![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfringc2 | Structured version Visualization version GIF version |
Description: Alternate definition of the category of unital rings (in a universe). (Contributed by AV, 16-Mar-2020.) |
Ref | Expression |
---|---|
dfringc2.c | ⊢ 𝐶 = (RingCat‘𝑈) |
dfringc2.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
dfringc2.b | ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
dfringc2.h | ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) |
dfringc2.o | ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) |
Ref | Expression |
---|---|
dfringc2 | ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfringc2.c | . . 3 ⊢ 𝐶 = (RingCat‘𝑈) | |
2 | dfringc2.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
3 | dfringc2.b | . . 3 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) | |
4 | dfringc2.h | . . 3 ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) | |
5 | 1, 2, 3, 4 | ringcval 43677 | . 2 ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
6 | eqid 2771 | . . 3 ⊢ ((ExtStrCat‘𝑈) ↾cat 𝐻) = ((ExtStrCat‘𝑈) ↾cat 𝐻) | |
7 | fvexd 6511 | . . 3 ⊢ (𝜑 → (ExtStrCat‘𝑈) ∈ V) | |
8 | inex1g 5076 | . . . . 5 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Ring) ∈ V) | |
9 | 2, 8 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑈 ∩ Ring) ∈ V) |
10 | 3, 9 | eqeltrd 2859 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
11 | 3, 4 | rhmresfn 43678 | . . 3 ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) |
12 | 6, 7, 10, 11 | rescval2 16968 | . 2 ⊢ (𝜑 → ((ExtStrCat‘𝑈) ↾cat 𝐻) = (((ExtStrCat‘𝑈) ↾s 𝐵) sSet 〈(Hom ‘ndx), 𝐻〉)) |
13 | eqid 2771 | . . . 4 ⊢ (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈) | |
14 | eqidd 2772 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))) = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))) | |
15 | dfringc2.o | . . . . 5 ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) | |
16 | eqid 2771 | . . . . . 6 ⊢ (comp‘(ExtStrCat‘𝑈)) = (comp‘(ExtStrCat‘𝑈)) | |
17 | 13, 2, 16 | estrccofval 17249 | . . . . 5 ⊢ (𝜑 → (comp‘(ExtStrCat‘𝑈)) = (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑𝑚 (Base‘(2nd ‘𝑣))), 𝑓 ∈ ((Base‘(2nd ‘𝑣)) ↑𝑚 (Base‘(1st ‘𝑣))) ↦ (𝑔 ∘ 𝑓)))) |
18 | 15, 17 | eqtrd 2807 | . . . 4 ⊢ (𝜑 → · = (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑𝑚 (Base‘(2nd ‘𝑣))), 𝑓 ∈ ((Base‘(2nd ‘𝑣)) ↑𝑚 (Base‘(1st ‘𝑣))) ↦ (𝑔 ∘ 𝑓)))) |
19 | 13, 2, 14, 18 | estrcval 17244 | . . 3 ⊢ (𝜑 → (ExtStrCat‘𝑈) = {〈(Base‘ndx), 𝑈〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))〉, 〈(comp‘ndx), · 〉}) |
20 | mpoexga 7581 | . . . 4 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝑈 ∈ 𝑉) → (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))) ∈ V) | |
21 | 2, 2, 20 | syl2anc 576 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))) ∈ V) |
22 | fvexd 6511 | . . . 4 ⊢ (𝜑 → (comp‘(ExtStrCat‘𝑈)) ∈ V) | |
23 | 15, 22 | eqeltrd 2859 | . . 3 ⊢ (𝜑 → · ∈ V) |
24 | rhmfn 43587 | . . . . . 6 ⊢ RingHom Fn (Ring × Ring) | |
25 | fnfun 6283 | . . . . . 6 ⊢ ( RingHom Fn (Ring × Ring) → Fun RingHom ) | |
26 | 24, 25 | mp1i 13 | . . . . 5 ⊢ (𝜑 → Fun RingHom ) |
27 | sqxpexg 7292 | . . . . . 6 ⊢ (𝐵 ∈ V → (𝐵 × 𝐵) ∈ V) | |
28 | 10, 27 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐵 × 𝐵) ∈ V) |
29 | resfunexg 6802 | . . . . 5 ⊢ ((Fun RingHom ∧ (𝐵 × 𝐵) ∈ V) → ( RingHom ↾ (𝐵 × 𝐵)) ∈ V) | |
30 | 26, 28, 29 | syl2anc 576 | . . . 4 ⊢ (𝜑 → ( RingHom ↾ (𝐵 × 𝐵)) ∈ V) |
31 | 4, 30 | eqeltrd 2859 | . . 3 ⊢ (𝜑 → 𝐻 ∈ V) |
32 | inss1 4086 | . . . 4 ⊢ (𝑈 ∩ Ring) ⊆ 𝑈 | |
33 | 3, 32 | syl6eqss 3904 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝑈) |
34 | 19, 2, 21, 23, 31, 33 | estrres 17259 | . 2 ⊢ (𝜑 → (((ExtStrCat‘𝑈) ↾s 𝐵) sSet 〈(Hom ‘ndx), 𝐻〉) = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) |
35 | 5, 12, 34 | 3eqtrd 2811 | 1 ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1508 ∈ wcel 2051 Vcvv 3408 ∩ cin 3821 {ctp 4439 〈cop 4441 × cxp 5401 ↾ cres 5405 ∘ ccom 5407 Fun wfun 6179 Fn wfn 6180 ‘cfv 6185 (class class class)co 6974 ∈ cmpo 6976 1st c1st 7497 2nd c2nd 7498 ↑𝑚 cmap 8204 ndxcnx 16334 sSet csts 16335 Basecbs 16337 ↾s cress 16338 Hom chom 16430 compcco 16431 ↾cat cresc 16948 ExtStrCatcestrc 17242 Ringcrg 19032 RingHom crh 19199 RingCatcringc 43672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-nel 3067 df-ral 3086 df-rex 3087 df-reu 3088 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-pss 3838 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-int 4746 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-1st 7499 df-2nd 7500 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-1o 7903 df-oadd 7907 df-er 8087 df-map 8206 df-en 8305 df-dom 8306 df-sdom 8307 df-fin 8308 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-nn 11438 df-2 11501 df-3 11502 df-4 11503 df-5 11504 df-6 11505 df-7 11506 df-8 11507 df-9 11508 df-n0 11706 df-z 11792 df-dec 11910 df-uz 12057 df-fz 12707 df-struct 16339 df-ndx 16340 df-slot 16341 df-base 16343 df-sets 16344 df-ress 16345 df-plusg 16432 df-hom 16443 df-cco 16444 df-0g 16569 df-resc 16951 df-estrc 17243 df-mhm 17815 df-ghm 18139 df-mgp 18975 df-ur 18987 df-ring 19034 df-rnghom 19202 df-ringc 43674 |
This theorem is referenced by: rngcresringcat 43699 |
Copyright terms: Public domain | W3C validator |