MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  9p10ne21 Structured version   Visualization version   GIF version

Theorem 9p10ne21 30440
Description: 9 + 10 is not equal to 21. This disproves a popular meme which asserts that 9 + 10 does equal 21. See https://www.quora.com/Can-someone-try-to-prove-to-me-that-9+10-21 for attempts to prove that 9 + 10 = 21, and see https://tinyurl.com/9p10e21 for the history of the 9 + 10 = 21 meme. (Contributed by BTernaryTau, 25-Aug-2023.)
Assertion
Ref Expression
9p10ne21 (9 + 10) ≠ 21

Proof of Theorem 9p10ne21
StepHypRef Expression
1 10nn0 12598 . . . 4 10 ∈ ℕ0
21nn0cni 12385 . . 3 10 ∈ ℂ
3 9cn 12217 . . 3 9 ∈ ℂ
4 dec10p 12623 . . 3 (10 + 9) = 19
52, 3, 4addcomli 11297 . 2 (9 + 10) = 19
6 1nn0 12389 . . . . 5 1 ∈ ℕ0
7 9nn0 12397 . . . . 5 9 ∈ ℕ0
86, 7deccl 12595 . . . 4 19 ∈ ℕ0
98nn0rei 12384 . . 3 19 ∈ ℝ
10 2nn0 12390 . . . 4 2 ∈ ℕ0
11 9lt10 12711 . . . 4 9 < 10
12 1lt2 12283 . . . 4 1 < 2
136, 10, 7, 6, 11, 12decltc 12609 . . 3 19 < 21
149, 13ltneii 11218 . 2 19 ≠ 21
155, 14eqnetri 2996 1 (9 + 10) ≠ 21
Colors of variables: wff setvar class
Syntax hints:  wne 2926  (class class class)co 7341  0cc0 10998  1c1 10999   + caddc 11001  2c2 12172  9c9 12179  cdc 12580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581
This theorem is referenced by:  9p10ne21fool  30441
  Copyright terms: Public domain W3C validator