| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > odinf | Structured version Visualization version GIF version | ||
| Description: The multiples of an element with infinite order form an infinite cyclic subgroup of 𝐺. (Contributed by Mario Carneiro, 14-Jan-2015.) |
| Ref | Expression |
|---|---|
| odf1.1 | ⊢ 𝑋 = (Base‘𝐺) |
| odf1.2 | ⊢ 𝑂 = (od‘𝐺) |
| odf1.3 | ⊢ · = (.g‘𝐺) |
| odf1.4 | ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) |
| Ref | Expression |
|---|---|
| odinf | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ¬ ran 𝐹 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znnen 16180 | . . . . 5 ⊢ ℤ ≈ ℕ | |
| 2 | nnenom 13945 | . . . . 5 ⊢ ℕ ≈ ω | |
| 3 | 1, 2 | entr2i 8980 | . . . 4 ⊢ ω ≈ ℤ |
| 4 | odf1.1 | . . . . . . . 8 ⊢ 𝑋 = (Base‘𝐺) | |
| 5 | odf1.2 | . . . . . . . 8 ⊢ 𝑂 = (od‘𝐺) | |
| 6 | odf1.3 | . . . . . . . 8 ⊢ · = (.g‘𝐺) | |
| 7 | odf1.4 | . . . . . . . 8 ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) | |
| 8 | 4, 5, 6, 7 | odf1 19492 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) = 0 ↔ 𝐹:ℤ–1-1→𝑋)) |
| 9 | 8 | biimp3a 1471 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → 𝐹:ℤ–1-1→𝑋) |
| 10 | f1f 6756 | . . . . . 6 ⊢ (𝐹:ℤ–1-1→𝑋 → 𝐹:ℤ⟶𝑋) | |
| 11 | zex 12538 | . . . . . . 7 ⊢ ℤ ∈ V | |
| 12 | 4 | fvexi 6872 | . . . . . . 7 ⊢ 𝑋 ∈ V |
| 13 | fex2 7912 | . . . . . . 7 ⊢ ((𝐹:ℤ⟶𝑋 ∧ ℤ ∈ V ∧ 𝑋 ∈ V) → 𝐹 ∈ V) | |
| 14 | 11, 12, 13 | mp3an23 1455 | . . . . . 6 ⊢ (𝐹:ℤ⟶𝑋 → 𝐹 ∈ V) |
| 15 | 9, 10, 14 | 3syl 18 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → 𝐹 ∈ V) |
| 16 | f1f1orn 6811 | . . . . . 6 ⊢ (𝐹:ℤ–1-1→𝑋 → 𝐹:ℤ–1-1-onto→ran 𝐹) | |
| 17 | 9, 16 | syl 17 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → 𝐹:ℤ–1-1-onto→ran 𝐹) |
| 18 | f1oen3g 8938 | . . . . 5 ⊢ ((𝐹 ∈ V ∧ 𝐹:ℤ–1-1-onto→ran 𝐹) → ℤ ≈ ran 𝐹) | |
| 19 | 15, 17, 18 | syl2anc 584 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ℤ ≈ ran 𝐹) |
| 20 | entr 8977 | . . . 4 ⊢ ((ω ≈ ℤ ∧ ℤ ≈ ran 𝐹) → ω ≈ ran 𝐹) | |
| 21 | 3, 19, 20 | sylancr 587 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ω ≈ ran 𝐹) |
| 22 | endom 8950 | . . 3 ⊢ (ω ≈ ran 𝐹 → ω ≼ ran 𝐹) | |
| 23 | domnsym 9067 | . . 3 ⊢ (ω ≼ ran 𝐹 → ¬ ran 𝐹 ≺ ω) | |
| 24 | 21, 22, 23 | 3syl 18 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ¬ ran 𝐹 ≺ ω) |
| 25 | isfinite 9605 | . 2 ⊢ (ran 𝐹 ∈ Fin ↔ ran 𝐹 ≺ ω) | |
| 26 | 24, 25 | sylnibr 329 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ¬ ran 𝐹 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3447 class class class wbr 5107 ↦ cmpt 5188 ran crn 5639 ⟶wf 6507 –1-1→wf1 6508 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 ωcom 7842 ≈ cen 8915 ≼ cdom 8916 ≺ csdm 8917 Fincfn 8918 0cc0 11068 ℕcn 12186 ℤcz 12529 Basecbs 17179 Grpcgrp 18865 .gcmg 18999 odcod 19454 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-omul 8439 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-acn 9895 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-dvds 16223 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-od 19458 |
| This theorem is referenced by: dfod2 19494 odcl2 19495 |
| Copyright terms: Public domain | W3C validator |