| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addlsub | Structured version Visualization version GIF version | ||
| Description: Left-subtraction: Subtraction of the left summand from the result of an addition. (Contributed by BJ, 6-Jun-2019.) |
| Ref | Expression |
|---|---|
| addlsub.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addlsub.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| addlsub.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| addlsub | ⊢ (𝜑 → ((𝐴 + 𝐵) = 𝐶 ↔ 𝐴 = (𝐶 − 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7348 | . . 3 ⊢ ((𝐴 + 𝐵) = 𝐶 → ((𝐴 + 𝐵) − 𝐵) = (𝐶 − 𝐵)) | |
| 2 | addlsub.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 3 | addlsub.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | 2, 3 | pncand 11468 | . . . 4 ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
| 5 | eqtr2 2752 | . . . . . 6 ⊢ ((((𝐴 + 𝐵) − 𝐵) = (𝐶 − 𝐵) ∧ ((𝐴 + 𝐵) − 𝐵) = 𝐴) → (𝐶 − 𝐵) = 𝐴) | |
| 6 | 5 | eqcomd 2737 | . . . . 5 ⊢ ((((𝐴 + 𝐵) − 𝐵) = (𝐶 − 𝐵) ∧ ((𝐴 + 𝐵) − 𝐵) = 𝐴) → 𝐴 = (𝐶 − 𝐵)) |
| 7 | 6 | a1i 11 | . . . 4 ⊢ (𝜑 → ((((𝐴 + 𝐵) − 𝐵) = (𝐶 − 𝐵) ∧ ((𝐴 + 𝐵) − 𝐵) = 𝐴) → 𝐴 = (𝐶 − 𝐵))) |
| 8 | 4, 7 | mpan2d 694 | . . 3 ⊢ (𝜑 → (((𝐴 + 𝐵) − 𝐵) = (𝐶 − 𝐵) → 𝐴 = (𝐶 − 𝐵))) |
| 9 | 1, 8 | syl5 34 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐵) = 𝐶 → 𝐴 = (𝐶 − 𝐵))) |
| 10 | oveq1 7348 | . . 3 ⊢ (𝐴 = (𝐶 − 𝐵) → (𝐴 + 𝐵) = ((𝐶 − 𝐵) + 𝐵)) | |
| 11 | addlsub.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 12 | 11, 3 | npcand 11471 | . . . 4 ⊢ (𝜑 → ((𝐶 − 𝐵) + 𝐵) = 𝐶) |
| 13 | eqtr 2751 | . . . . 5 ⊢ (((𝐴 + 𝐵) = ((𝐶 − 𝐵) + 𝐵) ∧ ((𝐶 − 𝐵) + 𝐵) = 𝐶) → (𝐴 + 𝐵) = 𝐶) | |
| 14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → (((𝐴 + 𝐵) = ((𝐶 − 𝐵) + 𝐵) ∧ ((𝐶 − 𝐵) + 𝐵) = 𝐶) → (𝐴 + 𝐵) = 𝐶)) |
| 15 | 12, 14 | mpan2d 694 | . . 3 ⊢ (𝜑 → ((𝐴 + 𝐵) = ((𝐶 − 𝐵) + 𝐵) → (𝐴 + 𝐵) = 𝐶)) |
| 16 | 10, 15 | syl5 34 | . 2 ⊢ (𝜑 → (𝐴 = (𝐶 − 𝐵) → (𝐴 + 𝐵) = 𝐶)) |
| 17 | 9, 16 | impbid 212 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) = 𝐶 ↔ 𝐴 = (𝐶 − 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 (class class class)co 7341 ℂcc 10999 + caddc 11004 − cmin 11339 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-po 5519 df-so 5520 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-ltxr 11146 df-sub 11341 |
| This theorem is referenced by: addrsub 11529 subexsub 11530 lineq 11953 nn0ob 16290 quad3d 32725 constrrtcclem 33739 aks4d1p1p5 42108 primrootscoprbij 42135 sticksstones10 42188 sticksstones12a 42190 blen1b 48620 nn0sumshdiglem1 48653 |
| Copyright terms: Public domain | W3C validator |