| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnenom | Structured version Visualization version GIF version | ||
| Description: The set of positive integers (as a subset of complex numbers) is equinumerous to omega (the set of finite ordinal numbers). (Contributed by NM, 31-Jul-2004.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| nnenom | ⊢ ℕ ≈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 9572 | . . 3 ⊢ ω ∈ V | |
| 2 | nn0ex 12424 | . . 3 ⊢ ℕ0 ∈ V | |
| 3 | eqid 2729 | . . . 4 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) | |
| 4 | 3 | hashgf1o 13912 | . . 3 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0 |
| 5 | f1oen2g 8917 | . . 3 ⊢ ((ω ∈ V ∧ ℕ0 ∈ V ∧ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0) → ω ≈ ℕ0) | |
| 6 | 1, 2, 4, 5 | mp3an 1463 | . 2 ⊢ ω ≈ ℕ0 |
| 7 | nn0ennn 13920 | . 2 ⊢ ℕ0 ≈ ℕ | |
| 8 | 6, 7 | entr2i 8957 | 1 ⊢ ℕ ≈ ω |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3444 class class class wbr 5102 ↦ cmpt 5183 ↾ cres 5633 –1-1-onto→wf1o 6498 (class class class)co 7369 ωcom 7822 reccrdg 8354 ≈ cen 8892 0cc0 11044 1c1 11045 + caddc 11047 ℕcn 12162 ℕ0cn0 12418 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 |
| This theorem is referenced by: nnct 13922 supcvg 15798 xpnnen 16155 znnen 16156 qnnen 16157 rexpen 16172 aleph1re 16189 aleph1irr 16190 bitsf1 16392 unben 16856 odinf 19477 odhash 19488 cygctb 19806 1stcfb 23365 2ndcredom 23370 1stcelcls 23381 hauspwdom 23421 met1stc 24442 met2ndci 24443 re2ndc 24722 iscmet3 25226 ovolctb2 25426 ovolfi 25428 ovoliunlem3 25438 iunmbl2 25491 uniiccdif 25512 dyadmbl 25534 opnmblALT 25537 mbfimaopnlem 25589 itg2seq 25676 aannenlem3 26271 dirith2 27472 nmounbseqi 30756 nmobndseqi 30758 minvecolem5 30860 padct 32693 f1ocnt 32775 dmvlsiga 34112 sigapildsys 34145 volmeas 34214 omssubadd 34284 carsgclctunlem3 34304 poimirlem30 37637 poimirlem32 37639 mblfinlem1 37644 ovoliunnfl 37649 heiborlem3 37800 heibor 37808 lzenom 42751 fiphp3d 42800 irrapx1 42809 pellex 42816 nnfoctb 45035 zenom 45039 qenom 45350 ioonct 45528 subsaliuncl 46349 caragenunicl 46515 caratheodory 46519 ovnsubaddlem2 46562 |
| Copyright terms: Public domain | W3C validator |