![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ficard | Structured version Visualization version GIF version |
Description: A set is finite iff its cardinal is a natural number. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
ficard | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ (card‘𝐴) ∈ ω)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 9014 | . . 3 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
2 | carden 10588 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω) → ((card‘𝐴) = (card‘𝑥) ↔ 𝐴 ≈ 𝑥)) | |
3 | cardnn 10000 | . . . . . . . 8 ⊢ (𝑥 ∈ ω → (card‘𝑥) = 𝑥) | |
4 | eqtr 2757 | . . . . . . . . 9 ⊢ (((card‘𝐴) = (card‘𝑥) ∧ (card‘𝑥) = 𝑥) → (card‘𝐴) = 𝑥) | |
5 | 4 | expcom 413 | . . . . . . . 8 ⊢ ((card‘𝑥) = 𝑥 → ((card‘𝐴) = (card‘𝑥) → (card‘𝐴) = 𝑥)) |
6 | 3, 5 | syl 17 | . . . . . . 7 ⊢ (𝑥 ∈ ω → ((card‘𝐴) = (card‘𝑥) → (card‘𝐴) = 𝑥)) |
7 | eleq1a 2833 | . . . . . . 7 ⊢ (𝑥 ∈ ω → ((card‘𝐴) = 𝑥 → (card‘𝐴) ∈ ω)) | |
8 | 6, 7 | syld 47 | . . . . . 6 ⊢ (𝑥 ∈ ω → ((card‘𝐴) = (card‘𝑥) → (card‘𝐴) ∈ ω)) |
9 | 8 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω) → ((card‘𝐴) = (card‘𝑥) → (card‘𝐴) ∈ ω)) |
10 | 2, 9 | sylbird 260 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω) → (𝐴 ≈ 𝑥 → (card‘𝐴) ∈ ω)) |
11 | 10 | rexlimdva 3152 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 → (card‘𝐴) ∈ ω)) |
12 | 1, 11 | biimtrid 242 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)) |
13 | cardnn 10000 | . . . . . . . 8 ⊢ ((card‘𝐴) ∈ ω → (card‘(card‘𝐴)) = (card‘𝐴)) | |
14 | 13 | eqcomd 2740 | . . . . . . 7 ⊢ ((card‘𝐴) ∈ ω → (card‘𝐴) = (card‘(card‘𝐴))) |
15 | 14 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ (card‘𝐴) ∈ ω) → (card‘𝐴) = (card‘(card‘𝐴))) |
16 | carden 10588 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ (card‘𝐴) ∈ ω) → ((card‘𝐴) = (card‘(card‘𝐴)) ↔ 𝐴 ≈ (card‘𝐴))) | |
17 | 15, 16 | mpbid 232 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ (card‘𝐴) ∈ ω) → 𝐴 ≈ (card‘𝐴)) |
18 | 17 | ex 412 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((card‘𝐴) ∈ ω → 𝐴 ≈ (card‘𝐴))) |
19 | 18 | ancld 550 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((card‘𝐴) ∈ ω → ((card‘𝐴) ∈ ω ∧ 𝐴 ≈ (card‘𝐴)))) |
20 | breq2 5151 | . . . . 5 ⊢ (𝑥 = (card‘𝐴) → (𝐴 ≈ 𝑥 ↔ 𝐴 ≈ (card‘𝐴))) | |
21 | 20 | rspcev 3621 | . . . 4 ⊢ (((card‘𝐴) ∈ ω ∧ 𝐴 ≈ (card‘𝐴)) → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
22 | 21, 1 | sylibr 234 | . . 3 ⊢ (((card‘𝐴) ∈ ω ∧ 𝐴 ≈ (card‘𝐴)) → 𝐴 ∈ Fin) |
23 | 19, 22 | syl6 35 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((card‘𝐴) ∈ ω → 𝐴 ∈ Fin)) |
24 | 12, 23 | impbid 212 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ (card‘𝐴) ∈ ω)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∃wrex 3067 class class class wbr 5147 ‘cfv 6562 ωcom 7886 ≈ cen 8980 Fincfn 8983 cardccrd 9972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-ac2 10500 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-1o 8504 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-card 9976 df-ac 10153 |
This theorem is referenced by: cfpwsdom 10621 |
Copyright terms: Public domain | W3C validator |