MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmph0 Structured version   Visualization version   GIF version

Theorem hmph0 22854
Description: A topology homeomorphic to the empty set is empty. (Contributed by FL, 18-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
hmph0 (𝐽 ≃ {∅} ↔ 𝐽 = {∅})

Proof of Theorem hmph0
StepHypRef Expression
1 hmphen 22844 . . . 4 (𝐽 ≃ {∅} → 𝐽 ≈ {∅})
2 df1o2 8279 . . . 4 1o = {∅}
31, 2breqtrrdi 5112 . . 3 (𝐽 ≃ {∅} → 𝐽 ≈ 1o)
4 hmphtop1 22838 . . . 4 (𝐽 ≃ {∅} → 𝐽 ∈ Top)
5 en1top 22042 . . . 4 (𝐽 ∈ Top → (𝐽 ≈ 1o𝐽 = {∅}))
64, 5syl 17 . . 3 (𝐽 ≃ {∅} → (𝐽 ≈ 1o𝐽 = {∅}))
73, 6mpbid 231 . 2 (𝐽 ≃ {∅} → 𝐽 = {∅})
8 id 22 . . 3 (𝐽 = {∅} → 𝐽 = {∅})
9 sn0top 22057 . . . 4 {∅} ∈ Top
10 hmphref 22840 . . . 4 ({∅} ∈ Top → {∅} ≃ {∅})
119, 10ax-mp 5 . . 3 {∅} ≃ {∅}
128, 11eqbrtrdi 5109 . 2 (𝐽 = {∅} → 𝐽 ≃ {∅})
137, 12impbii 208 1 (𝐽 ≃ {∅} ↔ 𝐽 = {∅})
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2108  c0 4253  {csn 4558   class class class wbr 5070  1oc1o 8260  cen 8688  Topctop 21950  chmph 22813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-top 21951  df-topon 21968  df-cn 22286  df-hmeo 22814  df-hmph 22815
This theorem is referenced by:  hmphindis  22856
  Copyright terms: Public domain W3C validator