![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnenom | Structured version Visualization version GIF version |
Description: The set of positive integers (as a subset of complex numbers) is equinumerous to omega (the set of finite ordinal numbers). (Contributed by NM, 31-Jul-2004.) (Revised by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
nnenom | ⊢ ℕ ≈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 9638 | . . 3 ⊢ ω ∈ V | |
2 | nn0ex 12478 | . . 3 ⊢ ℕ0 ∈ V | |
3 | eqid 2733 | . . . 4 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) | |
4 | 3 | hashgf1o 13936 | . . 3 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0 |
5 | f1oen2g 8964 | . . 3 ⊢ ((ω ∈ V ∧ ℕ0 ∈ V ∧ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0) → ω ≈ ℕ0) | |
6 | 1, 2, 4, 5 | mp3an 1462 | . 2 ⊢ ω ≈ ℕ0 |
7 | nn0ennn 13944 | . 2 ⊢ ℕ0 ≈ ℕ | |
8 | 6, 7 | entr2i 9005 | 1 ⊢ ℕ ≈ ω |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 Vcvv 3475 class class class wbr 5149 ↦ cmpt 5232 ↾ cres 5679 –1-1-onto→wf1o 6543 (class class class)co 7409 ωcom 7855 reccrdg 8409 ≈ cen 8936 0cc0 11110 1c1 11111 + caddc 11113 ℕcn 12212 ℕ0cn0 12472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-inf2 9636 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-n0 12473 df-z 12559 df-uz 12823 |
This theorem is referenced by: nnct 13946 supcvg 15802 xpnnen 16154 znnen 16155 qnnen 16156 rexpen 16171 aleph1re 16188 aleph1irr 16189 bitsf1 16387 unben 16842 odinf 19431 odhash 19442 cygctb 19760 1stcfb 22949 2ndcredom 22954 1stcelcls 22965 hauspwdom 23005 met1stc 24030 met2ndci 24031 re2ndc 24317 iscmet3 24810 ovolctb2 25009 ovolfi 25011 ovoliunlem3 25021 iunmbl2 25074 uniiccdif 25095 dyadmbl 25117 opnmblALT 25120 mbfimaopnlem 25172 itg2seq 25260 aannenlem3 25843 dirith2 27031 nmounbseqi 30030 nmobndseqi 30032 minvecolem5 30134 padct 31944 f1ocnt 32013 dmvlsiga 33127 sigapildsys 33160 volmeas 33229 omssubadd 33299 carsgclctunlem3 33319 poimirlem30 36518 poimirlem32 36520 mblfinlem1 36525 ovoliunnfl 36530 heiborlem3 36681 heibor 36689 lzenom 41508 fiphp3d 41557 irrapx1 41566 pellex 41573 nnfoctb 43734 zenom 43739 qenom 44071 ioonct 44250 subsaliuncl 45074 caragenunicl 45240 caratheodory 45244 ovnsubaddlem2 45287 |
Copyright terms: Public domain | W3C validator |