| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnenom | Structured version Visualization version GIF version | ||
| Description: The set of positive integers (as a subset of complex numbers) is equinumerous to omega (the set of finite ordinal numbers). (Contributed by NM, 31-Jul-2004.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| nnenom | ⊢ ℕ ≈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 9533 | . . 3 ⊢ ω ∈ V | |
| 2 | nn0ex 12387 | . . 3 ⊢ ℕ0 ∈ V | |
| 3 | eqid 2731 | . . . 4 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) | |
| 4 | 3 | hashgf1o 13878 | . . 3 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0 |
| 5 | f1oen2g 8891 | . . 3 ⊢ ((ω ∈ V ∧ ℕ0 ∈ V ∧ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0) → ω ≈ ℕ0) | |
| 6 | 1, 2, 4, 5 | mp3an 1463 | . 2 ⊢ ω ≈ ℕ0 |
| 7 | nn0ennn 13886 | . 2 ⊢ ℕ0 ≈ ℕ | |
| 8 | 6, 7 | entr2i 8931 | 1 ⊢ ℕ ≈ ω |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 class class class wbr 5089 ↦ cmpt 5170 ↾ cres 5616 –1-1-onto→wf1o 6480 (class class class)co 7346 ωcom 7796 reccrdg 8328 ≈ cen 8866 0cc0 11006 1c1 11007 + caddc 11009 ℕcn 12125 ℕ0cn0 12381 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 |
| This theorem is referenced by: nnct 13888 supcvg 15763 xpnnen 16120 znnen 16121 qnnen 16122 rexpen 16137 aleph1re 16154 aleph1irr 16155 bitsf1 16357 unben 16821 odinf 19475 odhash 19486 cygctb 19804 1stcfb 23360 2ndcredom 23365 1stcelcls 23376 hauspwdom 23416 met1stc 24436 met2ndci 24437 re2ndc 24716 iscmet3 25220 ovolctb2 25420 ovolfi 25422 ovoliunlem3 25432 iunmbl2 25485 uniiccdif 25506 dyadmbl 25528 opnmblALT 25531 mbfimaopnlem 25583 itg2seq 25670 aannenlem3 26265 dirith2 27466 nmounbseqi 30757 nmobndseqi 30759 minvecolem5 30861 padct 32701 f1ocnt 32782 dmvlsiga 34142 sigapildsys 34175 volmeas 34244 omssubadd 34313 carsgclctunlem3 34333 poimirlem30 37700 poimirlem32 37702 mblfinlem1 37707 ovoliunnfl 37712 heiborlem3 37863 heibor 37871 lzenom 42873 fiphp3d 42922 irrapx1 42931 pellex 42938 nnfoctb 45155 zenom 45159 qenom 45470 ioonct 45647 subsaliuncl 46466 caragenunicl 46632 caratheodory 46636 ovnsubaddlem2 46679 |
| Copyright terms: Public domain | W3C validator |