Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 9p10ne21 | Structured version Visualization version GIF version |
Description: 9 + 10 is not equal to 21. This disproves a popular meme which asserts that 9 + 10 does equal 21. See https://www.quora.com/Can-someone-try-to-prove-to-me-that-9+10-21 for attempts to prove that 9 + 10 = 21, and see https://tinyurl.com/9p10e21 for the history of the 9 + 10 = 21 meme. (Contributed by BTernaryTau, 25-Aug-2023.) |
Ref | Expression |
---|---|
9p10ne21 | ⊢ (9 + ;10) ≠ ;21 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 10nn0 12384 | . . . 4 ⊢ ;10 ∈ ℕ0 | |
2 | 1 | nn0cni 12175 | . . 3 ⊢ ;10 ∈ ℂ |
3 | 9cn 12003 | . . 3 ⊢ 9 ∈ ℂ | |
4 | dec10p 12409 | . . 3 ⊢ (;10 + 9) = ;19 | |
5 | 2, 3, 4 | addcomli 11097 | . 2 ⊢ (9 + ;10) = ;19 |
6 | 1nn0 12179 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
7 | 9nn0 12187 | . . . . 5 ⊢ 9 ∈ ℕ0 | |
8 | 6, 7 | deccl 12381 | . . . 4 ⊢ ;19 ∈ ℕ0 |
9 | 8 | nn0rei 12174 | . . 3 ⊢ ;19 ∈ ℝ |
10 | 2nn0 12180 | . . . 4 ⊢ 2 ∈ ℕ0 | |
11 | 9lt10 12497 | . . . 4 ⊢ 9 < ;10 | |
12 | 1lt2 12074 | . . . 4 ⊢ 1 < 2 | |
13 | 6, 10, 7, 6, 11, 12 | decltc 12395 | . . 3 ⊢ ;19 < ;21 |
14 | 9, 13 | ltneii 11018 | . 2 ⊢ ;19 ≠ ;21 |
15 | 5, 14 | eqnetri 3013 | 1 ⊢ (9 + ;10) ≠ ;21 |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2942 (class class class)co 7255 0cc0 10802 1c1 10803 + caddc 10805 2c2 11958 9c9 11965 ;cdc 12366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 |
This theorem is referenced by: 9p10ne21fool 28736 |
Copyright terms: Public domain | W3C validator |