐽 ≃ {∅} → 𝐽 ≈ 1o)
4 hmphtop1 23695 . . . 4 (𝐽 ≃ {∅} → 𝐽 ∈ Top)
5 en1top 22900 . . . 4 (𝐽 ∈ Top → (𝐽 ≈ 1o𝐽 = {∅}))
64, 5syl 17 . . 3 (𝐽 ≃ {∅} → (𝐽 ≈ 1o𝐽 = {∅}))
73, 6mpbid 232 . 2 (𝐽 ≃ {∅} → 𝐽 = {∅})
8 id 22 . . 3 (𝐽 = {∅} → 𝐽 = {∅})
9 sn0top 22915 . . . 4 {∅} ∈ Top
10 hmphref 23697 . . . 4 ({∅} ∈ Top → {∅} ≃ {∅})
119, 10ax-mp 5 . . 3 {∅} ≃ {∅}
128, 11eqbrtrdi 5132 . 2 (𝐽 = {∅} → 𝐽 ≃ {∅})
137, 12impbii 209 1 (𝐽 ≃ {∅} ↔ 𝐽 = {∅})
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2113  c0 4282  {csn 4575   class class class wbr 5093  1oc1o 8384  cen 8872  Topctop 22809  chmph 23670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-1o 8391  df-map 8758  df-en 8876  df-top 22810  df-topon 22827  df-cn 23143  df-hmeo 23671  df-hmph 23672
This theorem is referenced by:  hmphindis  23713
  Copyright terms: Public domain W3C validator