| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hmph0 | Structured version Visualization version GIF version | ||
| Description: A topology homeomorphic to the empty set is empty. (Contributed by FL, 18-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| hmph0 | ⊢ (𝐽 ≃ {∅} ↔ 𝐽 = {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmphen 23701 | . . . 4 ⊢ (𝐽 ≃ {∅} → 𝐽 ≈ {∅}) | |
| 2 | df1o2 8398 | . . . 4 ⊢ 1o = {∅} | |
| 3 | 1, 2 | breqtrrdi 5135 | . . 3 ⊢ (𝐽 ≃ {∅} → 𝐽 ≈ 1o) |
| 4 | hmphtop1 23695 | . . . 4 ⊢ (𝐽 ≃ {∅} → 𝐽 ∈ Top) | |
| 5 | en1top 22900 | . . . 4 ⊢ (𝐽 ∈ Top → (𝐽 ≈ 1o ↔ 𝐽 = {∅})) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐽 ≃ {∅} → (𝐽 ≈ 1o ↔ 𝐽 = {∅})) |
| 7 | 3, 6 | mpbid 232 | . 2 ⊢ (𝐽 ≃ {∅} → 𝐽 = {∅}) |
| 8 | id 22 | . . 3 ⊢ (𝐽 = {∅} → 𝐽 = {∅}) | |
| 9 | sn0top 22915 | . . . 4 ⊢ {∅} ∈ Top | |
| 10 | hmphref 23697 | . . . 4 ⊢ ({∅} ∈ Top → {∅} ≃ {∅}) | |
| 11 | 9, 10 | ax-mp 5 | . . 3 ⊢ {∅} ≃ {∅} |
| 12 | 8, 11 | eqbrtrdi 5132 | . 2 ⊢ (𝐽 = {∅} → 𝐽 ≃ {∅}) |
| 13 | 7, 12 | impbii 209 | 1 ⊢ (𝐽 ≃ {∅} ↔ 𝐽 = {∅}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2113 ∅c0 4282 {csn 4575 class class class wbr 5093 1oc1o 8384 ≈ cen 8872 Topctop 22809 ≃ chmph 23670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-1o 8391 df-map 8758 df-en 8876 df-top 22810 df-topon 22827 df-cn 23143 df-hmeo 23671 df-hmph 23672 |
| This theorem is referenced by: hmphindis 23713 |
| Copyright terms: Public domain | W3C validator |