| Step | Hyp | Ref
| Expression |
| 1 | | ax-icn 11193 |
. 2
⊢ i ∈
ℂ |
| 2 | | cnex 11215 |
. . . . . . . 8
⊢ ℂ
∈ V |
| 3 | 2 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ ℂ ∈ V) |
| 4 | | sqcl 14141 |
. . . . . . . 8
⊢ (𝑧 ∈ ℂ → (𝑧↑2) ∈
ℂ) |
| 5 | 4 | adantl 481 |
. . . . . . 7
⊢
((⊤ ∧ 𝑧
∈ ℂ) → (𝑧↑2) ∈ ℂ) |
| 6 | | ax-1cn 11192 |
. . . . . . . 8
⊢ 1 ∈
ℂ |
| 7 | 6 | a1i 11 |
. . . . . . 7
⊢
((⊤ ∧ 𝑧
∈ ℂ) → 1 ∈ ℂ) |
| 8 | | eqidd 2737 |
. . . . . . 7
⊢ (⊤
→ (𝑧 ∈ ℂ
↦ (𝑧↑2)) =
(𝑧 ∈ ℂ ↦
(𝑧↑2))) |
| 9 | | fconstmpt 5721 |
. . . . . . . 8
⊢ (ℂ
× {1}) = (𝑧 ∈
ℂ ↦ 1) |
| 10 | 9 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ (ℂ × {1}) = (𝑧 ∈ ℂ ↦ 1)) |
| 11 | 3, 5, 7, 8, 10 | offval2 7696 |
. . . . . 6
⊢ (⊤
→ ((𝑧 ∈ ℂ
↦ (𝑧↑2))
∘f + (ℂ × {1})) = (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))) |
| 12 | | zsscn 12601 |
. . . . . . . . 9
⊢ ℤ
⊆ ℂ |
| 13 | | 1z 12627 |
. . . . . . . . 9
⊢ 1 ∈
ℤ |
| 14 | | 2nn0 12523 |
. . . . . . . . 9
⊢ 2 ∈
ℕ0 |
| 15 | | plypow 26167 |
. . . . . . . . 9
⊢ ((ℤ
⊆ ℂ ∧ 1 ∈ ℤ ∧ 2 ∈ ℕ0)
→ (𝑧 ∈ ℂ
↦ (𝑧↑2)) ∈
(Poly‘ℤ)) |
| 16 | 12, 13, 14, 15 | mp3an 1463 |
. . . . . . . 8
⊢ (𝑧 ∈ ℂ ↦ (𝑧↑2)) ∈
(Poly‘ℤ) |
| 17 | 16 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ (𝑧 ∈ ℂ
↦ (𝑧↑2)) ∈
(Poly‘ℤ)) |
| 18 | | plyconst 26168 |
. . . . . . . . 9
⊢ ((ℤ
⊆ ℂ ∧ 1 ∈ ℤ) → (ℂ × {1}) ∈
(Poly‘ℤ)) |
| 19 | 12, 13, 18 | mp2an 692 |
. . . . . . . 8
⊢ (ℂ
× {1}) ∈ (Poly‘ℤ) |
| 20 | 19 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ (ℂ × {1}) ∈ (Poly‘ℤ)) |
| 21 | | zaddcl 12637 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + 𝑦) ∈ ℤ) |
| 22 | 21 | adantl 481 |
. . . . . . 7
⊢
((⊤ ∧ (𝑥
∈ ℤ ∧ 𝑦
∈ ℤ)) → (𝑥
+ 𝑦) ∈
ℤ) |
| 23 | 17, 20, 22 | plyadd 26179 |
. . . . . 6
⊢ (⊤
→ ((𝑧 ∈ ℂ
↦ (𝑧↑2))
∘f + (ℂ × {1})) ∈
(Poly‘ℤ)) |
| 24 | 11, 23 | eqeltrrd 2836 |
. . . . 5
⊢ (⊤
→ (𝑧 ∈ ℂ
↦ ((𝑧↑2) + 1))
∈ (Poly‘ℤ)) |
| 25 | 24 | mptru 1547 |
. . . 4
⊢ (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ∈
(Poly‘ℤ) |
| 26 | | 0cn 11232 |
. . . . 5
⊢ 0 ∈
ℂ |
| 27 | | sq0i 14216 |
. . . . . . . . . 10
⊢ (𝑧 = 0 → (𝑧↑2) = 0) |
| 28 | 27 | oveq1d 7425 |
. . . . . . . . 9
⊢ (𝑧 = 0 → ((𝑧↑2) + 1) = (0 + 1)) |
| 29 | | 0p1e1 12367 |
. . . . . . . . 9
⊢ (0 + 1) =
1 |
| 30 | 28, 29 | eqtrdi 2787 |
. . . . . . . 8
⊢ (𝑧 = 0 → ((𝑧↑2) + 1) = 1) |
| 31 | | eqid 2736 |
. . . . . . . 8
⊢ (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) = (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) |
| 32 | | 1ex 11236 |
. . . . . . . 8
