MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iaa Structured version   Visualization version   GIF version

Theorem iaa 26385
Description: The imaginary unit is algebraic. (Contributed by Mario Carneiro, 23-Jul-2014.)
Assertion
Ref Expression
iaa i ∈ 𝔸

Proof of Theorem iaa
Dummy variables 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-icn 11243 . 2 i ∈ ℂ
2 cnex 11265 . . . . . . . 8 ℂ ∈ V
32a1i 11 . . . . . . 7 (⊤ → ℂ ∈ V)
4 sqcl 14168 . . . . . . . 8 (𝑧 ∈ ℂ → (𝑧↑2) ∈ ℂ)
54adantl 481 . . . . . . 7 ((⊤ ∧ 𝑧 ∈ ℂ) → (𝑧↑2) ∈ ℂ)
6 ax-1cn 11242 . . . . . . . 8 1 ∈ ℂ
76a1i 11 . . . . . . 7 ((⊤ ∧ 𝑧 ∈ ℂ) → 1 ∈ ℂ)
8 eqidd 2741 . . . . . . 7 (⊤ → (𝑧 ∈ ℂ ↦ (𝑧↑2)) = (𝑧 ∈ ℂ ↦ (𝑧↑2)))
9 fconstmpt 5762 . . . . . . . 8 (ℂ × {1}) = (𝑧 ∈ ℂ ↦ 1)
109a1i 11 . . . . . . 7 (⊤ → (ℂ × {1}) = (𝑧 ∈ ℂ ↦ 1))
113, 5, 7, 8, 10offval2 7734 . . . . . 6 (⊤ → ((𝑧 ∈ ℂ ↦ (𝑧↑2)) ∘f + (ℂ × {1})) = (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)))
12 zsscn 12647 . . . . . . . . 9 ℤ ⊆ ℂ
13 1z 12673 . . . . . . . . 9 1 ∈ ℤ
14 2nn0 12570 . . . . . . . . 9 2 ∈ ℕ0
15 plypow 26264 . . . . . . . . 9 ((ℤ ⊆ ℂ ∧ 1 ∈ ℤ ∧ 2 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ (𝑧↑2)) ∈ (Poly‘ℤ))
1612, 13, 14, 15mp3an 1461 . . . . . . . 8 (𝑧 ∈ ℂ ↦ (𝑧↑2)) ∈ (Poly‘ℤ)
1716a1i 11 . . . . . . 7 (⊤ → (𝑧 ∈ ℂ ↦ (𝑧↑2)) ∈ (Poly‘ℤ))
18 plyconst 26265 . . . . . . . . 9 ((ℤ ⊆ ℂ ∧ 1 ∈ ℤ) → (ℂ × {1}) ∈ (Poly‘ℤ))
1912, 13, 18mp2an 691 . . . . . . . 8 (ℂ × {1}) ∈ (Poly‘ℤ)
2019a1i 11 . . . . . . 7 (⊤ → (ℂ × {1}) ∈ (Poly‘ℤ))
21 zaddcl 12683 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + 𝑦) ∈ ℤ)
2221adantl 481 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 + 𝑦) ∈ ℤ)
2317, 20, 22plyadd 26276 . . . . . 6 (⊤ → ((𝑧 ∈ ℂ ↦ (𝑧↑2)) ∘f + (ℂ × {1})) ∈ (Poly‘ℤ))
2411, 23eqeltrrd 2845 . . . . 5 (⊤ → (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ∈ (Poly‘ℤ))
2524mptru 1544 . . . 4 (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ∈ (Poly‘ℤ)
26 0cn 11282 . . . . 5 0 ∈ ℂ
27 sq0i 14242 . . . . . . . . . 10 (𝑧 = 0 → (𝑧↑2) = 0)
2827oveq1d 7463 . . . . . . . . 9 (𝑧 = 0 → ((𝑧↑2) + 1) = (0 + 1))
29 0p1e1 12415 . . . . . . . . 9 (0 + 1) = 1
3028, 29eqtrdi 2796 . . . . . . . 8 (𝑧 = 0 → ((𝑧↑2) + 1) = 1)
31 eqid 2740 . . . . . . . 8 (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) = (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))
32 1ex 11286 . . . . . . . 8 1 ∈ V
3330, 31, 32fvmpt 7029 . . . . . . 7 (0 ∈ ℂ → ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘0) = 1)
3426, 33ax-mp 5 . . . . . 6 ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘0) = 1
35 ax-1ne0 11253 . . . . . 6 1 ≠ 0
3634, 35eqnetri 3017 . . . . 5 ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘0) ≠ 0
37 ne0p 26266 . . . . 5 ((0 ∈ ℂ ∧ ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘0) ≠ 0) → (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ≠ 0𝑝)
3826, 36, 37mp2an 691 . . . 4 (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ≠ 0𝑝
39 eldifsn 4811 . . . 4 ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ∈ ((Poly‘ℤ) ∖ {0𝑝}) ↔ ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ∈ (Poly‘ℤ) ∧ (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ≠ 0𝑝))
4025, 38, 39mpbir2an 710 . . 3 (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ∈ ((Poly‘ℤ) ∖ {0𝑝})
41 oveq1 7455 . . . . . . . 8 (𝑧 = i → (𝑧↑2) = (i↑2))
42 i2 14251 . . . . . . . 8 (i↑2) = -1
4341, 42eqtrdi 2796 . . . . . . 7 (𝑧 = i → (𝑧↑2) = -1)
4443oveq1d 7463 . . . . . 6 (𝑧 = i → ((𝑧↑2) + 1) = (-1 + 1))
45 neg1cn 12407 . . . . . . 7 -1 ∈ ℂ
46 1pneg1e0 12412 . . . . . . 7 (1 + -1) = 0
476, 45, 46addcomli 11482 . . . . . 6 (-1 + 1) = 0
4844, 47eqtrdi 2796 . . . . 5 (𝑧 = i → ((𝑧↑2) + 1) = 0)
49 c0ex 11284 . . . . 5 0 ∈ V
5048, 31, 49fvmpt 7029 . . . 4 (i ∈ ℂ → ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘i) = 0)
511, 50ax-mp 5 . . 3 ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘i) = 0
52 fveq1 6919 . . . . 5 (𝑓 = (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) → (𝑓‘i) = ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘i))
5352eqeq1d 2742 . . . 4 (𝑓 = (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) → ((𝑓‘i) = 0 ↔ ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘i) = 0))
5453rspcev 3635 . . 3 (((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘i) = 0) → ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘i) = 0)
5540, 51, 54mp2an 691 . 2 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘i) = 0
56 elaa 26376 . 2 (i ∈ 𝔸 ↔ (i ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘i) = 0))
571, 55, 56mpbir2an 710 1 i ∈ 𝔸
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wtru 1538  wcel 2108  wne 2946  wrex 3076  Vcvv 3488  cdif 3973  wss 3976  {csn 4648  cmpt 5249   × cxp 5698  cfv 6573  (class class class)co 7448  f cof 7712  cc 11182  0cc0 11184  1c1 11185  ici 11186   + caddc 11187  -cneg 11521  2c2 12348  0cn0 12553  cz 12639  cexp 14112  0𝑝c0p 25723  Polycply 26243  𝔸caa 26374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-0p 25724  df-ply 26247  df-aa 26375
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator