MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnmblALT Structured version   Visualization version   GIF version

Theorem opnmblALT 25519
Description: All open sets are measurable. This alternative proof of opnmbl 25518 is significantly shorter, at the expense of invoking countable choice ax-cc 10450. (This was also the original proof before the current opnmbl 25518 was discovered.) (Contributed by Mario Carneiro, 17-Jun-2014.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
opnmblALT (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ∈ dom vol)

Proof of Theorem opnmblALT
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qtopbas 24663 . . . 4 ((,) “ (ℚ × ℚ)) ∈ TopBases
2 eltg3 22852 . . . 4 (((,) “ (ℚ × ℚ)) ∈ TopBases → (𝐴 ∈ (topGen‘((,) “ (ℚ × ℚ))) ↔ ∃𝑥(𝑥 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐴 = 𝑥)))
31, 2ax-mp 5 . . 3 (𝐴 ∈ (topGen‘((,) “ (ℚ × ℚ))) ↔ ∃𝑥(𝑥 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐴 = 𝑥))
4 uniiun 5055 . . . . . . 7 𝑥 = 𝑦𝑥 𝑦
5 ssdomg 9012 . . . . . . . . . 10 (((,) “ (ℚ × ℚ)) ∈ TopBases → (𝑥 ⊆ ((,) “ (ℚ × ℚ)) → 𝑥 ≼ ((,) “ (ℚ × ℚ))))
61, 5ax-mp 5 . . . . . . . . 9 (𝑥 ⊆ ((,) “ (ℚ × ℚ)) → 𝑥 ≼ ((,) “ (ℚ × ℚ)))
7 omelon 9661 . . . . . . . . . . . 12 ω ∈ On
8 qnnen 16181 . . . . . . . . . . . . . . 15 ℚ ≈ ℕ
9 xpen 9156 . . . . . . . . . . . . . . 15 ((ℚ ≈ ℕ ∧ ℚ ≈ ℕ) → (ℚ × ℚ) ≈ (ℕ × ℕ))
108, 8, 9mp2an 691 . . . . . . . . . . . . . 14 (ℚ × ℚ) ≈ (ℕ × ℕ)
11 xpnnen 16179 . . . . . . . . . . . . . 14 (ℕ × ℕ) ≈ ℕ
1210, 11entri 9020 . . . . . . . . . . . . 13 (ℚ × ℚ) ≈ ℕ
13 nnenom 13969 . . . . . . . . . . . . 13 ℕ ≈ ω
1412, 13entr2i 9021 . . . . . . . . . . . 12 ω ≈ (ℚ × ℚ)
15 isnumi 9961 . . . . . . . . . . . 12 ((ω ∈ On ∧ ω ≈ (ℚ × ℚ)) → (ℚ × ℚ) ∈ dom card)
167, 14, 15mp2an 691 . . . . . . . . . . 11 (ℚ × ℚ) ∈ dom card
17 ioof 13448 . . . . . . . . . . . . 13 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
18 ffun 6719 . . . . . . . . . . . . 13 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,))
1917, 18ax-mp 5 . . . . . . . . . . . 12 Fun (,)
20 qssre 12965 . . . . . . . . . . . . . . 15 ℚ ⊆ ℝ
21 ressxr 11280 . . . . . . . . . . . . . . 15 ℝ ⊆ ℝ*
2220, 21sstri 3987 . . . . . . . . . . . . . 14 ℚ ⊆ ℝ*
23 xpss12 5687 . . . . . . . . . . . . . 14 ((ℚ ⊆ ℝ* ∧ ℚ ⊆ ℝ*) → (ℚ × ℚ) ⊆ (ℝ* × ℝ*))
2422, 22, 23mp2an 691 . . . . . . . . . . . . 13 (ℚ × ℚ) ⊆ (ℝ* × ℝ*)
2517fdmi 6728 . . . . . . . . . . . . 13 dom (,) = (ℝ* × ℝ*)
2624, 25sseqtrri 4015 . . . . . . . . . . . 12 (ℚ × ℚ) ⊆ dom (,)
27 fores 6815 . . . . . . . . . . . 12 ((Fun (,) ∧ (ℚ × ℚ) ⊆ dom (,)) → ((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ)))
2819, 26, 27mp2an 691 . . . . . . . . . . 11 ((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ))
29 fodomnum 10072 . . . . . . . . . . 11 ((ℚ × ℚ) ∈ dom card → (((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ)) → ((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ)))
3016, 28, 29mp2 9 . . . . . . . . . 10 ((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ)
31 domentr 9025 . . . . . . . . . 10 ((((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ) ∧ (ℚ × ℚ) ≈ ℕ) → ((,) “ (ℚ × ℚ)) ≼ ℕ)
3230, 12, 31mp2an 691 . . . . . . . . 9 ((,) “ (ℚ × ℚ)) ≼ ℕ
33 domtr 9019 . . . . . . . . 9 ((𝑥 ≼ ((,) “ (ℚ × ℚ)) ∧ ((,) “ (ℚ × ℚ)) ≼ ℕ) → 𝑥 ≼ ℕ)
346, 32, 33sylancl 585 . . . . . . . 8 (𝑥 ⊆ ((,) “ (ℚ × ℚ)) → 𝑥 ≼ ℕ)
