| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > odinf | Structured version Visualization version GIF version | ||
| Description: The multiples of an element with infinite order form an infinite cyclic subgroup of 𝐺. (Contributed by Mario Carneiro, 14-Jan-2015.) |
| Ref | Expression |
|---|---|
| odf1.1 | ⊢ 𝑋 = (Base‘𝐺) |
| odf1.2 | ⊢ 𝑂 = (od‘𝐺) |
| odf1.3 | ⊢ · = (.g‘𝐺) |
| odf1.4 | ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) |
| Ref | Expression |
|---|---|
| odinf | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ¬ ran 𝐹 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znnen 16121 | . . . . 5 ⊢ ℤ ≈ ℕ | |
| 2 | nnenom 13887 | . . . . 5 ⊢ ℕ ≈ ω | |
| 3 | 1, 2 | entr2i 8931 | . . . 4 ⊢ ω ≈ ℤ |
| 4 | odf1.1 | . . . . . . . 8 ⊢ 𝑋 = (Base‘𝐺) | |
| 5 | odf1.2 | . . . . . . . 8 ⊢ 𝑂 = (od‘𝐺) | |
| 6 | odf1.3 | . . . . . . . 8 ⊢ · = (.g‘𝐺) | |
| 7 | odf1.4 | . . . . . . . 8 ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) | |
| 8 | 4, 5, 6, 7 | odf1 19475 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) = 0 ↔ 𝐹:ℤ–1-1→𝑋)) |
| 9 | 8 | biimp3a 1471 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → 𝐹:ℤ–1-1→𝑋) |
| 10 | f1f 6719 | . . . . . 6 ⊢ (𝐹:ℤ–1-1→𝑋 → 𝐹:ℤ⟶𝑋) | |
| 11 | zex 12477 | . . . . . . 7 ⊢ ℤ ∈ V | |
| 12 | 4 | fvexi 6836 | . . . . . . 7 ⊢ 𝑋 ∈ V |
| 13 | fex2 7866 | . . . . . . 7 ⊢ ((𝐹:ℤ⟶𝑋 ∧ ℤ ∈ V ∧ 𝑋 ∈ V) → 𝐹 ∈ V) | |
| 14 | 11, 12, 13 | mp3an23 1455 | . . . . . 6 ⊢ (𝐹:ℤ⟶𝑋 → 𝐹 ∈ V) |
| 15 | 9, 10, 14 | 3syl 18 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → 𝐹 ∈ V) |
| 16 | f1f1orn 6774 | . . . . . 6 ⊢ (𝐹:ℤ–1-1→𝑋 → 𝐹:ℤ–1-1-onto→ran 𝐹) | |
| 17 | 9, 16 | syl 17 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → 𝐹:ℤ–1-1-onto→ran 𝐹) |
| 18 | f1oen3g 8889 | . . . . 5 ⊢ ((𝐹 ∈ V ∧ 𝐹:ℤ–1-1-onto→ran 𝐹) → ℤ ≈ ran 𝐹) | |
| 19 | 15, 17, 18 | syl2anc 584 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ℤ ≈ ran 𝐹) |
| 20 | entr 8928 | . . . 4 ⊢ ((ω ≈ ℤ ∧ ℤ ≈ ran 𝐹) → ω ≈ ran 𝐹) | |
| 21 | 3, 19, 20 | sylancr 587 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ω ≈ ran 𝐹) |
| 22 | endom 8901 | . . 3 ⊢ (ω ≈ ran 𝐹 → ω ≼ ran 𝐹) | |
| 23 | domnsym 9016 | . . 3 ⊢ (ω ≼ ran 𝐹 → ¬ ran 𝐹 ≺ ω) | |
| 24 | 21, 22, 23 | 3syl 18 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ¬ ran 𝐹 ≺ ω) |
| 25 | isfinite 9542 | . 2 ⊢ (ran 𝐹 ∈ Fin ↔ ran 𝐹 ≺ ω) | |
| 26 | 24, 25 | sylnibr 329 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ¬ ran 𝐹 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 class class class wbr 5091 ↦ cmpt 5172 ran crn 5617 ⟶wf 6477 –1-1→wf1 6478 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 ωcom 7796 ≈ cen 8866 ≼ cdom 8867 ≺ csdm 8868 Fincfn 8869 0cc0 11006 ℕcn 12125 ℤcz 12468 Basecbs 17120 Grpcgrp 18846 .gcmg 18980 odcod 19437 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-omul 8390 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-acn 9835 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-od 19441 |
| This theorem is referenced by: dfod2 19477 odcl2 19478 |
| Copyright terms: Public domain | W3C validator |