MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ficard Structured version   Visualization version   GIF version

Theorem ficard 10525
Description: A set is finite iff its cardinal is a natural number. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
ficard (𝐴𝑉 → (𝐴 ∈ Fin ↔ (card‘𝐴) ∈ ω))

Proof of Theorem ficard
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isfi 8950 . . 3 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
2 carden 10511 . . . . 5 ((𝐴𝑉𝑥 ∈ ω) → ((card‘𝐴) = (card‘𝑥) ↔ 𝐴𝑥))
3 cardnn 9923 . . . . . . . 8 (𝑥 ∈ ω → (card‘𝑥) = 𝑥)
4 eqtr 2750 . . . . . . . . 9 (((card‘𝐴) = (card‘𝑥) ∧ (card‘𝑥) = 𝑥) → (card‘𝐴) = 𝑥)
54expcom 413 . . . . . . . 8 ((card‘𝑥) = 𝑥 → ((card‘𝐴) = (card‘𝑥) → (card‘𝐴) = 𝑥))
63, 5syl 17 . . . . . . 7 (𝑥 ∈ ω → ((card‘𝐴) = (card‘𝑥) → (card‘𝐴) = 𝑥))
7 eleq1a 2824 . . . . . . 7 (𝑥 ∈ ω → ((card‘𝐴) = 𝑥 → (card‘𝐴) ∈ ω))
86, 7syld 47 . . . . . 6 (𝑥 ∈ ω → ((card‘𝐴) = (card‘𝑥) → (card‘𝐴) ∈ ω))
98adantl 481 . . . . 5 ((𝐴𝑉𝑥 ∈ ω) → ((card‘𝐴) = (card‘𝑥) → (card‘𝐴) ∈ ω))
102, 9sylbird 260 . . . 4 ((𝐴𝑉𝑥 ∈ ω) → (𝐴𝑥 → (card‘𝐴) ∈ ω))
1110rexlimdva 3135 . . 3 (𝐴𝑉 → (∃𝑥 ∈ ω 𝐴𝑥 → (card‘𝐴) ∈ ω))
121, 11biimtrid 242 . 2 (𝐴𝑉 → (𝐴 ∈ Fin → (card‘𝐴) ∈ ω))
13 cardnn 9923 . . . . . . . 8 ((card‘𝐴) ∈ ω → (card‘(card‘𝐴)) = (card‘𝐴))
1413eqcomd 2736 . . . . . . 7 ((card‘𝐴) ∈ ω → (card‘𝐴) = (card‘(card‘𝐴)))
1514adantl 481 . . . . . 6 ((𝐴𝑉 ∧ (card‘𝐴) ∈ ω) → (card‘𝐴) = (card‘(card‘𝐴)))
16 carden 10511 . . . . . 6 ((𝐴𝑉 ∧ (card‘𝐴) ∈ ω) → ((card‘𝐴) = (card‘(card‘𝐴)) ↔ 𝐴 ≈ (card‘𝐴)))
1715, 16mpbid 232 . . . . 5 ((𝐴𝑉 ∧ (card‘𝐴) ∈ ω) → 𝐴 ≈ (card‘𝐴))
1817ex 412 . . . 4 (𝐴𝑉 → ((card‘𝐴) ∈ ω → 𝐴 ≈ (card‘𝐴)))
1918ancld 550 . . 3 (𝐴𝑉 → ((card‘𝐴) ∈ ω → ((card‘𝐴) ∈ ω ∧ 𝐴 ≈ (card‘𝐴))))
20 breq2 5114 . . . . 5 (𝑥 = (card‘𝐴) → (𝐴𝑥𝐴 ≈ (card‘𝐴)))
2120rspcev 3591 . . . 4 (((card‘𝐴) ∈ ω ∧ 𝐴 ≈ (card‘𝐴)) → ∃𝑥 ∈ ω 𝐴𝑥)
2221, 1sylibr 234 . . 3 (((card‘𝐴) ∈ ω ∧ 𝐴 ≈ (card‘𝐴)) → 𝐴 ∈ Fin)
2319, 22syl6 35 . 2 (𝐴𝑉 → ((card‘𝐴) ∈ ω → 𝐴 ∈ Fin))
2412, 23impbid 212 1 (𝐴𝑉 → (𝐴 ∈ Fin ↔ (card‘𝐴) ∈ ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054   class class class wbr 5110  cfv 6514  ωcom 7845  cen 8918  Fincfn 8921  cardccrd 9895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-ac2 10423
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-ac 10076
This theorem is referenced by:  cfpwsdom  10544
  Copyright terms: Public domain W3C validator