MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrngc2 Structured version   Visualization version   GIF version

Theorem dfrngc2 20593
Description: Alternate definition of the category of non-unital rings (in a universe). (Contributed by AV, 16-Mar-2020.)
Hypotheses
Ref Expression
dfrngc2.c 𝐶 = (RngCat‘𝑈)
dfrngc2.u (𝜑𝑈𝑉)
dfrngc2.b (𝜑𝐵 = (𝑈 ∩ Rng))
dfrngc2.h (𝜑𝐻 = ( RngHom ↾ (𝐵 × 𝐵)))
dfrngc2.o (𝜑· = (comp‘(ExtStrCat‘𝑈)))
Assertion
Ref Expression
dfrngc2 (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})

Proof of Theorem dfrngc2
Dummy variables 𝑓 𝑔 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrngc2.c . . 3 𝐶 = (RngCat‘𝑈)
2 dfrngc2.u . . 3 (𝜑𝑈𝑉)
3 dfrngc2.b . . 3 (𝜑𝐵 = (𝑈 ∩ Rng))
4 dfrngc2.h . . 3 (𝜑𝐻 = ( RngHom ↾ (𝐵 × 𝐵)))
51, 2, 3, 4rngcval 20583 . 2 (𝜑𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻))
6 eqid 2736 . . 3 ((ExtStrCat‘𝑈) ↾cat 𝐻) = ((ExtStrCat‘𝑈) ↾cat 𝐻)
7 fvexd 6896 . . 3 (𝜑 → (ExtStrCat‘𝑈) ∈ V)
8 inex1g 5294 . . . . 5 (𝑈𝑉 → (𝑈 ∩ Rng) ∈ V)
92, 8syl 17 . . . 4 (𝜑 → (𝑈 ∩ Rng) ∈ V)
103, 9eqeltrd 2835 . . 3 (𝜑𝐵 ∈ V)
113, 4rnghmresfn 20584 . . 3 (𝜑𝐻 Fn (𝐵 × 𝐵))
126, 7, 10, 11rescval2 17846 . 2 (𝜑 → ((ExtStrCat‘𝑈) ↾cat 𝐻) = (((ExtStrCat‘𝑈) ↾s 𝐵) sSet ⟨(Hom ‘ndx), 𝐻⟩))
13 eqid 2736 . . . 4 (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈)
14 eqidd 2737 . . . 4 (𝜑 → (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) = (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
15 dfrngc2.o . . . . 5 (𝜑· = (comp‘(ExtStrCat‘𝑈)))
16 eqid 2736 . . . . . 6 (comp‘(ExtStrCat‘𝑈)) = (comp‘(ExtStrCat‘𝑈))
1713, 2, 16estrccofval 18146 . . . . 5 (𝜑 → (comp‘(ExtStrCat‘𝑈)) = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓))))
1815, 17eqtrd 2771 . . . 4 (𝜑· = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓))))
1913, 2, 14, 18estrcval 18141 . . 3 (𝜑 → (ExtStrCat‘𝑈) = {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))⟩, ⟨(comp‘ndx), · ⟩})
20 mpoexga 8081 . . . 4 ((𝑈𝑉𝑈𝑉) → (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) ∈ V)
212, 2, 20syl2anc 584 . . 3 (𝜑 → (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) ∈ V)
22 fvexd 6896 . . . 4 (𝜑 → (comp‘(ExtStrCat‘𝑈)) ∈ V)
2315, 22eqeltrd 2835 . . 3 (𝜑· ∈ V)
24 rnghmfn 20404 . . . . . 6 RngHom Fn (Rng × Rng)
25 fnfun 6643 . . . . . 6 ( RngHom Fn (Rng × Rng) → Fun RngHom )
2624, 25mp1i 13 . . . . 5 (𝜑 → Fun RngHom )
27 sqxpexg 7754 . . . . . 6 (𝐵 ∈ V → (𝐵 × 𝐵) ∈ V)
2810, 27syl 17 . . . . 5 (𝜑 → (𝐵 × 𝐵) ∈ V)
29 resfunexg 7212 . . . . 5 ((Fun RngHom ∧ (𝐵 × 𝐵) ∈ V) → ( RngHom ↾ (𝐵 × 𝐵)) ∈ V)
3026, 28, 29syl2anc 584 . . . 4 (𝜑 → ( RngHom ↾ (𝐵 × 𝐵)) ∈ V)
314, 30eqeltrd 2835 . . 3 (𝜑𝐻 ∈ V)
32 inss1 4217 . . . 4 (𝑈 ∩ Rng) ⊆ 𝑈
333, 32eqsstrdi 4008 . . 3 (𝜑𝐵𝑈)
3419, 2, 21, 23, 31, 33estrres 18156 . 2 (𝜑 → (((ExtStrCat‘𝑈) ↾s 𝐵) sSet ⟨(Hom ‘ndx), 𝐻⟩) = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
355, 12, 343eqtrd 2775 1 (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3464  cin 3930  {ctp 4610  cop 4612   × cxp 5657  cres 5661  ccom 5663  Fun wfun 6530   Fn wfn 6531  cfv 6536  (class class class)co 7410  cmpo 7412  1st c1st 7991  2nd c2nd 7992  m cmap 8845   sSet csts 17187  ndxcnx 17217  Basecbs 17233  s cress 17256  Hom chom 17287  compcco 17288  cat cresc 17826  ExtStrCatcestrc 18139  Rngcrng 20117   RngHom crnghm 20399  RngCatcrngc 20581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-hom 17300  df-cco 17301  df-resc 17829  df-estrc 18140  df-rnghm 20401  df-rngc 20582
This theorem is referenced by:  rngcresringcat  20634
  Copyright terms: Public domain W3C validator