Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnenom | Structured version Visualization version GIF version |
Description: The set of positive integers (as a subset of complex numbers) is equinumerous to omega (the set of finite ordinal numbers). (Contributed by NM, 31-Jul-2004.) (Revised by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
nnenom | ⊢ ℕ ≈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 9362 | . . 3 ⊢ ω ∈ V | |
2 | nn0ex 12222 | . . 3 ⊢ ℕ0 ∈ V | |
3 | eqid 2739 | . . . 4 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) | |
4 | 3 | hashgf1o 13672 | . . 3 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0 |
5 | f1oen2g 8727 | . . 3 ⊢ ((ω ∈ V ∧ ℕ0 ∈ V ∧ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0) → ω ≈ ℕ0) | |
6 | 1, 2, 4, 5 | mp3an 1459 | . 2 ⊢ ω ≈ ℕ0 |
7 | nn0ennn 13680 | . 2 ⊢ ℕ0 ≈ ℕ | |
8 | 6, 7 | entr2i 8766 | 1 ⊢ ℕ ≈ ω |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2109 Vcvv 3430 class class class wbr 5078 ↦ cmpt 5161 ↾ cres 5590 –1-1-onto→wf1o 6429 (class class class)co 7268 ωcom 7700 reccrdg 8224 ≈ cen 8704 0cc0 10855 1c1 10856 + caddc 10858 ℕcn 11956 ℕ0cn0 12216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-inf2 9360 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-n0 12217 df-z 12303 df-uz 12565 |
This theorem is referenced by: nnct 13682 supcvg 15549 xpnnen 15901 znnen 15902 qnnen 15903 rexpen 15918 aleph1re 15935 aleph1irr 15936 bitsf1 16134 unben 16591 odinf 19151 odhash 19160 cygctb 19474 1stcfb 22577 2ndcredom 22582 1stcelcls 22593 hauspwdom 22633 met1stc 23658 met2ndci 23659 re2ndc 23945 iscmet3 24438 ovolctb2 24637 ovolfi 24639 ovoliunlem3 24649 iunmbl2 24702 uniiccdif 24723 dyadmbl 24745 opnmblALT 24748 mbfimaopnlem 24800 itg2seq 24888 aannenlem3 25471 dirith2 26657 nmounbseqi 29118 nmobndseqi 29120 minvecolem5 29222 padct 31033 f1ocnt 31102 dmvlsiga 32076 sigapildsys 32109 volmeas 32178 omssubadd 32246 carsgclctunlem3 32266 poimirlem30 35786 poimirlem32 35788 mblfinlem1 35793 ovoliunnfl 35798 heiborlem3 35950 heibor 35958 lzenom 40572 fiphp3d 40621 irrapx1 40630 pellex 40637 nnfoctb 42548 zenom 42553 qenom 42854 ioonct 43029 subsaliuncl 43851 caragenunicl 44016 caratheodory 44020 ovnsubaddlem2 44063 |
Copyright terms: Public domain | W3C validator |