MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfringc2 Structured version   Visualization version   GIF version

Theorem dfringc2 20674
Description: Alternate definition of the category of unital rings (in a universe). (Contributed by AV, 16-Mar-2020.)
Hypotheses
Ref Expression
dfringc2.c 𝐶 = (RingCat‘𝑈)
dfringc2.u (𝜑𝑈𝑉)
dfringc2.b (𝜑𝐵 = (𝑈 ∩ Ring))
dfringc2.h (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
dfringc2.o (𝜑· = (comp‘(ExtStrCat‘𝑈)))
Assertion
Ref Expression
dfringc2 (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})

Proof of Theorem dfringc2
Dummy variables 𝑓 𝑔 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfringc2.c . . 3 𝐶 = (RingCat‘𝑈)
2 dfringc2.u . . 3 (𝜑𝑈𝑉)
3 dfringc2.b . . 3 (𝜑𝐵 = (𝑈 ∩ Ring))
4 dfringc2.h . . 3 (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
51, 2, 3, 4ringcval 20664 . 2 (𝜑𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻))
6 eqid 2735 . . 3 ((ExtStrCat‘𝑈) ↾cat 𝐻) = ((ExtStrCat‘𝑈) ↾cat 𝐻)
7 fvexd 6922 . . 3 (𝜑 → (ExtStrCat‘𝑈) ∈ V)
8 inex1g 5325 . . . . 5 (𝑈𝑉 → (𝑈 ∩ Ring) ∈ V)
92, 8syl 17 . . . 4 (𝜑 → (𝑈 ∩ Ring) ∈ V)
103, 9eqeltrd 2839 . . 3 (𝜑𝐵 ∈ V)
113, 4rhmresfn 20665 . . 3 (𝜑𝐻 Fn (𝐵 × 𝐵))
126, 7, 10, 11rescval2 17876 . 2 (𝜑 → ((ExtStrCat‘𝑈) ↾cat 𝐻) = (((ExtStrCat‘𝑈) ↾s 𝐵) sSet ⟨(Hom ‘ndx), 𝐻⟩))
13 eqid 2735 . . . 4 (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈)
14 eqidd 2736 . . . 4 (𝜑 → (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) = (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
15 dfringc2.o . . . . 5 (𝜑· = (comp‘(ExtStrCat‘𝑈)))
16 eqid 2735 . . . . . 6 (comp‘(ExtStrCat‘𝑈)) = (comp‘(ExtStrCat‘𝑈))
1713, 2, 16estrccofval 18184 . . . . 5 (𝜑 → (comp‘(ExtStrCat‘𝑈)) = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓))))
1815, 17eqtrd 2775 . . . 4 (𝜑· = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓))))
1913, 2, 14, 18estrcval 18179 . . 3 (𝜑 → (ExtStrCat‘𝑈) = {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))⟩, ⟨(comp‘ndx), · ⟩})
20 mpoexga 8101 . . . 4 ((𝑈𝑉𝑈𝑉) → (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) ∈ V)
212, 2, 20syl2anc 584 . . 3 (𝜑 → (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) ∈ V)
22 fvexd 6922 . . . 4 (𝜑 → (comp‘(ExtStrCat‘𝑈)) ∈ V)
2315, 22eqeltrd 2839 . . 3 (𝜑· ∈ V)
24 rhmfn 20516 . . . . . 6 RingHom Fn (Ring × Ring)
25 fnfun 6669 . . . . . 6 ( RingHom Fn (Ring × Ring) → Fun RingHom )
2624, 25mp1i 13 . . . . 5 (𝜑 → Fun RingHom )
27 sqxpexg 7774 . . . . . 6 (𝐵 ∈ V → (𝐵 × 𝐵) ∈ V)
2810, 27syl 17 . . . . 5 (𝜑 → (𝐵 × 𝐵) ∈ V)
29 resfunexg 7235 . . . . 5 ((Fun RingHom ∧ (𝐵 × 𝐵) ∈ V) → ( RingHom ↾ (𝐵 × 𝐵)) ∈ V)
3026, 28, 29syl2anc 584 . . . 4 (𝜑 → ( RingHom ↾ (𝐵 × 𝐵)) ∈ V)
314, 30eqeltrd 2839 . . 3 (𝜑𝐻 ∈ V)
32 inss1 4245 . . . 4 (𝑈 ∩ Ring) ⊆ 𝑈
333, 32eqsstrdi 4050 . . 3 (𝜑𝐵𝑈)
3419, 2, 21, 23, 31, 33estrres 18195 . 2 (𝜑 → (((ExtStrCat‘𝑈) ↾s 𝐵) sSet ⟨(Hom ‘ndx), 𝐻⟩) = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
355, 12, 343eqtrd 2779 1 (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  Vcvv 3478  cin 3962  {ctp 4635  cop 4637   × cxp 5687  cres 5691  ccom 5693  Fun wfun 6557   Fn wfn 6558  cfv 6563  (class class class)co 7431  cmpo 7433  1st c1st 8011  2nd c2nd 8012  m cmap 8865   sSet csts 17197  ndxcnx 17227  Basecbs 17245  s cress 17274  Hom chom 17309  compcco 17310  cat cresc 17856  ExtStrCatcestrc 18177  Ringcrg 20251   RingHom crh 20486  RingCatcringc 20662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-hom 17322  df-cco 17323  df-0g 17488  df-resc 17859  df-estrc 18178  df-mhm 18809  df-ghm 19244  df-mgp 20153  df-ur 20200  df-ring 20253  df-rhm 20489  df-ringc 20663
This theorem is referenced by:  rngcresringcat  20686
  Copyright terms: Public domain W3C validator