![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > enen2 | Structured version Visualization version GIF version |
Description: Equality-like theorem for equinumerosity. (Contributed by NM, 18-Dec-2003.) |
Ref | Expression |
---|---|
enen2 | ⊢ (𝐴 ≈ 𝐵 → (𝐶 ≈ 𝐴 ↔ 𝐶 ≈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | entr 9027 | . . 3 ⊢ ((𝐶 ≈ 𝐴 ∧ 𝐴 ≈ 𝐵) → 𝐶 ≈ 𝐵) | |
2 | 1 | ancoms 458 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐴) → 𝐶 ≈ 𝐵) |
3 | ensym 9024 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
4 | entr 9027 | . . . 4 ⊢ ((𝐶 ≈ 𝐵 ∧ 𝐵 ≈ 𝐴) → 𝐶 ≈ 𝐴) | |
5 | 4 | ancoms 458 | . . 3 ⊢ ((𝐵 ≈ 𝐴 ∧ 𝐶 ≈ 𝐵) → 𝐶 ≈ 𝐴) |
6 | 3, 5 | sylan 579 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐵) → 𝐶 ≈ 𝐴) |
7 | 2, 6 | impbida 800 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐶 ≈ 𝐴 ↔ 𝐶 ≈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 class class class wbr 5148 ≈ cen 8961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-er 8725 df-en 8965 |
This theorem is referenced by: karden 9919 ennum 9971 pwdjuen 10205 alephexp1 10603 gchdomtri 10653 gch-kn 10701 ctbnfien 42238 |
Copyright terms: Public domain | W3C validator |