MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfringc2 Structured version   Visualization version   GIF version

Theorem dfringc2 20657
Description: Alternate definition of the category of unital rings (in a universe). (Contributed by AV, 16-Mar-2020.)
Hypotheses
Ref Expression
dfringc2.c 𝐶 = (RingCat‘𝑈)
dfringc2.u (𝜑𝑈𝑉)
dfringc2.b (𝜑𝐵 = (𝑈 ∩ Ring))
dfringc2.h (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
dfringc2.o (𝜑· = (comp‘(ExtStrCat‘𝑈)))
Assertion
Ref Expression
dfringc2 (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})

Proof of Theorem dfringc2
Dummy variables 𝑓 𝑔 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfringc2.c . . 3 𝐶 = (RingCat‘𝑈)
2 dfringc2.u . . 3 (𝜑𝑈𝑉)
3 dfringc2.b . . 3 (𝜑𝐵 = (𝑈 ∩ Ring))
4 dfringc2.h . . 3 (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
51, 2, 3, 4ringcval 20647 . 2 (𝜑𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻))
6 eqid 2737 . . 3 ((ExtStrCat‘𝑈) ↾cat 𝐻) = ((ExtStrCat‘𝑈) ↾cat 𝐻)
7 fvexd 6921 . . 3 (𝜑 → (ExtStrCat‘𝑈) ∈ V)
8 inex1g 5319 . . . . 5 (𝑈𝑉 → (𝑈 ∩ Ring) ∈ V)
92, 8syl 17 . . . 4 (𝜑 → (𝑈 ∩ Ring) ∈ V)
103, 9eqeltrd 2841 . . 3 (𝜑𝐵 ∈ V)
113, 4rhmresfn 20648 . . 3 (𝜑𝐻 Fn (𝐵 × 𝐵))
126, 7, 10, 11rescval2 17872 . 2 (𝜑 → ((ExtStrCat‘𝑈) ↾cat 𝐻) = (((ExtStrCat‘𝑈) ↾s 𝐵) sSet ⟨(Hom ‘ndx), 𝐻⟩))
13 eqid 2737 . . . 4 (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈)
14 eqidd 2738 . . . 4 (𝜑 → (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) = (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
15 dfringc2.o . . . . 5 (𝜑· = (comp‘(ExtStrCat‘𝑈)))
16 eqid 2737 . . . . . 6 (comp‘(ExtStrCat‘𝑈)) = (comp‘(ExtStrCat‘𝑈))
1713, 2, 16estrccofval 18173 . . . . 5 (𝜑 → (comp‘(ExtStrCat‘𝑈)) = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓))))
1815, 17eqtrd 2777 . . . 4 (𝜑· = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓))))
1913, 2, 14, 18estrcval 18168 . . 3 (𝜑 → (ExtStrCat‘𝑈) = {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))⟩, ⟨(comp‘ndx), · ⟩})
20 mpoexga 8102 . . . 4 ((𝑈𝑉𝑈𝑉) → (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) ∈ V)
212, 2, 20syl2anc 584 . . 3 (𝜑 → (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) ∈ V)
22 fvexd 6921 . . . 4 (𝜑 → (comp‘(ExtStrCat‘𝑈)) ∈ V)
2315, 22eqeltrd 2841 . . 3 (𝜑· ∈ V)
24 rhmfn 20499 . . . . . 6 RingHom Fn (Ring × Ring)
25 fnfun 6668 . . . . . 6 ( RingHom Fn (Ring × Ring) → Fun RingHom )
2624, 25mp1i 13 . . . . 5 (𝜑 → Fun RingHom )
27 sqxpexg 7775 . . . . . 6 (𝐵 ∈ V → (𝐵 × 𝐵) ∈ V)
2810, 27syl 17 . . . . 5 (𝜑 → (𝐵 × 𝐵) ∈ V)
29 resfunexg 7235 . . . . 5 ((Fun RingHom ∧ (𝐵 × 𝐵) ∈ V) → ( RingHom ↾ (𝐵 × 𝐵)) ∈ V)
3026, 28, 29syl2anc 584 . . . 4 (𝜑 → ( RingHom ↾ (𝐵 × 𝐵)) ∈ V)
314, 30eqeltrd 2841 . . 3 (𝜑𝐻 ∈ V)
32 inss1 4237 . . . 4 (𝑈 ∩ Ring) ⊆ 𝑈
333, 32eqsstrdi 4028 . . 3 (𝜑𝐵𝑈)
3419, 2, 21, 23, 31, 33estrres 18184 . 2 (𝜑 → (((ExtStrCat‘𝑈) ↾s 𝐵) sSet ⟨(Hom ‘ndx), 𝐻⟩) = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
355, 12, 343eqtrd 2781 1 (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3480  cin 3950  {ctp 4630  cop 4632   × cxp 5683  cres 5687  ccom 5689  Fun wfun 6555   Fn wfn 6556  cfv 6561  (class class class)co 7431  cmpo 7433  1st c1st 8012  2nd c2nd 8013  m cmap 8866   sSet csts 17200  ndxcnx 17230  Basecbs 17247  s cress 17274  Hom chom 17308  compcco 17309  cat cresc 17852  ExtStrCatcestrc 18166  Ringcrg 20230   RingHom crh 20469  RingCatcringc 20645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-hom 17321  df-cco 17322  df-0g 17486  df-resc 17855  df-estrc 18167  df-mhm 18796  df-ghm 19231  df-mgp 20138  df-ur 20179  df-ring 20232  df-rhm 20472  df-ringc 20646
This theorem is referenced by:  rngcresringcat  20669
  Copyright terms: Public domain W3C validator