⊢ 1 ∈
V |
| 33 | 30, 31, 32 | fvmpt 6991 |
. . . . . . 7
⊢ (0 ∈
ℂ → ((𝑧 ∈
ℂ ↦ ((𝑧↑2)
+ 1))‘0) = 1) |
| 34 | 26, 33 | ax-mp 5 |
. . . . . 6
⊢ ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘0) =
1 |
| 35 | | ax-1ne0 11203 |
. . . . . 6
⊢ 1 ≠
0 |
| 36 | 34, 35 | eqnetri 3003 |
. . . . 5
⊢ ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘0) ≠
0 |
| 37 | | ne0p 26169 |
. . . . 5
⊢ ((0
∈ ℂ ∧ ((𝑧
∈ ℂ ↦ ((𝑧↑2) + 1))‘0) ≠ 0) → (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ≠
0𝑝) |
| 38 | 26, 36, 37 | mp2an 692 |
. . . 4
⊢ (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ≠
0𝑝 |
| 39 | | eldifsn 4767 |
. . . 4
⊢ ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ∈
((Poly‘ℤ) ∖ {0𝑝}) ↔ ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ∈
(Poly‘ℤ) ∧ (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ≠
0𝑝)) |
| 40 | 25, 38, 39 | mpbir2an 711 |
. . 3
⊢ (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ∈
((Poly‘ℤ) ∖ {0𝑝}) |
| 41 | | oveq1 7417 |
. . . . . . . 8
⊢ (𝑧 = i → (𝑧↑2) = (i↑2)) |
| 42 | | i2 14225 |
. . . . . . . 8
⊢
(i↑2) = -1 |
| 43 | 41, 42 | eqtrdi 2787 |
. . . . . . 7
⊢ (𝑧 = i → (𝑧↑2) = -1) |
| 44 | 43 | oveq1d 7425 |
. . . . . 6
⊢ (𝑧 = i → ((𝑧↑2) + 1) = (-1 + 1)) |
| 45 | | neg1cn 12359 |
. . . . . . 7
⊢ -1 ∈
ℂ |
| 46 | | 1pneg1e0 12364 |
. . . . . . 7
⊢ (1 + -1)
= 0 |
| 47 | 6, 45, 46 | addcomli 11432 |
. . . . . 6
⊢ (-1 + 1)
= 0 |
| 48 | 44, 47 | eqtrdi 2787 |
. . . . 5
⊢ (𝑧 = i → ((𝑧↑2) + 1) = 0) |
| 49 | | c0ex 11234 |
. . . . 5
⊢ 0 ∈
V |
| 50 | 48, 31, 49 | fvmpt 6991 |
. . . 4
⊢ (i ∈
ℂ → ((𝑧 ∈
ℂ ↦ ((𝑧↑2)
+ 1))‘i) = 0) |
| 51 | 1, 50 | ax-mp 5 |
. . 3
⊢ ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘i) =
0 |
| 52 | | fveq1 6880 |
. . . . 5
⊢ (𝑓 = (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) → (𝑓‘i) = ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘i)) |
| 53 | 52 | eqeq1d 2738 |
. . . 4
⊢ (𝑓 = (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) → ((𝑓‘i) = 0 ↔ ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘i) =
0)) |
| 54 | 53 | rspcev 3606 |
. . 3
⊢ (((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ∈
((Poly‘ℤ) ∖ {0𝑝}) ∧ ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘i) = 0)
→ ∃𝑓 ∈
((Poly‘ℤ) ∖ {0𝑝})(𝑓‘i) = 0) |
| 55 | 40, 51, 54 | mp2an 692 |
. 2
⊢
∃𝑓 ∈
((Poly‘ℤ) ∖ {0𝑝})(𝑓‘i) = 0 |
| 56 | | elaa 26281 |
. 2
⊢ (i ∈
𝔸 ↔ (i ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖
{0𝑝})(𝑓‘i) = 0)) |
| 57 | 1, 55, 56 | mpbir2an 711 |
1
⊢ i ∈
𝔸 |