Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnmblALT Structured version   Visualization version   GIF version

Theorem opnmblALT 24138
 Description: All open sets are measurable. This alternative proof of opnmbl 24137 is significantly shorter, at the expense of invoking countable choice ax-cc 9851. (This was also the original proof before the current opnmbl 24137 was discovered.) (Contributed by Mario Carneiro, 17-Jun-2014.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
opnmblALT (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ∈ dom vol)

Proof of Theorem opnmblALT
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qtopbas 23302 . . . 4 ((,) “ (ℚ × ℚ)) ∈ TopBases
2 eltg3 21505 . . . 4 (((,) “ (ℚ × ℚ)) ∈ TopBases → (𝐴 ∈ (topGen‘((,) “ (ℚ × ℚ))) ↔ ∃𝑥(𝑥 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐴 = 𝑥)))
31, 2ax-mp 5 . . 3 (𝐴 ∈ (topGen‘((,) “ (ℚ × ℚ))) ↔ ∃𝑥(𝑥 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐴 = 𝑥))
4 uniiun 4979 . . . . . . 7 𝑥 = 𝑦𝑥 𝑦
5 ssdomg 8549 . . . . . . . . . 10 (((,) “ (ℚ × ℚ)) ∈ TopBases → (𝑥 ⊆ ((,) “ (ℚ × ℚ)) → 𝑥 ≼ ((,) “ (ℚ × ℚ))))
61, 5ax-mp 5 . . . . . . . . 9 (𝑥 ⊆ ((,) “ (ℚ × ℚ)) → 𝑥 ≼ ((,) “ (ℚ × ℚ)))
7 omelon 9103 . . . . . . . . . . . 12 ω ∈ On
8 qnnen 15561 . . . . . . . . . . . . . . 15 ℚ ≈ ℕ
9 xpen 8674 . . . . . . . . . . . . . . 15 ((ℚ ≈ ℕ ∧ ℚ ≈ ℕ) → (ℚ × ℚ) ≈ (ℕ × ℕ))
108, 8, 9mp2an 688 . . . . . . . . . . . . . 14 (ℚ × ℚ) ≈ (ℕ × ℕ)
11 xpnnen 15559 . . . . . . . . . . . . . 14 (ℕ × ℕ) ≈ ℕ
1210, 11entri 8557 . . . . . . . . . . . . 13 (ℚ × ℚ) ≈ ℕ
13 nnenom 13343 . . . . . . . . . . . . 13 ℕ ≈ ω
1412, 13entr2i 8558 . . . . . . . . . . . 12 ω ≈ (ℚ × ℚ)
15 isnumi 9369 . . . . . . . . . . . 12 ((ω ∈ On ∧ ω ≈ (ℚ × ℚ)) → (ℚ × ℚ) ∈ dom card)
167, 14, 15mp2an 688 . . . . . . . . . . 11 (ℚ × ℚ) ∈ dom card
17 ioof 12830 . . . . . . . . . . . . 13 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
18 ffun 6516 . . . . . . . . . . . . 13 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,))
1917, 18ax-mp 5 . . . . . . . . . . . 12 Fun (,)
20 qssre 12353 . . . . . . . . . . . . . . 15 ℚ ⊆ ℝ
21 ressxr 10679 . . . . . . . . . . . . . . 15 ℝ ⊆ ℝ*
2220, 21sstri 3980 . . . . . . . . . . . . . 14 ℚ ⊆ ℝ*
23 xpss12 5569 . . . . . . . . . . . . . 14 ((ℚ ⊆ ℝ* ∧ ℚ ⊆ ℝ*) → (ℚ × ℚ) ⊆ (ℝ* × ℝ*))
2422, 22, 23mp2an 688 . . . . . . . . . . . . 13 (ℚ × ℚ) ⊆ (ℝ* × ℝ*)
2517fdmi 6523 . . . . . . . . . . . . 13 dom (,) = (ℝ* × ℝ*)
2624, 25sseqtrri 4008 . . . . . . . . . . . 12 (ℚ × ℚ) ⊆ dom (,)
27 fores 6599 . . . . . . . . . . . 12 ((Fun (,) ∧ (ℚ × ℚ) ⊆ dom (,)) → ((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ)))
2819, 26, 27mp2an 688 . . . . . . . . . . 11 ((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ))
29 fodomnum 9477 . . . . . . . . . . 11 ((ℚ × ℚ) ∈ dom card → (((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ)) → ((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ)))
3016, 28, 29mp2 9 . . . . . . . . . 10 ((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ)
31 domentr 8562 . . . . . . . . . 10 ((((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ) ∧ (ℚ × ℚ) ≈ ℕ) → ((,) “ (ℚ × ℚ)) ≼ ℕ)
3230, 12, 31mp2an 688 . . . . . . . . 9 ((,) “ (ℚ × ℚ)) ≼ ℕ
33 domtr 8556 . . . . . . . . 9 ((𝑥 ≼ ((,) “ (ℚ × ℚ)) ∧ ((,) “ (ℚ × ℚ)) ≼ ℕ) → 𝑥 ≼ ℕ)
346, 32, 33sylancl 586 . . . . . . . 8 (𝑥 ⊆ ((,) “ (ℚ × ℚ)) → 𝑥 ≼ ℕ)
