| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > odinf | Structured version Visualization version GIF version | ||
| Description: The multiples of an element with infinite order form an infinite cyclic subgroup of 𝐺. (Contributed by Mario Carneiro, 14-Jan-2015.) |
| Ref | Expression |
|---|---|
| odf1.1 | ⊢ 𝑋 = (Base‘𝐺) |
| odf1.2 | ⊢ 𝑂 = (od‘𝐺) |
| odf1.3 | ⊢ · = (.g‘𝐺) |
| odf1.4 | ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) |
| Ref | Expression |
|---|---|
| odinf | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ¬ ran 𝐹 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znnen 16139 | . . . . 5 ⊢ ℤ ≈ ℕ | |
| 2 | nnenom 13905 | . . . . 5 ⊢ ℕ ≈ ω | |
| 3 | 1, 2 | entr2i 8941 | . . . 4 ⊢ ω ≈ ℤ |
| 4 | odf1.1 | . . . . . . . 8 ⊢ 𝑋 = (Base‘𝐺) | |
| 5 | odf1.2 | . . . . . . . 8 ⊢ 𝑂 = (od‘𝐺) | |
| 6 | odf1.3 | . . . . . . . 8 ⊢ · = (.g‘𝐺) | |
| 7 | odf1.4 | . . . . . . . 8 ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) | |
| 8 | 4, 5, 6, 7 | odf1 19459 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) = 0 ↔ 𝐹:ℤ–1-1→𝑋)) |
| 9 | 8 | biimp3a 1471 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → 𝐹:ℤ–1-1→𝑋) |
| 10 | f1f 6724 | . . . . . 6 ⊢ (𝐹:ℤ–1-1→𝑋 → 𝐹:ℤ⟶𝑋) | |
| 11 | zex 12498 | . . . . . . 7 ⊢ ℤ ∈ V | |
| 12 | 4 | fvexi 6840 | . . . . . . 7 ⊢ 𝑋 ∈ V |
| 13 | fex2 7876 | . . . . . . 7 ⊢ ((𝐹:ℤ⟶𝑋 ∧ ℤ ∈ V ∧ 𝑋 ∈ V) → 𝐹 ∈ V) | |
| 14 | 11, 12, 13 | mp3an23 1455 | . . . . . 6 ⊢ (𝐹:ℤ⟶𝑋 → 𝐹 ∈ V) |
| 15 | 9, 10, 14 | 3syl 18 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → 𝐹 ∈ V) |
| 16 | f1f1orn 6779 | . . . . . 6 ⊢ (𝐹:ℤ–1-1→𝑋 → 𝐹:ℤ–1-1-onto→ran 𝐹) | |
| 17 | 9, 16 | syl 17 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → 𝐹:ℤ–1-1-onto→ran 𝐹) |
| 18 | f1oen3g 8899 | . . . . 5 ⊢ ((𝐹 ∈ V ∧ 𝐹:ℤ–1-1-onto→ran 𝐹) → ℤ ≈ ran 𝐹) | |
| 19 | 15, 17, 18 | syl2anc 584 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ℤ ≈ ran 𝐹) |
| 20 | entr 8938 | . . . 4 ⊢ ((ω ≈ ℤ ∧ ℤ ≈ ran 𝐹) → ω ≈ ran 𝐹) | |
| 21 | 3, 19, 20 | sylancr 587 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ω ≈ ran 𝐹) |
| 22 | endom 8911 | . . 3 ⊢ (ω ≈ ran 𝐹 → ω ≼ ran 𝐹) | |
| 23 | domnsym 9027 | . . 3 ⊢ (ω ≼ ran 𝐹 → ¬ ran 𝐹 ≺ ω) | |
| 24 | 21, 22, 23 | 3syl 18 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ¬ ran 𝐹 ≺ ω) |
| 25 | isfinite 9567 | . 2 ⊢ (ran 𝐹 ∈ Fin ↔ ran 𝐹 ≺ ω) | |
| 26 | 24, 25 | sylnibr 329 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ¬ ran 𝐹 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3438 class class class wbr 5095 ↦ cmpt 5176 ran crn 5624 ⟶wf 6482 –1-1→wf1 6483 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7353 ωcom 7806 ≈ cen 8876 ≼ cdom 8877 ≺ csdm 8878 Fincfn 8879 0cc0 11028 ℕcn 12146 ℤcz 12489 Basecbs 17138 Grpcgrp 18830 .gcmg 18964 odcod 19421 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-oadd 8399 df-omul 8400 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-acn 9857 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-fz 13429 df-fl 13714 df-mod 13792 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-dvds 16182 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-sbg 18835 df-mulg 18965 df-od 19425 |
| This theorem is referenced by: dfod2 19461 odcl2 19462 |
| Copyright terms: Public domain | W3C validator |