![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfrngc2 | Structured version Visualization version GIF version |
Description: Alternate definition of the category of non-unital rings (in a universe). (Contributed by AV, 16-Mar-2020.) |
Ref | Expression |
---|---|
dfrngc2.c | ⊢ 𝐶 = (RngCat‘𝑈) |
dfrngc2.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
dfrngc2.b | ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
dfrngc2.h | ⊢ (𝜑 → 𝐻 = ( RngHomo ↾ (𝐵 × 𝐵))) |
dfrngc2.o | ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) |
Ref | Expression |
---|---|
dfrngc2 | ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrngc2.c | . . 3 ⊢ 𝐶 = (RngCat‘𝑈) | |
2 | dfrngc2.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
3 | dfrngc2.b | . . 3 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) | |
4 | dfrngc2.h | . . 3 ⊢ (𝜑 → 𝐻 = ( RngHomo ↾ (𝐵 × 𝐵))) | |
5 | 1, 2, 3, 4 | rngcval 42761 | . 2 ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
6 | eqid 2799 | . . 3 ⊢ ((ExtStrCat‘𝑈) ↾cat 𝐻) = ((ExtStrCat‘𝑈) ↾cat 𝐻) | |
7 | fvexd 6426 | . . 3 ⊢ (𝜑 → (ExtStrCat‘𝑈) ∈ V) | |
8 | inex1g 4996 | . . . . 5 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Rng) ∈ V) | |
9 | 2, 8 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑈 ∩ Rng) ∈ V) |
10 | 3, 9 | eqeltrd 2878 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
11 | 3, 4 | rnghmresfn 42762 | . . 3 ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) |
12 | 6, 7, 10, 11 | rescval2 16802 | . 2 ⊢ (𝜑 → ((ExtStrCat‘𝑈) ↾cat 𝐻) = (((ExtStrCat‘𝑈) ↾s 𝐵) sSet 〈(Hom ‘ndx), 𝐻〉)) |
13 | eqid 2799 | . . . 4 ⊢ (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈) | |
14 | eqidd 2800 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))) = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))) | |
15 | dfrngc2.o | . . . . 5 ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) | |
16 | eqid 2799 | . . . . . 6 ⊢ (comp‘(ExtStrCat‘𝑈)) = (comp‘(ExtStrCat‘𝑈)) | |
17 | 13, 2, 16 | estrccofval 17083 | . . . . 5 ⊢ (𝜑 → (comp‘(ExtStrCat‘𝑈)) = (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑𝑚 (Base‘(2nd ‘𝑣))), 𝑓 ∈ ((Base‘(2nd ‘𝑣)) ↑𝑚 (Base‘(1st ‘𝑣))) ↦ (𝑔 ∘ 𝑓)))) |
18 | 15, 17 | eqtrd 2833 | . . . 4 ⊢ (𝜑 → · = (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑𝑚 (Base‘(2nd ‘𝑣))), 𝑓 ∈ ((Base‘(2nd ‘𝑣)) ↑𝑚 (Base‘(1st ‘𝑣))) ↦ (𝑔 ∘ 𝑓)))) |
19 | 13, 2, 14, 18 | estrcval 17078 | . . 3 ⊢ (𝜑 → (ExtStrCat‘𝑈) = {〈(Base‘ndx), 𝑈〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))〉, 〈(comp‘ndx), · 〉}) |
20 | mpt2exga 7482 | . . . 4 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝑈 ∈ 𝑉) → (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))) ∈ V) | |
21 | 2, 2, 20 | syl2anc 580 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))) ∈ V) |
22 | fvexd 6426 | . . . 4 ⊢ (𝜑 → (comp‘(ExtStrCat‘𝑈)) ∈ V) | |
23 | 15, 22 | eqeltrd 2878 | . . 3 ⊢ (𝜑 → · ∈ V) |
24 | rnghmfn 42689 | . . . . . 6 ⊢ RngHomo Fn (Rng × Rng) | |
25 | fnfun 6199 | . . . . . 6 ⊢ ( RngHomo Fn (Rng × Rng) → Fun RngHomo ) | |
26 | 24, 25 | mp1i 13 | . . . . 5 ⊢ (𝜑 → Fun RngHomo ) |
27 | sqxpexg 7197 | . . . . . 6 ⊢ (𝐵 ∈ V → (𝐵 × 𝐵) ∈ V) | |
28 | 10, 27 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐵 × 𝐵) ∈ V) |
29 | resfunexg 6708 | . . . . 5 ⊢ ((Fun RngHomo ∧ (𝐵 × 𝐵) ∈ V) → ( RngHomo ↾ (𝐵 × 𝐵)) ∈ V) | |
30 | 26, 28, 29 | syl2anc 580 | . . . 4 ⊢ (𝜑 → ( RngHomo ↾ (𝐵 × 𝐵)) ∈ V) |
31 | 4, 30 | eqeltrd 2878 | . . 3 ⊢ (𝜑 → 𝐻 ∈ V) |
32 | inss1 4028 | . . . 4 ⊢ (𝑈 ∩ Rng) ⊆ 𝑈 | |
33 | 3, 32 | syl6eqss 3851 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝑈) |
34 | 19, 2, 21, 23, 31, 33 | estrres 17094 | . 2 ⊢ (𝜑 → (((ExtStrCat‘𝑈) ↾s 𝐵) sSet 〈(Hom ‘ndx), 𝐻〉) = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) |
35 | 5, 12, 34 | 3eqtrd 2837 | 1 ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 Vcvv 3385 ∩ cin 3768 {ctp 4372 〈cop 4374 × cxp 5310 ↾ cres 5314 ∘ ccom 5316 Fun wfun 6095 Fn wfn 6096 ‘cfv 6101 (class class class)co 6878 ↦ cmpt2 6880 1st c1st 7399 2nd c2nd 7400 ↑𝑚 cmap 8095 ndxcnx 16181 sSet csts 16182 Basecbs 16184 ↾s cress 16185 Hom chom 16278 compcco 16279 ↾cat cresc 16782 ExtStrCatcestrc 17076 Rngcrng 42673 RngHomo crngh 42684 RngCatcrngc 42756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-oadd 7803 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-2 11376 df-3 11377 df-4 11378 df-5 11379 df-6 11380 df-7 11381 df-8 11382 df-9 11383 df-n0 11581 df-z 11667 df-dec 11784 df-uz 11931 df-fz 12581 df-struct 16186 df-ndx 16187 df-slot 16188 df-base 16190 df-sets 16191 df-ress 16192 df-hom 16291 df-cco 16292 df-resc 16785 df-estrc 17077 df-rnghomo 42686 df-rngc 42758 |
This theorem is referenced by: rngcresringcat 42829 |
Copyright terms: Public domain | W3C validator |