Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hmph0 | Structured version Visualization version GIF version |
Description: A topology homeomorphic to the empty set is empty. (Contributed by FL, 18-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
hmph0 | ⊢ (𝐽 ≃ {∅} ↔ 𝐽 = {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmphen 22498 | . . . 4 ⊢ (𝐽 ≃ {∅} → 𝐽 ≈ {∅}) | |
2 | df1o2 8132 | . . . 4 ⊢ 1o = {∅} | |
3 | 1, 2 | breqtrrdi 5078 | . . 3 ⊢ (𝐽 ≃ {∅} → 𝐽 ≈ 1o) |
4 | hmphtop1 22492 | . . . 4 ⊢ (𝐽 ≃ {∅} → 𝐽 ∈ Top) | |
5 | en1top 21697 | . . . 4 ⊢ (𝐽 ∈ Top → (𝐽 ≈ 1o ↔ 𝐽 = {∅})) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐽 ≃ {∅} → (𝐽 ≈ 1o ↔ 𝐽 = {∅})) |
7 | 3, 6 | mpbid 235 | . 2 ⊢ (𝐽 ≃ {∅} → 𝐽 = {∅}) |
8 | id 22 | . . 3 ⊢ (𝐽 = {∅} → 𝐽 = {∅}) | |
9 | sn0top 21712 | . . . 4 ⊢ {∅} ∈ Top | |
10 | hmphref 22494 | . . . 4 ⊢ ({∅} ∈ Top → {∅} ≃ {∅}) | |
11 | 9, 10 | ax-mp 5 | . . 3 ⊢ {∅} ≃ {∅} |
12 | 8, 11 | eqbrtrdi 5075 | . 2 ⊢ (𝐽 = {∅} → 𝐽 ≃ {∅}) |
13 | 7, 12 | impbii 212 | 1 ⊢ (𝐽 ≃ {∅} ↔ 𝐽 = {∅}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1538 ∈ wcel 2111 ∅c0 4227 {csn 4525 class class class wbr 5036 1oc1o 8111 ≈ cen 8537 Topctop 21606 ≃ chmph 22467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-1o 8118 df-er 8305 df-map 8424 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-top 21607 df-topon 21624 df-cn 21940 df-hmeo 22468 df-hmph 22469 |
This theorem is referenced by: hmphindis 22510 |
Copyright terms: Public domain | W3C validator |