MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iaa Structured version   Visualization version   GIF version

Theorem iaa 26367
Description: The imaginary unit is algebraic. (Contributed by Mario Carneiro, 23-Jul-2014.)
Assertion
Ref Expression
iaa i ∈ 𝔸

Proof of Theorem iaa
Dummy variables 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-icn 11214 . 2 i ∈ ℂ
2 cnex 11236 . . . . . . . 8 ℂ ∈ V
32a1i 11 . . . . . . 7 (⊤ → ℂ ∈ V)
4 sqcl 14158 . . . . . . . 8 (𝑧 ∈ ℂ → (𝑧↑2) ∈ ℂ)
54adantl 481 . . . . . . 7 ((⊤ ∧ 𝑧 ∈ ℂ) → (𝑧↑2) ∈ ℂ)
6 ax-1cn 11213 . . . . . . . 8 1 ∈ ℂ
76a1i 11 . . . . . . 7 ((⊤ ∧ 𝑧 ∈ ℂ) → 1 ∈ ℂ)
8 eqidd 2738 . . . . . . 7 (⊤ → (𝑧 ∈ ℂ ↦ (𝑧↑2)) = (𝑧 ∈ ℂ ↦ (𝑧↑2)))
9 fconstmpt 5747 . . . . . . . 8 (ℂ × {1}) = (𝑧 ∈ ℂ ↦ 1)
109a1i 11 . . . . . . 7 (⊤ → (ℂ × {1}) = (𝑧 ∈ ℂ ↦ 1))
113, 5, 7, 8, 10offval2 7717 . . . . . 6 (⊤ → ((𝑧 ∈ ℂ ↦ (𝑧↑2)) ∘f + (ℂ × {1})) = (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)))
12 zsscn 12621 . . . . . . . . 9 ℤ ⊆ ℂ
13 1z 12647 . . . . . . . . 9 1 ∈ ℤ
14 2nn0 12543 . . . . . . . . 9 2 ∈ ℕ0
15 plypow 26244 . . . . . . . . 9 ((ℤ ⊆ ℂ ∧ 1 ∈ ℤ ∧ 2 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ (𝑧↑2)) ∈ (Poly‘ℤ))
1612, 13, 14, 15mp3an 1463 . . . . . . . 8 (𝑧 ∈ ℂ ↦ (𝑧↑2)) ∈ (Poly‘ℤ)
1716a1i 11 . . . . . . 7 (⊤ → (𝑧 ∈ ℂ ↦ (𝑧↑2)) ∈ (Poly‘ℤ))
18 plyconst 26245 . . . . . . . . 9 ((ℤ ⊆ ℂ ∧ 1 ∈ ℤ) → (ℂ × {1}) ∈ (Poly‘ℤ))
1912, 13, 18mp2an 692 . . . . . . . 8 (ℂ × {1}) ∈ (Poly‘ℤ)
2019a1i 11 . . . . . . 7 (⊤ → (ℂ × {1}) ∈ (Poly‘ℤ))
21 zaddcl 12657 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + 𝑦) ∈ ℤ)
2221adantl 481 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 + 𝑦) ∈ ℤ)
2317, 20, 22plyadd 26256 . . . . . 6 (⊤ → ((𝑧 ∈ ℂ ↦ (𝑧↑2)) ∘f + (ℂ × {1})) ∈ (Poly‘ℤ))
2411, 23eqeltrrd 2842 . . . . 5 (⊤ → (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ∈ (Poly‘ℤ))
2524mptru 1547 . . . 4 (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ∈ (Poly‘ℤ)
26 0cn 11253 . . . . 5 0 ∈ ℂ
27 sq0i 14232 . . . . . . . . . 10 (𝑧 = 0 → (𝑧↑2) = 0)
2827oveq1d 7446 . . . . . . . . 9 (𝑧 = 0 → ((𝑧↑2) + 1) = (0 + 1))
29 0p1e1 12388 . . . . . . . . 9 (0 + 1) = 1
3028, 29eqtrdi 2793 . . . . . . . 8 (𝑧 = 0 → ((𝑧↑2) + 1) = 1)
31 eqid 2737 . . . . . . . 8 (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) = (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))
32 1ex 11257 . . . . . . . 8 1 ∈ V
3330, 31, 32fvmpt 7016 . . . . . . 7 (0 ∈ ℂ → ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘0) = 1)
3426, 33ax-mp 5 . . . . . 6 ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘0) = 1
35 ax-1ne0 11224 . . . . . 6 1 ≠ 0
3634, 35eqnetri 3011 . . . . 5 ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘0) ≠ 0
37 ne0p 26246 . . . . 5 ((0 ∈ ℂ ∧ ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘0) ≠ 0) → (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ≠ 0𝑝)
3826, 36, 37mp2an 692 . . . 4 (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ≠ 0𝑝
39 eldifsn 4786 . . . 4 ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ∈ ((Poly‘ℤ) ∖ {0𝑝}) ↔ ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ∈ (Poly‘ℤ) ∧ (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ≠ 0𝑝))
4025, 38, 39mpbir2an 711 . . 3 (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ∈ ((Poly‘ℤ) ∖ {0𝑝})
41 oveq1 7438 . . . . . . . 8 (𝑧 = i → (𝑧↑2) = (i↑2))
42 i2 14241 . . . . . . . 8 (i↑2) = -1
4341, 42eqtrdi 2793 . . . . . . 7 (𝑧 = i → (𝑧↑2) = -1)
4443oveq1d 7446 . . . . . 6 (𝑧 = i → ((𝑧↑2) + 1) = (-1 + 1))
45 neg1cn 12380 . . . . . . 7 -1 ∈ ℂ
46 1pneg1e0 12385 . . . . . . 7 (1 + -1) = 0
476, 45, 46addcomli 11453 . . . . . 6 (-1 + 1) = 0
4844, 47eqtrdi 2793 . . . . 5 (𝑧 = i → ((𝑧↑2) + 1) = 0)
49 c0ex 11255 . . . . 5 0 ∈ V
5048, 31, 49fvmpt 7016 . . . 4 (i ∈ ℂ → ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘i) = 0)
511, 50ax-mp 5 . . 3 ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘i) = 0
52 fveq1 6905 . . . . 5 (𝑓 = (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) → (𝑓‘i) = ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘i))
5352eqeq1d 2739 . . . 4 (𝑓 = (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) → ((𝑓‘i) = 0 ↔ ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘i) = 0))
5453rspcev 3622 . . 3 (((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘i) = 0) → ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘i) = 0)
5540, 51, 54mp2an 692 . 2 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘i) = 0
56 elaa 26358 . 2 (i ∈ 𝔸 ↔ (i ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘i) = 0))
571, 55, 56mpbir2an 711 1 i ∈ 𝔸
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wtru 1541  wcel 2108  wne 2940  wrex 3070  Vcvv 3480  cdif 3948  wss 3951  {csn 4626  cmpt 5225   × cxp 5683  cfv 6561  (class class class)co 7431  f cof 7695  cc 11153  0cc0 11155  1c1 11156  ici 11157   + caddc 11158  -cneg 11493  2c2 12321  0cn0 12526  cz 12613  cexp 14102  0𝑝c0p 25704  Polycply 26223  𝔸caa 26356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-0p 25705  df-ply 26227  df-aa 26357
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator