MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addlsub Structured version   Visualization version   GIF version

Theorem addlsub 11668
Description: Left-subtraction: Subtraction of the left summand from the result of an addition. (Contributed by BJ, 6-Jun-2019.)
Hypotheses
Ref Expression
addlsub.a (𝜑𝐴 ∈ ℂ)
addlsub.b (𝜑𝐵 ∈ ℂ)
addlsub.c (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
addlsub (𝜑 → ((𝐴 + 𝐵) = 𝐶𝐴 = (𝐶𝐵)))

Proof of Theorem addlsub
StepHypRef Expression
1 oveq1 7433 . . 3 ((𝐴 + 𝐵) = 𝐶 → ((𝐴 + 𝐵) − 𝐵) = (𝐶𝐵))
2 addlsub.a . . . . 5 (𝜑𝐴 ∈ ℂ)
3 addlsub.b . . . . 5 (𝜑𝐵 ∈ ℂ)
42, 3pncand 11610 . . . 4 (𝜑 → ((𝐴 + 𝐵) − 𝐵) = 𝐴)
5 eqtr2 2752 . . . . . 6 ((((𝐴 + 𝐵) − 𝐵) = (𝐶𝐵) ∧ ((𝐴 + 𝐵) − 𝐵) = 𝐴) → (𝐶𝐵) = 𝐴)
65eqcomd 2734 . . . . 5 ((((𝐴 + 𝐵) − 𝐵) = (𝐶𝐵) ∧ ((𝐴 + 𝐵) − 𝐵) = 𝐴) → 𝐴 = (𝐶𝐵))
76a1i 11 . . . 4 (𝜑 → ((((𝐴 + 𝐵) − 𝐵) = (𝐶𝐵) ∧ ((𝐴 + 𝐵) − 𝐵) = 𝐴) → 𝐴 = (𝐶𝐵)))
84, 7mpan2d 692 . . 3 (𝜑 → (((𝐴 + 𝐵) − 𝐵) = (𝐶𝐵) → 𝐴 = (𝐶𝐵)))
91, 8syl5 34 . 2 (𝜑 → ((𝐴 + 𝐵) = 𝐶𝐴 = (𝐶𝐵)))
10 oveq1 7433 . . 3 (𝐴 = (𝐶𝐵) → (𝐴 + 𝐵) = ((𝐶𝐵) + 𝐵))
11 addlsub.c . . . . 5 (𝜑𝐶 ∈ ℂ)
1211, 3npcand 11613 . . . 4 (𝜑 → ((𝐶𝐵) + 𝐵) = 𝐶)
13 eqtr 2751 . . . . 5 (((𝐴 + 𝐵) = ((𝐶𝐵) + 𝐵) ∧ ((𝐶𝐵) + 𝐵) = 𝐶) → (𝐴 + 𝐵) = 𝐶)
1413a1i 11 . . . 4 (𝜑 → (((𝐴 + 𝐵) = ((𝐶𝐵) + 𝐵) ∧ ((𝐶𝐵) + 𝐵) = 𝐶) → (𝐴 + 𝐵) = 𝐶))
1512, 14mpan2d 692 . . 3 (𝜑 → ((𝐴 + 𝐵) = ((𝐶𝐵) + 𝐵) → (𝐴 + 𝐵) = 𝐶))
1610, 15syl5 34 . 2 (𝜑 → (𝐴 = (𝐶𝐵) → (𝐴 + 𝐵) = 𝐶))
179, 16impbid 211 1 (𝜑 → ((𝐴 + 𝐵) = 𝐶𝐴 = (𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  (class class class)co 7426  cc 11144   + caddc 11149  cmin 11482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-po 5594  df-so 5595  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-pnf 11288  df-mnf 11289  df-ltxr 11291  df-sub 11484
This theorem is referenced by:  addrsub  11669  subexsub  11670  lineq  12089  nn0ob  16368  aks4d1p1p5  41578  primrootscoprbij  41605  sticksstones10  41659  sticksstones12a  41661  blen1b  47739  nn0sumshdiglem1  47772
  Copyright terms: Public domain W3C validator