Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hmph0 | Structured version Visualization version GIF version |
Description: A topology homeomorphic to the empty set is empty. (Contributed by FL, 18-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
hmph0 | ⊢ (𝐽 ≃ {∅} ↔ 𝐽 = {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmphen 22844 | . . . 4 ⊢ (𝐽 ≃ {∅} → 𝐽 ≈ {∅}) | |
2 | df1o2 8279 | . . . 4 ⊢ 1o = {∅} | |
3 | 1, 2 | breqtrrdi 5112 | . . 3 ⊢ (𝐽 ≃ {∅} → 𝐽 ≈ 1o) |
4 | hmphtop1 22838 | . . . 4 ⊢ (𝐽 ≃ {∅} → 𝐽 ∈ Top) | |
5 | en1top 22042 | . . . 4 ⊢ (𝐽 ∈ Top → (𝐽 ≈ 1o ↔ 𝐽 = {∅})) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐽 ≃ {∅} → (𝐽 ≈ 1o ↔ 𝐽 = {∅})) |
7 | 3, 6 | mpbid 231 | . 2 ⊢ (𝐽 ≃ {∅} → 𝐽 = {∅}) |
8 | id 22 | . . 3 ⊢ (𝐽 = {∅} → 𝐽 = {∅}) | |
9 | sn0top 22057 | . . . 4 ⊢ {∅} ∈ Top | |
10 | hmphref 22840 | . . . 4 ⊢ ({∅} ∈ Top → {∅} ≃ {∅}) | |
11 | 9, 10 | ax-mp 5 | . . 3 ⊢ {∅} ≃ {∅} |
12 | 8, 11 | eqbrtrdi 5109 | . 2 ⊢ (𝐽 = {∅} → 𝐽 ≃ {∅}) |
13 | 7, 12 | impbii 208 | 1 ⊢ (𝐽 ≃ {∅} ↔ 𝐽 = {∅}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∅c0 4253 {csn 4558 class class class wbr 5070 1oc1o 8260 ≈ cen 8688 Topctop 21950 ≃ chmph 22813 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-top 21951 df-topon 21968 df-cn 22286 df-hmeo 22814 df-hmph 22815 |
This theorem is referenced by: hmphindis 22856 |
Copyright terms: Public domain | W3C validator |