|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > odinf | Structured version Visualization version GIF version | ||
| Description: The multiples of an element with infinite order form an infinite cyclic subgroup of 𝐺. (Contributed by Mario Carneiro, 14-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| odf1.1 | ⊢ 𝑋 = (Base‘𝐺) | 
| odf1.2 | ⊢ 𝑂 = (od‘𝐺) | 
| odf1.3 | ⊢ · = (.g‘𝐺) | 
| odf1.4 | ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) | 
| Ref | Expression | 
|---|---|
| odinf | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ¬ ran 𝐹 ∈ Fin) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | znnen 16249 | . . . . 5 ⊢ ℤ ≈ ℕ | |
| 2 | nnenom 14022 | . . . . 5 ⊢ ℕ ≈ ω | |
| 3 | 1, 2 | entr2i 9050 | . . . 4 ⊢ ω ≈ ℤ | 
| 4 | odf1.1 | . . . . . . . 8 ⊢ 𝑋 = (Base‘𝐺) | |
| 5 | odf1.2 | . . . . . . . 8 ⊢ 𝑂 = (od‘𝐺) | |
| 6 | odf1.3 | . . . . . . . 8 ⊢ · = (.g‘𝐺) | |
| 7 | odf1.4 | . . . . . . . 8 ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) | |
| 8 | 4, 5, 6, 7 | odf1 19581 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) = 0 ↔ 𝐹:ℤ–1-1→𝑋)) | 
| 9 | 8 | biimp3a 1470 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → 𝐹:ℤ–1-1→𝑋) | 
| 10 | f1f 6803 | . . . . . 6 ⊢ (𝐹:ℤ–1-1→𝑋 → 𝐹:ℤ⟶𝑋) | |
| 11 | zex 12624 | . . . . . . 7 ⊢ ℤ ∈ V | |
| 12 | 4 | fvexi 6919 | . . . . . . 7 ⊢ 𝑋 ∈ V | 
| 13 | fex2 7959 | . . . . . . 7 ⊢ ((𝐹:ℤ⟶𝑋 ∧ ℤ ∈ V ∧ 𝑋 ∈ V) → 𝐹 ∈ V) | |
| 14 | 11, 12, 13 | mp3an23 1454 | . . . . . 6 ⊢ (𝐹:ℤ⟶𝑋 → 𝐹 ∈ V) | 
| 15 | 9, 10, 14 | 3syl 18 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → 𝐹 ∈ V) | 
| 16 | f1f1orn 6858 | . . . . . 6 ⊢ (𝐹:ℤ–1-1→𝑋 → 𝐹:ℤ–1-1-onto→ran 𝐹) | |
| 17 | 9, 16 | syl 17 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → 𝐹:ℤ–1-1-onto→ran 𝐹) | 
| 18 | f1oen3g 9008 | . . . . 5 ⊢ ((𝐹 ∈ V ∧ 𝐹:ℤ–1-1-onto→ran 𝐹) → ℤ ≈ ran 𝐹) | |
| 19 | 15, 17, 18 | syl2anc 584 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ℤ ≈ ran 𝐹) | 
| 20 | entr 9047 | . . . 4 ⊢ ((ω ≈ ℤ ∧ ℤ ≈ ran 𝐹) → ω ≈ ran 𝐹) | |
| 21 | 3, 19, 20 | sylancr 587 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ω ≈ ran 𝐹) | 
| 22 | endom 9020 | . . 3 ⊢ (ω ≈ ran 𝐹 → ω ≼ ran 𝐹) | |
| 23 | domnsym 9140 | . . 3 ⊢ (ω ≼ ran 𝐹 → ¬ ran 𝐹 ≺ ω) | |
| 24 | 21, 22, 23 | 3syl 18 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ¬ ran 𝐹 ≺ ω) | 
| 25 | isfinite 9693 | . 2 ⊢ (ran 𝐹 ∈ Fin ↔ ran 𝐹 ≺ ω) | |
| 26 | 24, 25 | sylnibr 329 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ¬ ran 𝐹 ∈ Fin) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 Vcvv 3479 class class class wbr 5142 ↦ cmpt 5224 ran crn 5685 ⟶wf 6556 –1-1→wf1 6557 –1-1-onto→wf1o 6559 ‘cfv 6560 (class class class)co 7432 ωcom 7888 ≈ cen 8983 ≼ cdom 8984 ≺ csdm 8985 Fincfn 8986 0cc0 11156 ℕcn 12267 ℤcz 12615 Basecbs 17248 Grpcgrp 18952 .gcmg 19086 odcod 19543 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-inf2 9682 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-oadd 8511 df-omul 8512 df-er 8746 df-map 8869 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-sup 9483 df-inf 9484 df-oi 9551 df-card 9980 df-acn 9983 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-n0 12529 df-z 12616 df-uz 12880 df-rp 13036 df-fz 13549 df-fl 13833 df-mod 13911 df-seq 14044 df-exp 14104 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-dvds 16292 df-0g 17487 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-grp 18955 df-minusg 18956 df-sbg 18957 df-mulg 19087 df-od 19547 | 
| This theorem is referenced by: dfod2 19583 odcl2 19584 | 
| Copyright terms: Public domain | W3C validator |