| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfringc2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the category of unital rings (in a universe). (Contributed by AV, 16-Mar-2020.) |
| Ref | Expression |
|---|---|
| dfringc2.c | ⊢ 𝐶 = (RingCat‘𝑈) |
| dfringc2.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| dfringc2.b | ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
| dfringc2.h | ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) |
| dfringc2.o | ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) |
| Ref | Expression |
|---|---|
| dfringc2 | ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfringc2.c | . . 3 ⊢ 𝐶 = (RingCat‘𝑈) | |
| 2 | dfringc2.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 3 | dfringc2.b | . . 3 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) | |
| 4 | dfringc2.h | . . 3 ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) | |
| 5 | 1, 2, 3, 4 | ringcval 20607 | . 2 ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
| 6 | eqid 2735 | . . 3 ⊢ ((ExtStrCat‘𝑈) ↾cat 𝐻) = ((ExtStrCat‘𝑈) ↾cat 𝐻) | |
| 7 | fvexd 6891 | . . 3 ⊢ (𝜑 → (ExtStrCat‘𝑈) ∈ V) | |
| 8 | inex1g 5289 | . . . . 5 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Ring) ∈ V) | |
| 9 | 2, 8 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑈 ∩ Ring) ∈ V) |
| 10 | 3, 9 | eqeltrd 2834 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
| 11 | 3, 4 | rhmresfn 20608 | . . 3 ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) |
| 12 | 6, 7, 10, 11 | rescval2 17841 | . 2 ⊢ (𝜑 → ((ExtStrCat‘𝑈) ↾cat 𝐻) = (((ExtStrCat‘𝑈) ↾s 𝐵) sSet 〈(Hom ‘ndx), 𝐻〉)) |
| 13 | eqid 2735 | . . . 4 ⊢ (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈) | |
| 14 | eqidd 2736 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) | |
| 15 | dfringc2.o | . . . . 5 ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) | |
| 16 | eqid 2735 | . . . . . 6 ⊢ (comp‘(ExtStrCat‘𝑈)) = (comp‘(ExtStrCat‘𝑈)) | |
| 17 | 13, 2, 16 | estrccofval 18141 | . . . . 5 ⊢ (𝜑 → (comp‘(ExtStrCat‘𝑈)) = (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd ‘𝑣))), 𝑓 ∈ ((Base‘(2nd ‘𝑣)) ↑m (Base‘(1st ‘𝑣))) ↦ (𝑔 ∘ 𝑓)))) |
| 18 | 15, 17 | eqtrd 2770 | . . . 4 ⊢ (𝜑 → · = (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd ‘𝑣))), 𝑓 ∈ ((Base‘(2nd ‘𝑣)) ↑m (Base‘(1st ‘𝑣))) ↦ (𝑔 ∘ 𝑓)))) |
| 19 | 13, 2, 14, 18 | estrcval 18136 | . . 3 ⊢ (𝜑 → (ExtStrCat‘𝑈) = {〈(Base‘ndx), 𝑈〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))〉, 〈(comp‘ndx), · 〉}) |
| 20 | mpoexga 8076 | . . . 4 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝑈 ∈ 𝑉) → (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) ∈ V) | |
| 21 | 2, 2, 20 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) ∈ V) |
| 22 | fvexd 6891 | . . . 4 ⊢ (𝜑 → (comp‘(ExtStrCat‘𝑈)) ∈ V) | |
| 23 | 15, 22 | eqeltrd 2834 | . . 3 ⊢ (𝜑 → · ∈ V) |
| 24 | rhmfn 20459 | . . . . . 6 ⊢ RingHom Fn (Ring × Ring) | |
| 25 | fnfun 6638 | . . . . . 6 ⊢ ( RingHom Fn (Ring × Ring) → Fun RingHom ) | |
| 26 | 24, 25 | mp1i 13 | . . . . 5 ⊢ (𝜑 → Fun RingHom ) |
| 27 | sqxpexg 7749 | . . . . . 6 ⊢ (𝐵 ∈ V → (𝐵 × 𝐵) ∈ V) | |
| 28 | 10, 27 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐵 × 𝐵) ∈ V) |
| 29 | resfunexg 7207 | . . . . 5 ⊢ ((Fun RingHom ∧ (𝐵 × 𝐵) ∈ V) → ( RingHom ↾ (𝐵 × 𝐵)) ∈ V) | |
| 30 | 26, 28, 29 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ( RingHom ↾ (𝐵 × 𝐵)) ∈ V) |
| 31 | 4, 30 | eqeltrd 2834 | . . 3 ⊢ (𝜑 → 𝐻 ∈ V) |
| 32 | inss1 4212 | . . . 4 ⊢ (𝑈 ∩ Ring) ⊆ 𝑈 | |
| 33 | 3, 32 | eqsstrdi 4003 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝑈) |
| 34 | 19, 2, 21, 23, 31, 33 | estrres 18151 | . 2 ⊢ (𝜑 → (((ExtStrCat‘𝑈) ↾s 𝐵) sSet 〈(Hom ‘ndx), 𝐻〉) = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) |
| 35 | 5, 12, 34 | 3eqtrd 2774 | 1 ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∩ cin 3925 {ctp 4605 〈cop 4607 × cxp 5652 ↾ cres 5656 ∘ ccom 5658 Fun wfun 6525 Fn wfn 6526 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 1st c1st 7986 2nd c2nd 7987 ↑m cmap 8840 sSet csts 17182 ndxcnx 17212 Basecbs 17228 ↾s cress 17251 Hom chom 17282 compcco 17283 ↾cat cresc 17821 ExtStrCatcestrc 18134 Ringcrg 20193 RingHom crh 20429 RingCatcringc 20605 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-hom 17295 df-cco 17296 df-0g 17455 df-resc 17824 df-estrc 18135 df-mhm 18761 df-ghm 19196 df-mgp 20101 df-ur 20142 df-ring 20195 df-rhm 20432 df-ringc 20606 |
| This theorem is referenced by: rngcresringcat 20629 |
| Copyright terms: Public domain | W3C validator |