| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnenom | Structured version Visualization version GIF version | ||
| Description: The set of positive integers (as a subset of complex numbers) is equinumerous to omega (the set of finite ordinal numbers). (Contributed by NM, 31-Jul-2004.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| nnenom | ⊢ ℕ ≈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 9603 | . . 3 ⊢ ω ∈ V | |
| 2 | nn0ex 12455 | . . 3 ⊢ ℕ0 ∈ V | |
| 3 | eqid 2730 | . . . 4 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) | |
| 4 | 3 | hashgf1o 13943 | . . 3 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0 |
| 5 | f1oen2g 8943 | . . 3 ⊢ ((ω ∈ V ∧ ℕ0 ∈ V ∧ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0) → ω ≈ ℕ0) | |
| 6 | 1, 2, 4, 5 | mp3an 1463 | . 2 ⊢ ω ≈ ℕ0 |
| 7 | nn0ennn 13951 | . 2 ⊢ ℕ0 ≈ ℕ | |
| 8 | 6, 7 | entr2i 8983 | 1 ⊢ ℕ ≈ ω |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 class class class wbr 5110 ↦ cmpt 5191 ↾ cres 5643 –1-1-onto→wf1o 6513 (class class class)co 7390 ωcom 7845 reccrdg 8380 ≈ cen 8918 0cc0 11075 1c1 11076 + caddc 11078 ℕcn 12193 ℕ0cn0 12449 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 |
| This theorem is referenced by: nnct 13953 supcvg 15829 xpnnen 16186 znnen 16187 qnnen 16188 rexpen 16203 aleph1re 16220 aleph1irr 16221 bitsf1 16423 unben 16887 odinf 19500 odhash 19511 cygctb 19829 1stcfb 23339 2ndcredom 23344 1stcelcls 23355 hauspwdom 23395 met1stc 24416 met2ndci 24417 re2ndc 24696 iscmet3 25200 ovolctb2 25400 ovolfi 25402 ovoliunlem3 25412 iunmbl2 25465 uniiccdif 25486 dyadmbl 25508 opnmblALT 25511 mbfimaopnlem 25563 itg2seq 25650 aannenlem3 26245 dirith2 27446 nmounbseqi 30713 nmobndseqi 30715 minvecolem5 30817 padct 32650 f1ocnt 32732 dmvlsiga 34126 sigapildsys 34159 volmeas 34228 omssubadd 34298 carsgclctunlem3 34318 poimirlem30 37651 poimirlem32 37653 mblfinlem1 37658 ovoliunnfl 37663 heiborlem3 37814 heibor 37822 lzenom 42765 fiphp3d 42814 irrapx1 42823 pellex 42830 nnfoctb 45049 zenom 45053 qenom 45364 ioonct 45542 subsaliuncl 46363 caragenunicl 46529 caratheodory 46533 ovnsubaddlem2 46576 |
| Copyright terms: Public domain | W3C validator |