MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iaa Structured version   Visualization version   GIF version

Theorem iaa 25838
Description: The imaginary unit is algebraic. (Contributed by Mario Carneiro, 23-Jul-2014.)
Assertion
Ref Expression
iaa i ∈ 𝔸

Proof of Theorem iaa
Dummy variables 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-icn 11169 . 2 i ∈ ℂ
2 cnex 11191 . . . . . . . 8 ℂ ∈ V
32a1i 11 . . . . . . 7 (⊤ → ℂ ∈ V)
4 sqcl 14083 . . . . . . . 8 (𝑧 ∈ ℂ → (𝑧↑2) ∈ ℂ)
54adantl 483 . . . . . . 7 ((⊤ ∧ 𝑧 ∈ ℂ) → (𝑧↑2) ∈ ℂ)
6 ax-1cn 11168 . . . . . . . 8 1 ∈ ℂ
76a1i 11 . . . . . . 7 ((⊤ ∧ 𝑧 ∈ ℂ) → 1 ∈ ℂ)
8 eqidd 2734 . . . . . . 7 (⊤ → (𝑧 ∈ ℂ ↦ (𝑧↑2)) = (𝑧 ∈ ℂ ↦ (𝑧↑2)))
9 fconstmpt 5739 . . . . . . . 8 (ℂ × {1}) = (𝑧 ∈ ℂ ↦ 1)
109a1i 11 . . . . . . 7 (⊤ → (ℂ × {1}) = (𝑧 ∈ ℂ ↦ 1))
113, 5, 7, 8, 10offval2 7690 . . . . . 6 (⊤ → ((𝑧 ∈ ℂ ↦ (𝑧↑2)) ∘f + (ℂ × {1})) = (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)))
12 zsscn 12566 . . . . . . . . 9 ℤ ⊆ ℂ
13 1z 12592 . . . . . . . . 9 1 ∈ ℤ
14 2nn0 12489 . . . . . . . . 9 2 ∈ ℕ0
15 plypow 25719 . . . . . . . . 9 ((ℤ ⊆ ℂ ∧ 1 ∈ ℤ ∧ 2 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ (𝑧↑2)) ∈ (Poly‘ℤ))
1612, 13, 14, 15mp3an 1462 . . . . . . . 8 (𝑧 ∈ ℂ ↦ (𝑧↑2)) ∈ (Poly‘ℤ)
1716a1i 11 . . . . . . 7 (⊤ → (𝑧 ∈ ℂ ↦ (𝑧↑2)) ∈ (Poly‘ℤ))
18 plyconst 25720 . . . . . . . . 9 ((ℤ ⊆ ℂ ∧ 1 ∈ ℤ) → (ℂ × {1}) ∈ (Poly‘ℤ))
1912, 13, 18mp2an 691 . . . . . . . 8 (ℂ × {1}) ∈ (Poly‘ℤ)
2019a1i 11 . . . . . . 7 (⊤ → (ℂ × {1}) ∈ (Poly‘ℤ))
21 zaddcl 12602 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + 𝑦) ∈ ℤ)
2221adantl 483 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 + 𝑦) ∈ ℤ)
2317, 20, 22plyadd 25731 . . . . . 6 (⊤ → ((𝑧 ∈ ℂ ↦ (𝑧↑2)) ∘f + (ℂ × {1})) ∈ (Poly‘ℤ))
2411, 23eqeltrrd 2835 . . . . 5 (⊤ → (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ∈ (Poly‘ℤ))
2524mptru 1549 . . . 4 (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ∈ (Poly‘ℤ)
26 0cn 11206 . . . . 5 0 ∈ ℂ
27 sq0i 14157 . . . . . . . . . 10 (𝑧 = 0 → (𝑧↑2) = 0)
2827oveq1d 7424 . . . . . . . . 9 (𝑧 = 0 → ((𝑧↑2) + 1) = (0 + 1))
29 0p1e1 12334 . . . . . . . . 9 (0 + 1) = 1
3028, 29eqtrdi 2789 . . . . . . . 8 (𝑧 = 0 → ((𝑧↑2) + 1) = 1)
31 eqid 2733 . . . . . . . 8 (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) = (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))
32 1ex 11210 . . . . . . . 8 1 ∈ V
3330, 31, 32fvmpt 6999 . . . . . . 7 (0 ∈ ℂ → ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘0) = 1)
3426, 33ax-mp 5 . . . . . 6 ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘0) = 1
35 ax-1ne0 11179 . . . . . 6 1 ≠ 0
3634, 35eqnetri 3012 . . . . 5 ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘0) ≠ 0
37 ne0p 25721 . . . . 5 ((0 ∈ ℂ ∧ ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘0) ≠ 0) → (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ≠ 0𝑝)
3826, 36, 37mp2an 691 . . . 4 (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ≠ 0𝑝
39 eldifsn 4791 . . . 4 ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ∈ ((Poly‘ℤ) ∖ {0𝑝}) ↔ ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ∈ (Poly‘ℤ) ∧ (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ≠ 0𝑝))
4025, 38, 39mpbir2an 710 . . 3 (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ∈ ((Poly‘ℤ) ∖ {0𝑝})
41 oveq1 7416 . . . . . . . 8 (𝑧 = i → (𝑧↑2) = (i↑2))
42 i2 14166 . . . . . . . 8 (i↑2) = -1
4341, 42eqtrdi 2789 . . . . . . 7 (𝑧 = i → (𝑧↑2) = -1)
4443oveq1d 7424 . . . . . 6 (𝑧 = i → ((𝑧↑2) + 1) = (-1 + 1))
45 neg1cn 12326 . . . . . . 7 -1 ∈ ℂ
46 1pneg1e0 12331 . . . . . . 7 (1 + -1) = 0
476, 45, 46addcomli 11406 . . . . . 6 (-1 + 1) = 0
4844, 47eqtrdi 2789 . . . . 5 (𝑧 = i → ((𝑧↑2) + 1) = 0)
49 c0ex 11208 . . . . 5 0 ∈ V
5048, 31, 49fvmpt 6999 . . . 4 (i ∈ ℂ → ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘i) = 0)
511, 50ax-mp 5 . . 3 ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘i) = 0
52 fveq1 6891 . . . . 5 (𝑓 = (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) → (𝑓‘i) = ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘i))
5352eqeq1d 2735 . . . 4 (𝑓 = (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) → ((𝑓‘i) = 0 ↔ ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘i) = 0))
5453rspcev 3613 . . 3 (((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘i) = 0) → ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘i) = 0)
5540, 51, 54mp2an 691 . 2 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘i) = 0
56 elaa 25829 . 2 (i ∈ 𝔸 ↔ (i ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘i) = 0))
571, 55, 56mpbir2an 710 1 i ∈ 𝔸
Colors of variables: wff setvar class
Syntax hints:  wa 397   = wceq 1542  wtru 1543  wcel 2107  wne 2941  wrex 3071  Vcvv 3475  cdif 3946  wss 3949  {csn 4629  cmpt 5232   × cxp 5675  cfv 6544  (class class class)co 7409  f cof 7668  cc 11108  0cc0 11110  1c1 11111  ici 11112   + caddc 11113  -cneg 11445  2c2 12267  0cn0 12472  cz 12558  cexp 14027  0𝑝c0p 25186  Polycply 25698  𝔸caa 25827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-oi 9505  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-fz 13485  df-fzo 13628  df-seq 13967  df-exp 14028  df-hash 14291  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-clim 15432  df-sum 15633  df-0p 25187  df-ply 25702  df-aa 25828
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator