MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ficard Structured version   Visualization version   GIF version

Theorem ficard 10556
Description: A set is finite iff its cardinal is a natural number. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
ficard (𝐴 ∈ 𝑉 β†’ (𝐴 ∈ Fin ↔ (cardβ€˜π΄) ∈ Ο‰))

Proof of Theorem ficard
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 isfi 8968 . . 3 (𝐴 ∈ Fin ↔ βˆƒπ‘₯ ∈ Ο‰ 𝐴 β‰ˆ π‘₯)
2 carden 10542 . . . . 5 ((𝐴 ∈ 𝑉 ∧ π‘₯ ∈ Ο‰) β†’ ((cardβ€˜π΄) = (cardβ€˜π‘₯) ↔ 𝐴 β‰ˆ π‘₯))
3 cardnn 9954 . . . . . . . 8 (π‘₯ ∈ Ο‰ β†’ (cardβ€˜π‘₯) = π‘₯)
4 eqtr 2755 . . . . . . . . 9 (((cardβ€˜π΄) = (cardβ€˜π‘₯) ∧ (cardβ€˜π‘₯) = π‘₯) β†’ (cardβ€˜π΄) = π‘₯)
54expcom 414 . . . . . . . 8 ((cardβ€˜π‘₯) = π‘₯ β†’ ((cardβ€˜π΄) = (cardβ€˜π‘₯) β†’ (cardβ€˜π΄) = π‘₯))
63, 5syl 17 . . . . . . 7 (π‘₯ ∈ Ο‰ β†’ ((cardβ€˜π΄) = (cardβ€˜π‘₯) β†’ (cardβ€˜π΄) = π‘₯))
7 eleq1a 2828 . . . . . . 7 (π‘₯ ∈ Ο‰ β†’ ((cardβ€˜π΄) = π‘₯ β†’ (cardβ€˜π΄) ∈ Ο‰))
86, 7syld 47 . . . . . 6 (π‘₯ ∈ Ο‰ β†’ ((cardβ€˜π΄) = (cardβ€˜π‘₯) β†’ (cardβ€˜π΄) ∈ Ο‰))
98adantl 482 . . . . 5 ((𝐴 ∈ 𝑉 ∧ π‘₯ ∈ Ο‰) β†’ ((cardβ€˜π΄) = (cardβ€˜π‘₯) β†’ (cardβ€˜π΄) ∈ Ο‰))
102, 9sylbird 259 . . . 4 ((𝐴 ∈ 𝑉 ∧ π‘₯ ∈ Ο‰) β†’ (𝐴 β‰ˆ π‘₯ β†’ (cardβ€˜π΄) ∈ Ο‰))
1110rexlimdva 3155 . . 3 (𝐴 ∈ 𝑉 β†’ (βˆƒπ‘₯ ∈ Ο‰ 𝐴 β‰ˆ π‘₯ β†’ (cardβ€˜π΄) ∈ Ο‰))
121, 11biimtrid 241 . 2 (𝐴 ∈ 𝑉 β†’ (𝐴 ∈ Fin β†’ (cardβ€˜π΄) ∈ Ο‰))
13 cardnn 9954 . . . . . . . 8 ((cardβ€˜π΄) ∈ Ο‰ β†’ (cardβ€˜(cardβ€˜π΄)) = (cardβ€˜π΄))
1413eqcomd 2738 . . . . . . 7 ((cardβ€˜π΄) ∈ Ο‰ β†’ (cardβ€˜π΄) = (cardβ€˜(cardβ€˜π΄)))
1514adantl 482 . . . . . 6 ((𝐴 ∈ 𝑉 ∧ (cardβ€˜π΄) ∈ Ο‰) β†’ (cardβ€˜π΄) = (cardβ€˜(cardβ€˜π΄)))
16 carden 10542 . . . . . 6 ((𝐴 ∈ 𝑉 ∧ (cardβ€˜π΄) ∈ Ο‰) β†’ ((cardβ€˜π΄) = (cardβ€˜(cardβ€˜π΄)) ↔ 𝐴 β‰ˆ (cardβ€˜π΄)))
1715, 16mpbid 231 . . . . 5 ((𝐴 ∈ 𝑉 ∧ (cardβ€˜π΄) ∈ Ο‰) β†’ 𝐴 β‰ˆ (cardβ€˜π΄))
1817ex 413 . . . 4 (𝐴 ∈ 𝑉 β†’ ((cardβ€˜π΄) ∈ Ο‰ β†’ 𝐴 β‰ˆ (cardβ€˜π΄)))
1918ancld 551 . . 3 (𝐴 ∈ 𝑉 β†’ ((cardβ€˜π΄) ∈ Ο‰ β†’ ((cardβ€˜π΄) ∈ Ο‰ ∧ 𝐴 β‰ˆ (cardβ€˜π΄))))
20 breq2 5151 . . . . 5 (π‘₯ = (cardβ€˜π΄) β†’ (𝐴 β‰ˆ π‘₯ ↔ 𝐴 β‰ˆ (cardβ€˜π΄)))
2120rspcev 3612 . . . 4 (((cardβ€˜π΄) ∈ Ο‰ ∧ 𝐴 β‰ˆ (cardβ€˜π΄)) β†’ βˆƒπ‘₯ ∈ Ο‰ 𝐴 β‰ˆ π‘₯)
2221, 1sylibr 233 . . 3 (((cardβ€˜π΄) ∈ Ο‰ ∧ 𝐴 β‰ˆ (cardβ€˜π΄)) β†’ 𝐴 ∈ Fin)
2319, 22syl6 35 . 2 (𝐴 ∈ 𝑉 β†’ ((cardβ€˜π΄) ∈ Ο‰ β†’ 𝐴 ∈ Fin))
2412, 23impbid 211 1 (𝐴 ∈ 𝑉 β†’ (𝐴 ∈ Fin ↔ (cardβ€˜π΄) ∈ Ο‰))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070   class class class wbr 5147  β€˜cfv 6540  Ο‰com 7851   β‰ˆ cen 8932  Fincfn 8935  cardccrd 9926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-ac2 10454
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-ac 10107
This theorem is referenced by:  cfpwsdom  10575
  Copyright terms: Public domain W3C validator