MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmph0 Structured version   Visualization version   GIF version

Theorem hmph0 23698
Description: A topology homeomorphic to the empty set is empty. (Contributed by FL, 18-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
hmph0 (𝐽 ≃ {∅} ↔ 𝐽 = {∅})

Proof of Theorem hmph0
StepHypRef Expression
1 hmphen 23688 . . . 4 (𝐽 ≃ {∅} → 𝐽 ≈ {∅})
2 df1o2 8402 . . . 4 1o = {∅}
31, 2breqtrrdi 5137 . . 3 (𝐽 ≃ {∅} → 𝐽 ≈ 1o)
4 hmphtop1 23682 . . . 4 (𝐽 ≃ {∅} → 𝐽 ∈ Top)
5 en1top 22887 . . . 4 (𝐽 ∈ Top → (𝐽 ≈ 1o𝐽 = {∅}))
64, 5syl 17 . . 3 (𝐽 ≃ {∅} → (𝐽 ≈ 1o𝐽 = {∅}))
73, 6mpbid 232 . 2 (𝐽 ≃ {∅} → 𝐽 = {∅})
8 id 22 . . 3 (𝐽 = {∅} → 𝐽 = {∅})
9 sn0top 22902 . . . 4 {∅} ∈ Top
10 hmphref 23684 . . . 4 ({∅} ∈ Top → {∅} ≃ {∅})
119, 10ax-mp 5 . . 3 {∅} ≃ {∅}
128, 11eqbrtrdi 5134 . 2 (𝐽 = {∅} → 𝐽 ≃ {∅})
137, 12impbii 209 1 (𝐽 ≃ {∅} ↔ 𝐽 = {∅})
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  c0 4286  {csn 4579   class class class wbr 5095  1oc1o 8388  cen 8876  Topctop 22796  chmph 23657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-1o 8395  df-map 8762  df-en 8880  df-top 22797  df-topon 22814  df-cn 23130  df-hmeo 23658  df-hmph 23659
This theorem is referenced by:  hmphindis  23700
  Copyright terms: Public domain W3C validator