![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 9p10ne21 | Structured version Visualization version GIF version |
Description: 9 + 10 is not equal to 21. This disproves a popular meme which asserts that 9 + 10 does equal 21. See https://www.quora.com/Can-someone-try-to-prove-to-me-that-9+10-21 for attempts to prove that 9 + 10 = 21, and see https://tinyurl.com/9p10e21 for the history of the 9 + 10 = 21 meme. (Contributed by BTernaryTau, 25-Aug-2023.) |
Ref | Expression |
---|---|
9p10ne21 | ⊢ (9 + ;10) ≠ ;21 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 10nn0 12776 | . . . 4 ⊢ ;10 ∈ ℕ0 | |
2 | 1 | nn0cni 12565 | . . 3 ⊢ ;10 ∈ ℂ |
3 | 9cn 12393 | . . 3 ⊢ 9 ∈ ℂ | |
4 | dec10p 12801 | . . 3 ⊢ (;10 + 9) = ;19 | |
5 | 2, 3, 4 | addcomli 11482 | . 2 ⊢ (9 + ;10) = ;19 |
6 | 1nn0 12569 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
7 | 9nn0 12577 | . . . . 5 ⊢ 9 ∈ ℕ0 | |
8 | 6, 7 | deccl 12773 | . . . 4 ⊢ ;19 ∈ ℕ0 |
9 | 8 | nn0rei 12564 | . . 3 ⊢ ;19 ∈ ℝ |
10 | 2nn0 12570 | . . . 4 ⊢ 2 ∈ ℕ0 | |
11 | 9lt10 12889 | . . . 4 ⊢ 9 < ;10 | |
12 | 1lt2 12464 | . . . 4 ⊢ 1 < 2 | |
13 | 6, 10, 7, 6, 11, 12 | decltc 12787 | . . 3 ⊢ ;19 < ;21 |
14 | 9, 13 | ltneii 11403 | . 2 ⊢ ;19 ≠ ;21 |
15 | 5, 14 | eqnetri 3017 | 1 ⊢ (9 + ;10) ≠ ;21 |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2946 (class class class)co 7448 0cc0 11184 1c1 11185 + caddc 11187 2c2 12348 9c9 12355 ;cdc 12758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 |
This theorem is referenced by: 9p10ne21fool 30503 |
Copyright terms: Public domain | W3C validator |