MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ficard Structured version   Visualization version   GIF version

Theorem ficard 10634
Description: A set is finite iff its cardinal is a natural number. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
ficard (𝐴𝑉 → (𝐴 ∈ Fin ↔ (card‘𝐴) ∈ ω))

Proof of Theorem ficard
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isfi 9036 . . 3 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
2 carden 10620 . . . . 5 ((𝐴𝑉𝑥 ∈ ω) → ((card‘𝐴) = (card‘𝑥) ↔ 𝐴𝑥))
3 cardnn 10032 . . . . . . . 8 (𝑥 ∈ ω → (card‘𝑥) = 𝑥)
4 eqtr 2763 . . . . . . . . 9 (((card‘𝐴) = (card‘𝑥) ∧ (card‘𝑥) = 𝑥) → (card‘𝐴) = 𝑥)
54expcom 413 . . . . . . . 8 ((card‘𝑥) = 𝑥 → ((card‘𝐴) = (card‘𝑥) → (card‘𝐴) = 𝑥))
63, 5syl 17 . . . . . . 7 (𝑥 ∈ ω → ((card‘𝐴) = (card‘𝑥) → (card‘𝐴) = 𝑥))
7 eleq1a 2839 . . . . . . 7 (𝑥 ∈ ω → ((card‘𝐴) = 𝑥 → (card‘𝐴) ∈ ω))
86, 7syld 47 . . . . . 6 (𝑥 ∈ ω → ((card‘𝐴) = (card‘𝑥) → (card‘𝐴) ∈ ω))
98adantl 481 . . . . 5 ((𝐴𝑉𝑥 ∈ ω) → ((card‘𝐴) = (card‘𝑥) → (card‘𝐴) ∈ ω))
102, 9sylbird 260 . . . 4 ((𝐴𝑉𝑥 ∈ ω) → (𝐴𝑥 → (card‘𝐴) ∈ ω))
1110rexlimdva 3161 . . 3 (𝐴𝑉 → (∃𝑥 ∈ ω 𝐴𝑥 → (card‘𝐴) ∈ ω))
121, 11biimtrid 242 . 2 (𝐴𝑉 → (𝐴 ∈ Fin → (card‘𝐴) ∈ ω))
13 cardnn 10032 . . . . . . . 8 ((card‘𝐴) ∈ ω → (card‘(card‘𝐴)) = (card‘𝐴))
1413eqcomd 2746 . . . . . . 7 ((card‘𝐴) ∈ ω → (card‘𝐴) = (card‘(card‘𝐴)))
1514adantl 481 . . . . . 6 ((𝐴𝑉 ∧ (card‘𝐴) ∈ ω) → (card‘𝐴) = (card‘(card‘𝐴)))
16 carden 10620 . . . . . 6 ((𝐴𝑉 ∧ (card‘𝐴) ∈ ω) → ((card‘𝐴) = (card‘(card‘𝐴)) ↔ 𝐴 ≈ (card‘𝐴)))
1715, 16mpbid 232 . . . . 5 ((𝐴𝑉 ∧ (card‘𝐴) ∈ ω) → 𝐴 ≈ (card‘𝐴))
1817ex 412 . . . 4 (𝐴𝑉 → ((card‘𝐴) ∈ ω → 𝐴 ≈ (card‘𝐴)))
1918ancld 550 . . 3 (𝐴𝑉 → ((card‘𝐴) ∈ ω → ((card‘𝐴) ∈ ω ∧ 𝐴 ≈ (card‘𝐴))))
20 breq2 5170 . . . . 5 (𝑥 = (card‘𝐴) → (𝐴𝑥𝐴 ≈ (card‘𝐴)))
2120rspcev 3635 . . . 4 (((card‘𝐴) ∈ ω ∧ 𝐴 ≈ (card‘𝐴)) → ∃𝑥 ∈ ω 𝐴𝑥)
2221, 1sylibr 234 . . 3 (((card‘𝐴) ∈ ω ∧ 𝐴 ≈ (card‘𝐴)) → 𝐴 ∈ Fin)
2319, 22syl6 35 . 2 (𝐴𝑉 → ((card‘𝐴) ∈ ω → 𝐴 ∈ Fin))
2412, 23impbid 212 1 (𝐴𝑉 → (𝐴 ∈ Fin ↔ (card‘𝐴) ∈ ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076   class class class wbr 5166  cfv 6573  ωcom 7903  cen 9000  Fincfn 9003  cardccrd 10004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-ac2 10532
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-ac 10185
This theorem is referenced by:  cfpwsdom  10653
  Copyright terms: Public domain W3C validator