35 imassrn 5939 . . . . . . . . . . 11 ((,) “ (ℚ × ℚ)) ⊆ ran (,)
36 ffn 6513 . . . . . . . . . . . . . 14 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
3717, 36ax-mp 5 . . . . . . . . . . . . 13 (,) Fn (ℝ* × ℝ*)
38 ioombl 24100 . . . . . . . . . . . . . 14 (𝑥(,)𝑦) ∈ dom vol
3938rgen2w 3156 . . . . . . . . . . . . 13 𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥(,)𝑦) ∈ dom vol
40 ffnov 7272 . . . . . . . . . . . . 13 ((,):(ℝ* × ℝ*)⟶dom vol ↔ ((,) Fn (ℝ* × ℝ*) ∧ ∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥(,)𝑦) ∈ dom vol))
4137, 39, 40mpbir2an 707 . . . . . . . . . . . 12 (,):(ℝ* × ℝ*)⟶dom vol
42 frn 6519 . . . . . . . . . . . 12 ((,):(ℝ* × ℝ*)⟶dom vol → ran (,) ⊆ dom vol)
4341, 42ax-mp 5 . . . . . . . . . . 11 ran (,) ⊆ dom vol
4435, 43sstri 3980 . . . . . . . . . 10 ((,) “ (ℚ × ℚ)) ⊆ dom vol
45 sstr 3979 . . . . . . . . . 10 ((𝑥 ⊆ ((,) “ (ℚ × ℚ)) ∧ ((,) “ (ℚ × ℚ)) ⊆ dom vol) → 𝑥 ⊆ dom vol)
4644, 45mpan2 687 . . . . . . . . 9 (𝑥 ⊆ ((,) “ (ℚ × ℚ)) → 𝑥 ⊆ dom vol)
47 dfss3 3960 . . . . . . . . 9 (𝑥 ⊆ dom vol ↔ ∀𝑦𝑥 𝑦 ∈ dom vol)
4846, 47sylib 219 . . . . . . . 8 (𝑥 ⊆ ((,) “ (ℚ × ℚ)) → ∀𝑦𝑥 𝑦 ∈ dom vol)
49 iunmbl2 24092 . . . . . . . 8 ((𝑥 ≼ ℕ ∧ ∀𝑦𝑥 𝑦 ∈ dom vol) → 𝑦𝑥 𝑦 ∈ dom vol)
5034, 48, 49syl2anc 584 . . . . . . 7 (𝑥 ⊆ ((,) “ (ℚ × ℚ)) → 𝑦𝑥 𝑦 ∈ dom vol)
514, 50eqeltrid 2922 . . . . . 6 (𝑥 ⊆ ((,) “ (ℚ × ℚ)) → 𝑥 ∈ dom vol)
52 eleq1 2905 . . . . . 6 (𝐴 = 𝑥 → (𝐴 ∈ dom vol ↔ 𝑥 ∈ dom vol))
5351, 52syl5ibrcom 248 . . . . 5 (𝑥 ⊆ ((,) “ (ℚ × ℚ)) → (𝐴 = 𝑥𝐴 ∈ dom vol))
5453imp 407 . . . 4 ((𝑥 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐴 = 𝑥) → 𝐴 ∈ dom vol)
5554exlimiv 1924 . . 3 (∃𝑥(𝑥 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐴 = 𝑥) → 𝐴 ∈ dom vol)
563, 55sylbi 218 . 2 (𝐴 ∈ (topGen‘((,) “ (ℚ × ℚ))) → 𝐴 ∈ dom vol)
57 eqid 2826 . . 3 (topGen‘((,) “ (ℚ × ℚ))) = (topGen‘((,) “ (ℚ × ℚ)))
5857tgqioo 23342 . 2 (topGen‘ran (,)) = (topGen‘((,) “ (ℚ × ℚ)))
5956, 58eleq2s 2936 1 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ∈ dom vol)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207   ∧ wa 396   = wceq 1530  ∃wex 1773   ∈ wcel 2107  ∀wral 3143   ⊆ wss 3940  𝒫 cpw 4542  ∪ cuni 4837  ∪ ciun 4917   class class class wbr 5063   × cxp 5552  dom cdm 5554  ran crn 5555   ↾ cres 5556   “ cima 5557  Oncon0 6190  Fun wfun 6348   Fn wfn 6349  ⟶wf 6350  –onto→wfo 6352  ‘cfv 6354  (class class class)co 7150  ωcom 7573   ≈ cen 8500   ≼ cdom 8501  cardccrd 9358  ℝcr 10530  ℝ*cxr 10668  ℕcn 11632  ℚcq 12342  (,)cioo 12733  topGenctg 16706  TopBasesctb 21488  volcvol 23998 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-inf2 9098  ax-cc 9851  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-disj 5029  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7574  df-1st 7685  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-omul 8103  df-er 8284  df-map 8403  df-pm 8404  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-acn 9365  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12385  df-xadd 12503  df-ioo 12737  df-ico 12739  df-icc 12740  df-fz 12888  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13425  df-hash 13686  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-rlim 14841  df-sum 15038  df-topgen 16712  df-xmet 20473  df-met 20474  df-bases 21489  df-ovol 23999  df-vol 24000 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator