MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  9p10ne21 Structured version   Visualization version   GIF version

Theorem 9p10ne21 30490
Description: 9 + 10 is not equal to 21. This disproves a popular meme which asserts that 9 + 10 does equal 21. See https://www.quora.com/Can-someone-try-to-prove-to-me-that-9+10-21 for attempts to prove that 9 + 10 = 21, and see https://tinyurl.com/9p10e21 for the history of the 9 + 10 = 21 meme. (Contributed by BTernaryTau, 25-Aug-2023.)
Assertion
Ref Expression
9p10ne21 (9 + 10) ≠ 21

Proof of Theorem 9p10ne21
StepHypRef Expression
1 10nn0 12753 . . . 4 10 ∈ ℕ0
21nn0cni 12540 . . 3 10 ∈ ℂ
3 9cn 12367 . . 3 9 ∈ ℂ
4 dec10p 12778 . . 3 (10 + 9) = 19
52, 3, 4addcomli 11454 . 2 (9 + 10) = 19
6 1nn0 12544 . . . . 5 1 ∈ ℕ0
7 9nn0 12552 . . . . 5 9 ∈ ℕ0
86, 7deccl 12750 . . . 4 19 ∈ ℕ0
98nn0rei 12539 . . 3 19 ∈ ℝ
10 2nn0 12545 . . . 4 2 ∈ ℕ0
11 9lt10 12866 . . . 4 9 < 10
12 1lt2 12438 . . . 4 1 < 2
136, 10, 7, 6, 11, 12decltc 12764 . . 3 19 < 21
149, 13ltneii 11375 . 2 19 ≠ 21
155, 14eqnetri 3010 1 (9 + 10) ≠ 21
Colors of variables: wff setvar class
Syntax hints:  wne 2939  (class class class)co 7432  0cc0 11156  1c1 11157   + caddc 11159  2c2 12322  9c9 12329  cdc 12735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736
This theorem is referenced by:  9p10ne21fool  30491
  Copyright terms: Public domain W3C validator