35 imassrn 6068 . . . . . . . . . . 11 ((,) “ (ℚ × ℚ)) ⊆ ran (,)
36 ffn 6716 . . . . . . . . . . . . . 14 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
3717, 36ax-mp 5 . . . . . . . . . . . . 13 (,) Fn (ℝ* × ℝ*)
38 ioombl 25481 . . . . . . . . . . . . . 14 (𝑥(,)𝑦) ∈ dom vol
3938rgen2w 3061 . . . . . . . . . . . . 13 𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥(,)𝑦) ∈ dom vol
40 ffnov 7541 . . . . . . . . . . . . 13 ((,):(ℝ* × ℝ*)⟶dom vol ↔ ((,) Fn (ℝ* × ℝ*) ∧ ∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥(,)𝑦) ∈ dom vol))
4137, 39, 40mpbir2an 710 . . . . . . . . . . . 12 (,):(ℝ* × ℝ*)⟶dom vol
42 frn 6723 . . . . . . . . . . . 12 ((,):(ℝ* × ℝ*)⟶dom vol → ran (,) ⊆ dom vol)
4341, 42ax-mp 5 . . . . . . . . . . 11 ran (,) ⊆ dom vol
4435, 43sstri 3987 . . . . . . . . . 10 ((,) “ (ℚ × ℚ)) ⊆ dom vol
45 sstr 3986 . . . . . . . . . 10 ((𝑥 ⊆ ((,) “ (ℚ × ℚ)) ∧ ((,) “ (ℚ × ℚ)) ⊆ dom vol) → 𝑥 ⊆ dom vol)
4644, 45mpan2 690 . . . . . . . . 9 (𝑥 ⊆ ((,) “ (ℚ × ℚ)) → 𝑥 ⊆ dom vol)
47 dfss3 3966 . . . . . . . . 9 (𝑥 ⊆ dom vol ↔ ∀𝑦𝑥 𝑦 ∈ dom vol)
4846, 47sylib 217 . . . . . . . 8 (𝑥 ⊆ ((,) “ (ℚ × ℚ)) → ∀𝑦𝑥 𝑦 ∈ dom vol)
49 iunmbl2 25473 . . . . . . . 8 ((𝑥 ≼ ℕ ∧ ∀𝑦𝑥 𝑦 ∈ dom vol) → 𝑦𝑥 𝑦 ∈ dom vol)
5034, 48, 49syl2anc 583 . . . . . . 7 (𝑥 ⊆ ((,) “ (ℚ × ℚ)) → 𝑦𝑥 𝑦 ∈ dom vol)
514, 50eqeltrid 2832 . . . . . 6 (𝑥 ⊆ ((,) “ (ℚ × ℚ)) → 𝑥 ∈ dom vol)
52 eleq1 2816 . . . . . 6 (𝐴 = 𝑥 → (𝐴 ∈ dom vol ↔ 𝑥 ∈ dom vol))
5351, 52syl5ibrcom 246 . . . . 5 (𝑥 ⊆ ((,) “ (ℚ × ℚ)) → (𝐴 = 𝑥𝐴 ∈ dom vol))
5453imp 406 . . . 4 ((𝑥 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐴 = 𝑥) → 𝐴 ∈ dom vol)
5554exlimiv 1926 . . 3 (∃𝑥(𝑥 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐴 = 𝑥) → 𝐴 ∈ dom vol)
563, 55sylbi 216 . 2 (𝐴 ∈ (topGen‘((,) “ (ℚ × ℚ))) → 𝐴 ∈ dom vol)
57 eqid 2727 . . 3 (topGen‘((,) “ (ℚ × ℚ))) = (topGen‘((,) “ (ℚ × ℚ)))
5857tgqioo 24703 . 2 (topGen‘ran (,)) = (topGen‘((,) “ (ℚ × ℚ)))
5956, 58eleq2s 2846 1 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wex 1774  wcel 2099  wral 3056  wss 3944  𝒫 cpw 4598   cuni 4903   ciun 4991   class class class wbr 5142   × cxp 5670  dom cdm 5672  ran crn 5673  cres 5674  cima 5675  Oncon0 6363  Fun wfun 6536   Fn wfn 6537  wf 6538  ontowfo 6540  cfv 6542  (class class class)co 7414  ωcom 7864  cen 8952  cdom 8953  cardccrd 9950  cr 11129  *cxr 11269  cn 12234  cq 12954  (,)cioo 13348  topGenctg 17410  TopBasesctb 22835  volcvol 25379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9656  ax-cc 10450  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-disj 5108  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8718  df-map 8838  df-pm 8839  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-sup 9457  df-inf 9458  df-oi 9525  df-dju 9916  df-card 9954  df-acn 9957  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-3 12298  df-n0 12495  df-z 12581  df-uz 12845  df-q 12955  df-rp 12999  df-xadd 13117  df-ioo 13352  df-ico 13354  df-icc 13355  df-fz 13509  df-fzo 13652  df-fl 13781  df-seq 13991  df-exp 14051  df-hash 14314  df-cj 15070  df-re 15071  df-im 15072  df-sqrt 15206  df-abs 15207  df-clim 15456  df-rlim 15457  df-sum 15657  df-topgen 17416  df-xmet 21259  df-met 21260  df-bases 22836  df-ovol 25380  df-vol 25381
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator