MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmph0 Structured version   Visualization version   GIF version

Theorem hmph0 23519
Description: A topology homeomorphic to the empty set is empty. (Contributed by FL, 18-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
hmph0 (𝐽 ≃ {∅} ↔ 𝐽 = {∅})

Proof of Theorem hmph0
StepHypRef Expression
1 hmphen 23509 . . . 4 (𝐽 ≃ {∅} → 𝐽 ≈ {∅})
2 df1o2 8475 . . . 4 1o = {∅}
31, 2breqtrrdi 5189 . . 3 (𝐽 ≃ {∅} → 𝐽 ≈ 1o)
4 hmphtop1 23503 . . . 4 (𝐽 ≃ {∅} → 𝐽 ∈ Top)
5 en1top 22707 . . . 4 (𝐽 ∈ Top → (𝐽 ≈ 1o𝐽 = {∅}))
64, 5syl 17 . . 3 (𝐽 ≃ {∅} → (𝐽 ≈ 1o𝐽 = {∅}))
73, 6mpbid 231 . 2 (𝐽 ≃ {∅} → 𝐽 = {∅})
8 id 22 . . 3 (𝐽 = {∅} → 𝐽 = {∅})
9 sn0top 22722 . . . 4 {∅} ∈ Top
10 hmphref 23505 . . . 4 ({∅} ∈ Top → {∅} ≃ {∅})
119, 10ax-mp 5 . . 3 {∅} ≃ {∅}
128, 11eqbrtrdi 5186 . 2 (𝐽 = {∅} → 𝐽 ≃ {∅})
137, 12impbii 208 1 (𝐽 ≃ {∅} ↔ 𝐽 = {∅})
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2104  c0 4321  {csn 4627   class class class wbr 5147  1oc1o 8461  cen 8938  Topctop 22615  chmph 23478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-1o 8468  df-map 8824  df-en 8942  df-top 22616  df-topon 22633  df-cn 22951  df-hmeo 23479  df-hmph 23480
This theorem is referenced by:  hmphindis  23521
  Copyright terms: Public domain W3C validator