![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > enen2 | Structured version Visualization version GIF version |
Description: Equality-like theorem for equinumerosity. (Contributed by NM, 18-Dec-2003.) |
Ref | Expression |
---|---|
enen2 | ⊢ (𝐴 ≈ 𝐵 → (𝐶 ≈ 𝐴 ↔ 𝐶 ≈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | entr 8998 | . . 3 ⊢ ((𝐶 ≈ 𝐴 ∧ 𝐴 ≈ 𝐵) → 𝐶 ≈ 𝐵) | |
2 | 1 | ancoms 458 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐴) → 𝐶 ≈ 𝐵) |
3 | ensym 8995 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
4 | entr 8998 | . . . 4 ⊢ ((𝐶 ≈ 𝐵 ∧ 𝐵 ≈ 𝐴) → 𝐶 ≈ 𝐴) | |
5 | 4 | ancoms 458 | . . 3 ⊢ ((𝐵 ≈ 𝐴 ∧ 𝐶 ≈ 𝐵) → 𝐶 ≈ 𝐴) |
6 | 3, 5 | sylan 579 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐵) → 𝐶 ≈ 𝐴) |
7 | 2, 6 | impbida 798 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐶 ≈ 𝐴 ↔ 𝐶 ≈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 class class class wbr 5138 ≈ cen 8932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-er 8699 df-en 8936 |
This theorem is referenced by: karden 9886 ennum 9938 pwdjuen 10172 alephexp1 10570 gchdomtri 10620 gch-kn 10668 ctbnfien 42045 |
Copyright terms: Public domain | W3C validator |