MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iaa Structured version   Visualization version   GIF version

Theorem iaa 26240
Description: The imaginary unit is algebraic. (Contributed by Mario Carneiro, 23-Jul-2014.)
Assertion
Ref Expression
iaa i ∈ 𝔸

Proof of Theorem iaa
Dummy variables 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-icn 11134 . 2 i ∈ ℂ
2 cnex 11156 . . . . . . . 8 ℂ ∈ V
32a1i 11 . . . . . . 7 (⊤ → ℂ ∈ V)
4 sqcl 14090 . . . . . . . 8 (𝑧 ∈ ℂ → (𝑧↑2) ∈ ℂ)
54adantl 481 . . . . . . 7 ((⊤ ∧ 𝑧 ∈ ℂ) → (𝑧↑2) ∈ ℂ)
6 ax-1cn 11133 . . . . . . . 8 1 ∈ ℂ
76a1i 11 . . . . . . 7 ((⊤ ∧ 𝑧 ∈ ℂ) → 1 ∈ ℂ)
8 eqidd 2731 . . . . . . 7 (⊤ → (𝑧 ∈ ℂ ↦ (𝑧↑2)) = (𝑧 ∈ ℂ ↦ (𝑧↑2)))
9 fconstmpt 5703 . . . . . . . 8 (ℂ × {1}) = (𝑧 ∈ ℂ ↦ 1)
109a1i 11 . . . . . . 7 (⊤ → (ℂ × {1}) = (𝑧 ∈ ℂ ↦ 1))
113, 5, 7, 8, 10offval2 7676 . . . . . 6 (⊤ → ((𝑧 ∈ ℂ ↦ (𝑧↑2)) ∘f + (ℂ × {1})) = (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)))
12 zsscn 12544 . . . . . . . . 9 ℤ ⊆ ℂ
13 1z 12570 . . . . . . . . 9 1 ∈ ℤ
14 2nn0 12466 . . . . . . . . 9 2 ∈ ℕ0
15 plypow 26117 . . . . . . . . 9 ((ℤ ⊆ ℂ ∧ 1 ∈ ℤ ∧ 2 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ (𝑧↑2)) ∈ (Poly‘ℤ))
1612, 13, 14, 15mp3an 1463 . . . . . . . 8 (𝑧 ∈ ℂ ↦ (𝑧↑2)) ∈ (Poly‘ℤ)
1716a1i 11 . . . . . . 7 (⊤ → (𝑧 ∈ ℂ ↦ (𝑧↑2)) ∈ (Poly‘ℤ))
18 plyconst 26118 . . . . . . . . 9 ((ℤ ⊆ ℂ ∧ 1 ∈ ℤ) → (ℂ × {1}) ∈ (Poly‘ℤ))
1912, 13, 18mp2an 692 . . . . . . . 8 (ℂ × {1}) ∈ (Poly‘ℤ)
2019a1i 11 . . . . . . 7 (⊤ → (ℂ × {1}) ∈ (Poly‘ℤ))
21 zaddcl 12580 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + 𝑦) ∈ ℤ)
2221adantl 481 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 + 𝑦) ∈ ℤ)
2317, 20, 22plyadd 26129 . . . . . 6 (⊤ → ((𝑧 ∈ ℂ ↦ (𝑧↑2)) ∘f + (ℂ × {1})) ∈ (Poly‘ℤ))
2411, 23eqeltrrd 2830 . . . . 5 (⊤ → (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ∈ (Poly‘ℤ))
2524mptru 1547 . . . 4 (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ∈ (Poly‘ℤ)
26 0cn 11173 . . . . 5 0 ∈ ℂ
27 sq0i 14165 . . . . . . . . . 10 (𝑧 = 0 → (𝑧↑2) = 0)
2827oveq1d 7405 . . . . . . . . 9 (𝑧 = 0 → ((𝑧↑2) + 1) = (0 + 1))
29 0p1e1 12310 . . . . . . . . 9 (0 + 1) = 1
3028, 29eqtrdi 2781 . . . . . . . 8 (𝑧 = 0 → ((𝑧↑2) + 1) = 1)
31 eqid 2730 . . . . . . . 8 (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) = (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))
32 1ex 11177 . . . . . . . 8 1 ∈ V
3330, 31, 32fvmpt 6971 . . . . . . 7 (0 ∈ ℂ → ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘0) = 1)
3426, 33ax-mp 5 . . . . . 6 ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘0) = 1
35 ax-1ne0 11144 . . . . . 6 1 ≠ 0
3634, 35eqnetri 2996 . . . . 5 ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘0) ≠ 0
37 ne0p 26119 . . . . 5 ((0 ∈ ℂ ∧ ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘0) ≠ 0) → (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ≠ 0𝑝)
3826, 36, 37mp2an 692 . . . 4 (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ≠ 0𝑝
39 eldifsn 4753 . . . 4 ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ∈ ((Poly‘ℤ) ∖ {0𝑝}) ↔ ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ∈ (Poly‘ℤ) ∧ (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ≠ 0𝑝))
4025, 38, 39mpbir2an 711 . . 3 (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ∈ ((Poly‘ℤ) ∖ {0𝑝})
41 oveq1 7397 . . . . . . . 8 (𝑧 = i → (𝑧↑2) = (i↑2))
42 i2 14174 . . . . . . . 8 (i↑2) = -1
4341, 42eqtrdi 2781 . . . . . . 7 (𝑧 = i → (𝑧↑2) = -1)
4443oveq1d 7405 . . . . . 6 (𝑧 = i → ((𝑧↑2) + 1) = (-1 + 1))
45 neg1cn 12178 . . . . . . 7 -1 ∈ ℂ
46 1pneg1e0 12307 . . . . . . 7 (1 + -1) = 0
476, 45, 46addcomli 11373 . . . . . 6 (-1 + 1) = 0
4844, 47eqtrdi 2781 . . . . 5 (𝑧 = i → ((𝑧↑2) + 1) = 0)
49 c0ex 11175 . . . . 5 0 ∈ V
5048, 31, 49fvmpt 6971 . . . 4 (i ∈ ℂ → ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘i) = 0)
511, 50ax-mp 5 . . 3 ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘i) = 0
52 fveq1 6860 . . . . 5 (𝑓 = (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) → (𝑓‘i) = ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘i))
5352eqeq1d 2732 . . . 4 (𝑓 = (𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) → ((𝑓‘i) = 0 ↔ ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘i) = 0))
5453rspcev 3591 . . 3 (((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1)) ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ ((𝑧 ∈ ℂ ↦ ((𝑧↑2) + 1))‘i) = 0) → ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘i) = 0)
5540, 51, 54mp2an 692 . 2 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘i) = 0
56 elaa 26231 . 2 (i ∈ 𝔸 ↔ (i ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘i) = 0))
571, 55, 56mpbir2an 711 1 i ∈ 𝔸
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wtru 1541  wcel 2109  wne 2926  wrex 3054  Vcvv 3450  cdif 3914  wss 3917  {csn 4592  cmpt 5191   × cxp 5639  cfv 6514  (class class class)co 7390  f cof 7654  cc 11073  0cc0 11075  1c1 11076  ici 11077   + caddc 11078  -cneg 11413  2c2 12248  0cn0 12449  cz 12536  cexp 14033  0𝑝c0p 25577  Polycply 26096  𝔸caa 26229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-0p 25578  df-ply 26100  df-aa 26230
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator