![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ficard | Structured version Visualization version GIF version |
Description: A set is finite iff its cardinal is a natural number. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
ficard | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ (card‘𝐴) ∈ ω)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 8371 | . . 3 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
2 | carden 9808 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω) → ((card‘𝐴) = (card‘𝑥) ↔ 𝐴 ≈ 𝑥)) | |
3 | cardnn 9227 | . . . . . . . 8 ⊢ (𝑥 ∈ ω → (card‘𝑥) = 𝑥) | |
4 | eqtr 2814 | . . . . . . . . 9 ⊢ (((card‘𝐴) = (card‘𝑥) ∧ (card‘𝑥) = 𝑥) → (card‘𝐴) = 𝑥) | |
5 | 4 | expcom 414 | . . . . . . . 8 ⊢ ((card‘𝑥) = 𝑥 → ((card‘𝐴) = (card‘𝑥) → (card‘𝐴) = 𝑥)) |
6 | 3, 5 | syl 17 | . . . . . . 7 ⊢ (𝑥 ∈ ω → ((card‘𝐴) = (card‘𝑥) → (card‘𝐴) = 𝑥)) |
7 | eleq1a 2876 | . . . . . . 7 ⊢ (𝑥 ∈ ω → ((card‘𝐴) = 𝑥 → (card‘𝐴) ∈ ω)) | |
8 | 6, 7 | syld 47 | . . . . . 6 ⊢ (𝑥 ∈ ω → ((card‘𝐴) = (card‘𝑥) → (card‘𝐴) ∈ ω)) |
9 | 8 | adantl 482 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω) → ((card‘𝐴) = (card‘𝑥) → (card‘𝐴) ∈ ω)) |
10 | 2, 9 | sylbird 261 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω) → (𝐴 ≈ 𝑥 → (card‘𝐴) ∈ ω)) |
11 | 10 | rexlimdva 3244 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 → (card‘𝐴) ∈ ω)) |
12 | 1, 11 | syl5bi 243 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)) |
13 | cardnn 9227 | . . . . . . . 8 ⊢ ((card‘𝐴) ∈ ω → (card‘(card‘𝐴)) = (card‘𝐴)) | |
14 | 13 | eqcomd 2799 | . . . . . . 7 ⊢ ((card‘𝐴) ∈ ω → (card‘𝐴) = (card‘(card‘𝐴))) |
15 | 14 | adantl 482 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ (card‘𝐴) ∈ ω) → (card‘𝐴) = (card‘(card‘𝐴))) |
16 | carden 9808 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ (card‘𝐴) ∈ ω) → ((card‘𝐴) = (card‘(card‘𝐴)) ↔ 𝐴 ≈ (card‘𝐴))) | |
17 | 15, 16 | mpbid 233 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ (card‘𝐴) ∈ ω) → 𝐴 ≈ (card‘𝐴)) |
18 | 17 | ex 413 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((card‘𝐴) ∈ ω → 𝐴 ≈ (card‘𝐴))) |
19 | 18 | ancld 551 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((card‘𝐴) ∈ ω → ((card‘𝐴) ∈ ω ∧ 𝐴 ≈ (card‘𝐴)))) |
20 | breq2 4960 | . . . . 5 ⊢ (𝑥 = (card‘𝐴) → (𝐴 ≈ 𝑥 ↔ 𝐴 ≈ (card‘𝐴))) | |
21 | 20 | rspcev 3554 | . . . 4 ⊢ (((card‘𝐴) ∈ ω ∧ 𝐴 ≈ (card‘𝐴)) → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
22 | 21, 1 | sylibr 235 | . . 3 ⊢ (((card‘𝐴) ∈ ω ∧ 𝐴 ≈ (card‘𝐴)) → 𝐴 ∈ Fin) |
23 | 19, 22 | syl6 35 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((card‘𝐴) ∈ ω → 𝐴 ∈ Fin)) |
24 | 12, 23 | impbid 213 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ (card‘𝐴) ∈ ω)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1520 ∈ wcel 2079 ∃wrex 3104 class class class wbr 4956 ‘cfv 6217 ωcom 7427 ≈ cen 8344 Fincfn 8347 cardccrd 9199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-rep 5075 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 ax-ac2 9720 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1079 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-ral 3108 df-rex 3109 df-reu 3110 df-rmo 3111 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-pss 3871 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-tp 4471 df-op 4473 df-uni 4740 df-int 4777 df-iun 4821 df-br 4957 df-opab 5019 df-mpt 5036 df-tr 5058 df-id 5340 df-eprel 5345 df-po 5354 df-so 5355 df-fr 5394 df-se 5395 df-we 5396 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-pred 6015 df-ord 6061 df-on 6062 df-lim 6063 df-suc 6064 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-isom 6226 df-riota 6968 df-om 7428 df-wrecs 7789 df-recs 7851 df-er 8130 df-en 8348 df-dom 8349 df-sdom 8350 df-fin 8351 df-card 9203 df-ac 9377 |
This theorem is referenced by: cfpwsdom 9841 |
Copyright terms: Public domain | W3C validator |