| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ficard | Structured version Visualization version GIF version | ||
| Description: A set is finite iff its cardinal is a natural number. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| ficard | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ (card‘𝐴) ∈ ω)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 8901 | . . 3 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
| 2 | carden 10445 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω) → ((card‘𝐴) = (card‘𝑥) ↔ 𝐴 ≈ 𝑥)) | |
| 3 | cardnn 9859 | . . . . . . . 8 ⊢ (𝑥 ∈ ω → (card‘𝑥) = 𝑥) | |
| 4 | eqtr 2749 | . . . . . . . . 9 ⊢ (((card‘𝐴) = (card‘𝑥) ∧ (card‘𝑥) = 𝑥) → (card‘𝐴) = 𝑥) | |
| 5 | 4 | expcom 413 | . . . . . . . 8 ⊢ ((card‘𝑥) = 𝑥 → ((card‘𝐴) = (card‘𝑥) → (card‘𝐴) = 𝑥)) |
| 6 | 3, 5 | syl 17 | . . . . . . 7 ⊢ (𝑥 ∈ ω → ((card‘𝐴) = (card‘𝑥) → (card‘𝐴) = 𝑥)) |
| 7 | eleq1a 2823 | . . . . . . 7 ⊢ (𝑥 ∈ ω → ((card‘𝐴) = 𝑥 → (card‘𝐴) ∈ ω)) | |
| 8 | 6, 7 | syld 47 | . . . . . 6 ⊢ (𝑥 ∈ ω → ((card‘𝐴) = (card‘𝑥) → (card‘𝐴) ∈ ω)) |
| 9 | 8 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω) → ((card‘𝐴) = (card‘𝑥) → (card‘𝐴) ∈ ω)) |
| 10 | 2, 9 | sylbird 260 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω) → (𝐴 ≈ 𝑥 → (card‘𝐴) ∈ ω)) |
| 11 | 10 | rexlimdva 3130 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 → (card‘𝐴) ∈ ω)) |
| 12 | 1, 11 | biimtrid 242 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)) |
| 13 | cardnn 9859 | . . . . . . . 8 ⊢ ((card‘𝐴) ∈ ω → (card‘(card‘𝐴)) = (card‘𝐴)) | |
| 14 | 13 | eqcomd 2735 | . . . . . . 7 ⊢ ((card‘𝐴) ∈ ω → (card‘𝐴) = (card‘(card‘𝐴))) |
| 15 | 14 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ (card‘𝐴) ∈ ω) → (card‘𝐴) = (card‘(card‘𝐴))) |
| 16 | carden 10445 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ (card‘𝐴) ∈ ω) → ((card‘𝐴) = (card‘(card‘𝐴)) ↔ 𝐴 ≈ (card‘𝐴))) | |
| 17 | 15, 16 | mpbid 232 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ (card‘𝐴) ∈ ω) → 𝐴 ≈ (card‘𝐴)) |
| 18 | 17 | ex 412 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((card‘𝐴) ∈ ω → 𝐴 ≈ (card‘𝐴))) |
| 19 | 18 | ancld 550 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((card‘𝐴) ∈ ω → ((card‘𝐴) ∈ ω ∧ 𝐴 ≈ (card‘𝐴)))) |
| 20 | breq2 5096 | . . . . 5 ⊢ (𝑥 = (card‘𝐴) → (𝐴 ≈ 𝑥 ↔ 𝐴 ≈ (card‘𝐴))) | |
| 21 | 20 | rspcev 3577 | . . . 4 ⊢ (((card‘𝐴) ∈ ω ∧ 𝐴 ≈ (card‘𝐴)) → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| 22 | 21, 1 | sylibr 234 | . . 3 ⊢ (((card‘𝐴) ∈ ω ∧ 𝐴 ≈ (card‘𝐴)) → 𝐴 ∈ Fin) |
| 23 | 19, 22 | syl6 35 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((card‘𝐴) ∈ ω → 𝐴 ∈ Fin)) |
| 24 | 12, 23 | impbid 212 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ (card‘𝐴) ∈ ω)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 class class class wbr 5092 ‘cfv 6482 ωcom 7799 ≈ cen 8869 Fincfn 8872 cardccrd 9831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-ac2 10357 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-card 9835 df-ac 10010 |
| This theorem is referenced by: cfpwsdom 10478 |
| Copyright terms: Public domain | W3C validator |