Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2p2ne5 Structured version   Visualization version   GIF version

Theorem 2p2ne5 48951
Description: Prove that 2 + 2 ≠ 5. In George Orwell's "1984", Part One, Chapter Seven, the protagonist Winston notes that, "In the end the Party would announce that two and two made five, and you would have to believe it." http://www.sparknotes.com/lit/1984/section4.rhtml. More generally, the phrase 2 + 2 = 5 has come to represent an obviously false dogma one may be required to believe. See the Wikipedia article for more about this: https://en.wikipedia.org/wiki/2_%2B_2_%3D_5. Unsurprisingly, we can easily prove that this claim is false. (Contributed by David A. Wheeler, 31-Jan-2017.)
Assertion
Ref Expression
2p2ne5 (2 + 2) ≠ 5

Proof of Theorem 2p2ne5
StepHypRef Expression
1 2p2e4 12393 . 2 (2 + 2) = 4
2 4re 12342 . . 3 4 ∈ ℝ
3 4lt5 12435 . . 3 4 < 5
42, 3ltneii 11366 . 2 4 ≠ 5
51, 4eqnetri 3007 1 (2 + 2) ≠ 5
Colors of variables: wff setvar class
Syntax hints:  wne 2936  (class class class)co 7426   + caddc 11150  2c2 12313  4c4 12315  5c5 12316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-10 2137  ax-11 2153  ax-12 2173  ax-ext 2704  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7748  ax-resscn 11204  ax-1cn 11205  ax-icn 11206  ax-addcl 11207  ax-addrcl 11208  ax-mulcl 11209  ax-mulrcl 11210  ax-mulcom 11211  ax-addass 11212  ax-mulass 11213  ax-distr 11214  ax-i2m1 11215  ax-1ne0 11216  ax-1rid 11217  ax-rnegex 11218  ax-rrecex 11219  ax-cnre 11220  ax-pre-lttri 11221  ax-pre-lttrn 11222  ax-pre-ltadd 11223  ax-pre-mulgt0 11224
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1538  df-fal 1548  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2536  df-eu 2565  df-clab 2711  df-cleq 2725  df-clel 2812  df-nfc 2888  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3377  df-rab 3433  df-v 3479  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4916  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5577  df-po 5591  df-so 5592  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6511  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-er 8739  df-en 8980  df-dom 8981  df-sdom 8982  df-pnf 11289  df-mnf 11290  df-xr 11291  df-ltxr 11292  df-le 11293  df-sub 11486  df-neg 11487  df-2 12321  df-3 12322  df-4 12323  df-5 12324
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator