MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iaa Structured version   Visualization version   GIF version

Theorem iaa 24913
Description: The imaginary unit is algebraic. (Contributed by Mario Carneiro, 23-Jul-2014.)
Assertion
Ref Expression
iaa i ∈ 𝔸

Proof of Theorem iaa
Dummy variables 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-icn 10595 . 2 i ∈ ℂ
2 cnex 10617 . . . . . . . 8 ℂ ∈ V
32a1i 11 . . . . . . 7 (⊤ → ℂ ∈ V)
4 sqcl 13483 . . . . . . . 8 (𝑧 ∈ ℂ → (𝑧↑2) ∈ ℂ)
54adantl 484 . . . . . . 7 ((⊤ ∧ 𝑧 ∈ ℂ) → (𝑧↑2) ∈ ℂ)
6 ax-1cn 10594 . . . . . . . 8 1 ∈ ℂ
76a1i 11 . . . . . . 7 ((⊤ ∧ 𝑧 ∈ ℂ) → 1 ∈ ℂ)
8 eqidd 2822 . . . . . . 7 (⊤ → (𝑧 ∈ ℂ ↦ (𝑧↑2)) = (𝑧 ∈ ℂ ↦ (𝑧↑2)))
9 fconstmpt 5613 . . . . . . . 8 (ℂ × {1}) = (𝑧 ∈ ℂ ↦ 1)
109a1i 11 . . . . . . 7 (⊤ → (ℂ × {1}) = (𝑧 ∈ ℂ ↦ 1))
113, 5, 7, 8, 10offval2 7425 . . . . . 6 (⊤ → ((𝑧 ∈ ℂ ↦ (𝑧↑2)) ∘f + (ℂ × {1})) = (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)))
12 zsscn 11988 . . . . . . . . 9 ℤ ⊆ ℂ
13 1z 12011 . . . . . . . . 9 1 ∈ ℤ
14 2nn0 11913 . . . . . . . . 9 2 ∈ ℕ0
15 plypow 24794 . . . . . . . . 9 ((ℤ ⊆ ℂ ∧ 1 ∈ ℤ ∧ 2 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ (𝑧↑2)) ∈ (Poly‘ℤ))
1612, 13, 14, 15mp3an 1457 . . . . . . . 8 (𝑧 ∈ ℂ ↦ (𝑧↑2)) ∈ (Poly‘ℤ)
1716a1i 11 . . . . . . 7 (⊤ → (𝑧 ∈ ℂ ↦ (𝑧↑2)) ∈ (Poly‘ℤ))
18 plyconst 24795 . . . . . . . . 9 ((ℤ ⊆ ℂ ∧ 1 ∈ ℤ) → (ℂ × {1}) ∈ (Poly‘ℤ))
1912, 13, 18mp2an 690 . . . . . . . 8 (ℂ × {1}) ∈ (Poly‘ℤ)
2019a1i 11 . . . . . . 7 (⊤ → (ℂ × {1}) ∈ (Poly‘ℤ))
21 zaddcl 12021 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + 𝑦) ∈ ℤ)
2221adantl 484 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 + 𝑦) ∈ ℤ)
2317, 20, 22plyadd 24806 . . . . . 6 (⊤ → ((𝑧 ∈ ℂ ↦ (𝑧↑2)) ∘f + (ℂ × {1})) ∈ (Poly‘ℤ))
2411, 23eqeltrrd 2914 . . . . 5 (⊤ → (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ∈ (Poly‘ℤ))
2524mptru 1540 . . . 4 (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ∈ (Poly‘ℤ)
26 0cn 10632 . . . . 5 0 ∈ ℂ
27 sq0i 13555 . . . . . . . . . 10 (𝑧 = 0 → (𝑧↑2) = 0)
2827oveq1d 7170 . . . . . . . . 9 (𝑧 = 0 → ((𝑧↑2) + 1) = (0 + 1))
29 0p1e1 11758 . . . . . . . . 9 (0 + 1) = 1
3028, 29syl6eq 2872 . . . . . . . 8 (𝑧 = 0 → ((𝑧↑2) + 1) = 1)
31 eqid 2821 . . . . . . . 8 (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) = (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))
32 1ex 10636 . . . . . . . 8 1 ∈ V
3330, 31, 32fvmpt 6767 . . . . . . 7 (0 ∈ ℂ → ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘0) = 1)
3426, 33ax-mp 5 . . . . . 6 ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘0) = 1
35 ax-1ne0 10605 . . . . . 6 1 ≠ 0
3634, 35eqnetri 3086 . . . . 5 ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘0) ≠ 0
37 ne0p 24796 . . . . 5 ((0 ∈ ℂ ∧ ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘0) ≠ 0) → (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ≠ 0𝑝)
3826, 36, 37mp2an 690 . . . 4 (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ≠ 0𝑝
39 eldifsn 4718 . . . 4 ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ∈ ((Poly‘ℤ) ∖ {0𝑝}) ↔ ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ∈ (Poly‘ℤ) ∧ (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ≠ 0𝑝))
4025, 38, 39mpbir2an 709 . . 3 (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ∈ ((Poly‘ℤ) ∖ {0𝑝})
41 oveq1 7162 . . . . . . . 8 (𝑧 = i → (𝑧↑2) = (i↑2))
42 i2 13564 . . . . . . . 8 (i↑2) = -1
4341, 42syl6eq 2872 . . . . . . 7 (𝑧 = i → (𝑧↑2) = -1)
4443oveq1d 7170 . . . . . 6 (𝑧 = i → ((𝑧↑2) + 1) = (-1 + 1))
45 neg1cn 11750 . . . . . . 7 -1 ∈ ℂ
46 1pneg1e0 11755 . . . . . . 7 (1 + -1) = 0
476, 45, 46addcomli 10831 . . . . . 6 (-1 + 1) = 0
4844, 47syl6eq 2872 . . . . 5 (𝑧 = i → ((𝑧↑2) + 1) = 0)
49 c0ex 10634 . . . . 5 0 ∈ V
5048, 31, 49fvmpt 6767 . . . 4 (i ∈ ℂ → ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘i) = 0)
511, 50ax-mp 5 . . 3 ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘i) = 0
52 fveq1 6668 . . . . 5 (𝑓 = (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) → (𝑓‘i) = ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘i))
5352eqeq1d 2823 . . . 4 (𝑓 = (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) → ((𝑓‘i) = 0 ↔ ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘i) = 0))
5453rspcev 3622 . . 3 (((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘i) = 0) → ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘i) = 0)
5540, 51, 54mp2an 690 . 2 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘i) = 0
56 elaa 24904 . 2 (i ∈ 𝔸 ↔ (i ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘i) = 0))
571, 55, 56mpbir2an 709 1 i ∈ 𝔸
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1533  wtru 1534  wcel 2110  wne 3016  wrex 3139  Vcvv 3494  cdif 3932  wss 3935  {csn 4566  cmpt 5145   × cxp 5552  cfv 6354  (class class class)co 7155  f cof 7406  cc 10534  0cc0 10536  1c1 10537  ici 10538   + caddc 10539  -cneg 10870  2c2 11691  0cn0 11896  cz 11980  cexp 13428  0𝑝c0p 24269  Polycply 24773  𝔸caa 24902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-fz 12892  df-fzo 13033  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-sum 15042  df-0p 24270  df-ply 24777  df-aa 24903
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator