| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ficard | Structured version Visualization version GIF version | ||
| Description: A set is finite iff its cardinal is a natural number. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| ficard | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ (card‘𝐴) ∈ ω)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 8898 | . . 3 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
| 2 | carden 10442 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω) → ((card‘𝐴) = (card‘𝑥) ↔ 𝐴 ≈ 𝑥)) | |
| 3 | cardnn 9856 | . . . . . . . 8 ⊢ (𝑥 ∈ ω → (card‘𝑥) = 𝑥) | |
| 4 | eqtr 2751 | . . . . . . . . 9 ⊢ (((card‘𝐴) = (card‘𝑥) ∧ (card‘𝑥) = 𝑥) → (card‘𝐴) = 𝑥) | |
| 5 | 4 | expcom 413 | . . . . . . . 8 ⊢ ((card‘𝑥) = 𝑥 → ((card‘𝐴) = (card‘𝑥) → (card‘𝐴) = 𝑥)) |
| 6 | 3, 5 | syl 17 | . . . . . . 7 ⊢ (𝑥 ∈ ω → ((card‘𝐴) = (card‘𝑥) → (card‘𝐴) = 𝑥)) |
| 7 | eleq1a 2826 | . . . . . . 7 ⊢ (𝑥 ∈ ω → ((card‘𝐴) = 𝑥 → (card‘𝐴) ∈ ω)) | |
| 8 | 6, 7 | syld 47 | . . . . . 6 ⊢ (𝑥 ∈ ω → ((card‘𝐴) = (card‘𝑥) → (card‘𝐴) ∈ ω)) |
| 9 | 8 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω) → ((card‘𝐴) = (card‘𝑥) → (card‘𝐴) ∈ ω)) |
| 10 | 2, 9 | sylbird 260 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω) → (𝐴 ≈ 𝑥 → (card‘𝐴) ∈ ω)) |
| 11 | 10 | rexlimdva 3133 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 → (card‘𝐴) ∈ ω)) |
| 12 | 1, 11 | biimtrid 242 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)) |
| 13 | cardnn 9856 | . . . . . . . 8 ⊢ ((card‘𝐴) ∈ ω → (card‘(card‘𝐴)) = (card‘𝐴)) | |
| 14 | 13 | eqcomd 2737 | . . . . . . 7 ⊢ ((card‘𝐴) ∈ ω → (card‘𝐴) = (card‘(card‘𝐴))) |
| 15 | 14 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ (card‘𝐴) ∈ ω) → (card‘𝐴) = (card‘(card‘𝐴))) |
| 16 | carden 10442 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ (card‘𝐴) ∈ ω) → ((card‘𝐴) = (card‘(card‘𝐴)) ↔ 𝐴 ≈ (card‘𝐴))) | |
| 17 | 15, 16 | mpbid 232 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ (card‘𝐴) ∈ ω) → 𝐴 ≈ (card‘𝐴)) |
| 18 | 17 | ex 412 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((card‘𝐴) ∈ ω → 𝐴 ≈ (card‘𝐴))) |
| 19 | 18 | ancld 550 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((card‘𝐴) ∈ ω → ((card‘𝐴) ∈ ω ∧ 𝐴 ≈ (card‘𝐴)))) |
| 20 | breq2 5093 | . . . . 5 ⊢ (𝑥 = (card‘𝐴) → (𝐴 ≈ 𝑥 ↔ 𝐴 ≈ (card‘𝐴))) | |
| 21 | 20 | rspcev 3572 | . . . 4 ⊢ (((card‘𝐴) ∈ ω ∧ 𝐴 ≈ (card‘𝐴)) → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| 22 | 21, 1 | sylibr 234 | . . 3 ⊢ (((card‘𝐴) ∈ ω ∧ 𝐴 ≈ (card‘𝐴)) → 𝐴 ∈ Fin) |
| 23 | 19, 22 | syl6 35 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((card‘𝐴) ∈ ω → 𝐴 ∈ Fin)) |
| 24 | 12, 23 | impbid 212 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ (card‘𝐴) ∈ ω)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 class class class wbr 5089 ‘cfv 6481 ωcom 7796 ≈ cen 8866 Fincfn 8869 cardccrd 9828 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-ac2 10354 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-ac 10007 |
| This theorem is referenced by: cfpwsdom 10475 |
| Copyright terms: Public domain | W3C validator |