| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > odinf | Structured version Visualization version GIF version | ||
| Description: The multiples of an element with infinite order form an infinite cyclic subgroup of 𝐺. (Contributed by Mario Carneiro, 14-Jan-2015.) |
| Ref | Expression |
|---|---|
| odf1.1 | ⊢ 𝑋 = (Base‘𝐺) |
| odf1.2 | ⊢ 𝑂 = (od‘𝐺) |
| odf1.3 | ⊢ · = (.g‘𝐺) |
| odf1.4 | ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) |
| Ref | Expression |
|---|---|
| odinf | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ¬ ran 𝐹 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znnen 16123 | . . . . 5 ⊢ ℤ ≈ ℕ | |
| 2 | nnenom 13889 | . . . . 5 ⊢ ℕ ≈ ω | |
| 3 | 1, 2 | entr2i 8938 | . . . 4 ⊢ ω ≈ ℤ |
| 4 | odf1.1 | . . . . . . . 8 ⊢ 𝑋 = (Base‘𝐺) | |
| 5 | odf1.2 | . . . . . . . 8 ⊢ 𝑂 = (od‘𝐺) | |
| 6 | odf1.3 | . . . . . . . 8 ⊢ · = (.g‘𝐺) | |
| 7 | odf1.4 | . . . . . . . 8 ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) | |
| 8 | 4, 5, 6, 7 | odf1 19476 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) = 0 ↔ 𝐹:ℤ–1-1→𝑋)) |
| 9 | 8 | biimp3a 1471 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → 𝐹:ℤ–1-1→𝑋) |
| 10 | f1f 6724 | . . . . . 6 ⊢ (𝐹:ℤ–1-1→𝑋 → 𝐹:ℤ⟶𝑋) | |
| 11 | zex 12484 | . . . . . . 7 ⊢ ℤ ∈ V | |
| 12 | 4 | fvexi 6842 | . . . . . . 7 ⊢ 𝑋 ∈ V |
| 13 | fex2 7872 | . . . . . . 7 ⊢ ((𝐹:ℤ⟶𝑋 ∧ ℤ ∈ V ∧ 𝑋 ∈ V) → 𝐹 ∈ V) | |
| 14 | 11, 12, 13 | mp3an23 1455 | . . . . . 6 ⊢ (𝐹:ℤ⟶𝑋 → 𝐹 ∈ V) |
| 15 | 9, 10, 14 | 3syl 18 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → 𝐹 ∈ V) |
| 16 | f1f1orn 6779 | . . . . . 6 ⊢ (𝐹:ℤ–1-1→𝑋 → 𝐹:ℤ–1-1-onto→ran 𝐹) | |
| 17 | 9, 16 | syl 17 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → 𝐹:ℤ–1-1-onto→ran 𝐹) |
| 18 | f1oen3g 8895 | . . . . 5 ⊢ ((𝐹 ∈ V ∧ 𝐹:ℤ–1-1-onto→ran 𝐹) → ℤ ≈ ran 𝐹) | |
| 19 | 15, 17, 18 | syl2anc 584 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ℤ ≈ ran 𝐹) |
| 20 | entr 8935 | . . . 4 ⊢ ((ω ≈ ℤ ∧ ℤ ≈ ran 𝐹) → ω ≈ ran 𝐹) | |
| 21 | 3, 19, 20 | sylancr 587 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ω ≈ ran 𝐹) |
| 22 | endom 8908 | . . 3 ⊢ (ω ≈ ran 𝐹 → ω ≼ ran 𝐹) | |
| 23 | domnsym 9023 | . . 3 ⊢ (ω ≼ ran 𝐹 → ¬ ran 𝐹 ≺ ω) | |
| 24 | 21, 22, 23 | 3syl 18 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ¬ ran 𝐹 ≺ ω) |
| 25 | isfinite 9549 | . 2 ⊢ (ran 𝐹 ∈ Fin ↔ ran 𝐹 ≺ ω) | |
| 26 | 24, 25 | sylnibr 329 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ¬ ran 𝐹 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 Vcvv 3437 class class class wbr 5093 ↦ cmpt 5174 ran crn 5620 ⟶wf 6482 –1-1→wf1 6483 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7352 ωcom 7802 ≈ cen 8872 ≼ cdom 8873 ≺ csdm 8874 Fincfn 8875 0cc0 11013 ℕcn 12132 ℤcz 12475 Basecbs 17122 Grpcgrp 18848 .gcmg 18982 odcod 19438 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-oadd 8395 df-omul 8396 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-inf 9334 df-oi 9403 df-card 9839 df-acn 9842 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-fz 13410 df-fl 13698 df-mod 13776 df-seq 13911 df-exp 13971 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-dvds 16166 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-minusg 18852 df-sbg 18853 df-mulg 18983 df-od 19442 |
| This theorem is referenced by: dfod2 19478 odcl2 19479 |
| Copyright terms: Public domain | W3C validator |