![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfringc2 | Structured version Visualization version GIF version |
Description: Alternate definition of the category of unital rings (in a universe). (Contributed by AV, 16-Mar-2020.) |
Ref | Expression |
---|---|
dfringc2.c | β’ πΆ = (RingCatβπ) |
dfringc2.u | β’ (π β π β π) |
dfringc2.b | β’ (π β π΅ = (π β© Ring)) |
dfringc2.h | β’ (π β π» = ( RingHom βΎ (π΅ Γ π΅))) |
dfringc2.o | β’ (π β Β· = (compβ(ExtStrCatβπ))) |
Ref | Expression |
---|---|
dfringc2 | β’ (π β πΆ = {β¨(Baseβndx), π΅β©, β¨(Hom βndx), π»β©, β¨(compβndx), Β· β©}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfringc2.c | . . 3 β’ πΆ = (RingCatβπ) | |
2 | dfringc2.u | . . 3 β’ (π β π β π) | |
3 | dfringc2.b | . . 3 β’ (π β π΅ = (π β© Ring)) | |
4 | dfringc2.h | . . 3 β’ (π β π» = ( RingHom βΎ (π΅ Γ π΅))) | |
5 | 1, 2, 3, 4 | ringcval 20528 | . 2 β’ (π β πΆ = ((ExtStrCatβπ) βΎcat π»)) |
6 | eqid 2724 | . . 3 β’ ((ExtStrCatβπ) βΎcat π») = ((ExtStrCatβπ) βΎcat π») | |
7 | fvexd 6896 | . . 3 β’ (π β (ExtStrCatβπ) β V) | |
8 | inex1g 5309 | . . . . 5 β’ (π β π β (π β© Ring) β V) | |
9 | 2, 8 | syl 17 | . . . 4 β’ (π β (π β© Ring) β V) |
10 | 3, 9 | eqeltrd 2825 | . . 3 β’ (π β π΅ β V) |
11 | 3, 4 | rhmresfn 20529 | . . 3 β’ (π β π» Fn (π΅ Γ π΅)) |
12 | 6, 7, 10, 11 | rescval2 17771 | . 2 β’ (π β ((ExtStrCatβπ) βΎcat π») = (((ExtStrCatβπ) βΎs π΅) sSet β¨(Hom βndx), π»β©)) |
13 | eqid 2724 | . . . 4 β’ (ExtStrCatβπ) = (ExtStrCatβπ) | |
14 | eqidd 2725 | . . . 4 β’ (π β (π₯ β π, π¦ β π β¦ ((Baseβπ¦) βm (Baseβπ₯))) = (π₯ β π, π¦ β π β¦ ((Baseβπ¦) βm (Baseβπ₯)))) | |
15 | dfringc2.o | . . . . 5 β’ (π β Β· = (compβ(ExtStrCatβπ))) | |
16 | eqid 2724 | . . . . . 6 β’ (compβ(ExtStrCatβπ)) = (compβ(ExtStrCatβπ)) | |
17 | 13, 2, 16 | estrccofval 18079 | . . . . 5 β’ (π β (compβ(ExtStrCatβπ)) = (π£ β (π Γ π), π§ β π β¦ (π β ((Baseβπ§) βm (Baseβ(2nd βπ£))), π β ((Baseβ(2nd βπ£)) βm (Baseβ(1st βπ£))) β¦ (π β π)))) |
18 | 15, 17 | eqtrd 2764 | . . . 4 β’ (π β Β· = (π£ β (π Γ π), π§ β π β¦ (π β ((Baseβπ§) βm (Baseβ(2nd βπ£))), π β ((Baseβ(2nd βπ£)) βm (Baseβ(1st βπ£))) β¦ (π β π)))) |
19 | 13, 2, 14, 18 | estrcval 18074 | . . 3 β’ (π β (ExtStrCatβπ) = {β¨(Baseβndx), πβ©, β¨(Hom βndx), (π₯ β π, π¦ β π β¦ ((Baseβπ¦) βm (Baseβπ₯)))β©, β¨(compβndx), Β· β©}) |
20 | mpoexga 8057 | . . . 4 β’ ((π β π β§ π β π) β (π₯ β π, π¦ β π β¦ ((Baseβπ¦) βm (Baseβπ₯))) β V) | |
21 | 2, 2, 20 | syl2anc 583 | . . 3 β’ (π β (π₯ β π, π¦ β π β¦ ((Baseβπ¦) βm (Baseβπ₯))) β V) |
22 | fvexd 6896 | . . . 4 β’ (π β (compβ(ExtStrCatβπ)) β V) | |
23 | 15, 22 | eqeltrd 2825 | . . 3 β’ (π β Β· β V) |
24 | rhmfn 20386 | . . . . . 6 β’ RingHom Fn (Ring Γ Ring) | |
25 | fnfun 6639 | . . . . . 6 β’ ( RingHom Fn (Ring Γ Ring) β Fun RingHom ) | |
26 | 24, 25 | mp1i 13 | . . . . 5 β’ (π β Fun RingHom ) |
27 | sqxpexg 7735 | . . . . . 6 β’ (π΅ β V β (π΅ Γ π΅) β V) | |
28 | 10, 27 | syl 17 | . . . . 5 β’ (π β (π΅ Γ π΅) β V) |
29 | resfunexg 7208 | . . . . 5 β’ ((Fun RingHom β§ (π΅ Γ π΅) β V) β ( RingHom βΎ (π΅ Γ π΅)) β V) | |
30 | 26, 28, 29 | syl2anc 583 | . . . 4 β’ (π β ( RingHom βΎ (π΅ Γ π΅)) β V) |
31 | 4, 30 | eqeltrd 2825 | . . 3 β’ (π β π» β V) |
32 | inss1 4220 | . . . 4 β’ (π β© Ring) β π | |
33 | 3, 32 | eqsstrdi 4028 | . . 3 β’ (π β π΅ β π) |
34 | 19, 2, 21, 23, 31, 33 | estrres 18090 | . 2 β’ (π β (((ExtStrCatβπ) βΎs π΅) sSet β¨(Hom βndx), π»β©) = {β¨(Baseβndx), π΅β©, β¨(Hom βndx), π»β©, β¨(compβndx), Β· β©}) |
35 | 5, 12, 34 | 3eqtrd 2768 | 1 β’ (π β πΆ = {β¨(Baseβndx), π΅β©, β¨(Hom βndx), π»β©, β¨(compβndx), Β· β©}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 Vcvv 3466 β© cin 3939 {ctp 4624 β¨cop 4626 Γ cxp 5664 βΎ cres 5668 β ccom 5670 Fun wfun 6527 Fn wfn 6528 βcfv 6533 (class class class)co 7401 β cmpo 7403 1st c1st 7966 2nd c2nd 7967 βm cmap 8815 sSet csts 17092 ndxcnx 17122 Basecbs 17140 βΎs cress 17169 Hom chom 17204 compcco 17205 βΎcat cresc 17751 ExtStrCatcestrc 18072 Ringcrg 20123 RingHom crh 20356 RingCatcringc 20526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-map 8817 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-hom 17217 df-cco 17218 df-0g 17383 df-resc 17754 df-estrc 18073 df-mhm 18700 df-ghm 19124 df-mgp 20025 df-ur 20072 df-ring 20125 df-rhm 20359 df-ringc 20527 |
This theorem is referenced by: rngcresringcat 20550 |
Copyright terms: Public domain | W3C validator |