![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hmph0 | Structured version Visualization version GIF version |
Description: A topology homeomorphic to the empty set is empty. (Contributed by FL, 18-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
hmph0 | ⊢ (𝐽 ≃ {∅} ↔ 𝐽 = {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmphen 23509 | . . . 4 ⊢ (𝐽 ≃ {∅} → 𝐽 ≈ {∅}) | |
2 | df1o2 8475 | . . . 4 ⊢ 1o = {∅} | |
3 | 1, 2 | breqtrrdi 5189 | . . 3 ⊢ (𝐽 ≃ {∅} → 𝐽 ≈ 1o) |
4 | hmphtop1 23503 | . . . 4 ⊢ (𝐽 ≃ {∅} → 𝐽 ∈ Top) | |
5 | en1top 22707 | . . . 4 ⊢ (𝐽 ∈ Top → (𝐽 ≈ 1o ↔ 𝐽 = {∅})) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐽 ≃ {∅} → (𝐽 ≈ 1o ↔ 𝐽 = {∅})) |
7 | 3, 6 | mpbid 231 | . 2 ⊢ (𝐽 ≃ {∅} → 𝐽 = {∅}) |
8 | id 22 | . . 3 ⊢ (𝐽 = {∅} → 𝐽 = {∅}) | |
9 | sn0top 22722 | . . . 4 ⊢ {∅} ∈ Top | |
10 | hmphref 23505 | . . . 4 ⊢ ({∅} ∈ Top → {∅} ≃ {∅}) | |
11 | 9, 10 | ax-mp 5 | . . 3 ⊢ {∅} ≃ {∅} |
12 | 8, 11 | eqbrtrdi 5186 | . 2 ⊢ (𝐽 = {∅} → 𝐽 ≃ {∅}) |
13 | 7, 12 | impbii 208 | 1 ⊢ (𝐽 ≃ {∅} ↔ 𝐽 = {∅}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2104 ∅c0 4321 {csn 4627 class class class wbr 5147 1oc1o 8461 ≈ cen 8938 Topctop 22615 ≃ chmph 23478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-1o 8468 df-map 8824 df-en 8942 df-top 22616 df-topon 22633 df-cn 22951 df-hmeo 23479 df-hmph 23480 |
This theorem is referenced by: hmphindis 23521 |
Copyright terms: Public domain | W3C validator |