![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfrngc2 | Structured version Visualization version GIF version |
Description: Alternate definition of the category of non-unital rings (in a universe). (Contributed by AV, 16-Mar-2020.) |
Ref | Expression |
---|---|
dfrngc2.c | β’ πΆ = (RngCatβπ) |
dfrngc2.u | β’ (π β π β π) |
dfrngc2.b | β’ (π β π΅ = (π β© Rng)) |
dfrngc2.h | β’ (π β π» = ( RngHomo βΎ (π΅ Γ π΅))) |
dfrngc2.o | β’ (π β Β· = (compβ(ExtStrCatβπ))) |
Ref | Expression |
---|---|
dfrngc2 | β’ (π β πΆ = {β¨(Baseβndx), π΅β©, β¨(Hom βndx), π»β©, β¨(compβndx), Β· β©}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrngc2.c | . . 3 β’ πΆ = (RngCatβπ) | |
2 | dfrngc2.u | . . 3 β’ (π β π β π) | |
3 | dfrngc2.b | . . 3 β’ (π β π΅ = (π β© Rng)) | |
4 | dfrngc2.h | . . 3 β’ (π β π» = ( RngHomo βΎ (π΅ Γ π΅))) | |
5 | 1, 2, 3, 4 | rngcval 46267 | . 2 β’ (π β πΆ = ((ExtStrCatβπ) βΎcat π»)) |
6 | eqid 2737 | . . 3 β’ ((ExtStrCatβπ) βΎcat π») = ((ExtStrCatβπ) βΎcat π») | |
7 | fvexd 6858 | . . 3 β’ (π β (ExtStrCatβπ) β V) | |
8 | inex1g 5277 | . . . . 5 β’ (π β π β (π β© Rng) β V) | |
9 | 2, 8 | syl 17 | . . . 4 β’ (π β (π β© Rng) β V) |
10 | 3, 9 | eqeltrd 2838 | . . 3 β’ (π β π΅ β V) |
11 | 3, 4 | rnghmresfn 46268 | . . 3 β’ (π β π» Fn (π΅ Γ π΅)) |
12 | 6, 7, 10, 11 | rescval2 17712 | . 2 β’ (π β ((ExtStrCatβπ) βΎcat π») = (((ExtStrCatβπ) βΎs π΅) sSet β¨(Hom βndx), π»β©)) |
13 | eqid 2737 | . . . 4 β’ (ExtStrCatβπ) = (ExtStrCatβπ) | |
14 | eqidd 2738 | . . . 4 β’ (π β (π₯ β π, π¦ β π β¦ ((Baseβπ¦) βm (Baseβπ₯))) = (π₯ β π, π¦ β π β¦ ((Baseβπ¦) βm (Baseβπ₯)))) | |
15 | dfrngc2.o | . . . . 5 β’ (π β Β· = (compβ(ExtStrCatβπ))) | |
16 | eqid 2737 | . . . . . 6 β’ (compβ(ExtStrCatβπ)) = (compβ(ExtStrCatβπ)) | |
17 | 13, 2, 16 | estrccofval 18017 | . . . . 5 β’ (π β (compβ(ExtStrCatβπ)) = (π£ β (π Γ π), π§ β π β¦ (π β ((Baseβπ§) βm (Baseβ(2nd βπ£))), π β ((Baseβ(2nd βπ£)) βm (Baseβ(1st βπ£))) β¦ (π β π)))) |
18 | 15, 17 | eqtrd 2777 | . . . 4 β’ (π β Β· = (π£ β (π Γ π), π§ β π β¦ (π β ((Baseβπ§) βm (Baseβ(2nd βπ£))), π β ((Baseβ(2nd βπ£)) βm (Baseβ(1st βπ£))) β¦ (π β π)))) |
19 | 13, 2, 14, 18 | estrcval 18012 | . . 3 β’ (π β (ExtStrCatβπ) = {β¨(Baseβndx), πβ©, β¨(Hom βndx), (π₯ β π, π¦ β π β¦ ((Baseβπ¦) βm (Baseβπ₯)))β©, β¨(compβndx), Β· β©}) |
20 | mpoexga 8011 | . . . 4 β’ ((π β π β§ π β π) β (π₯ β π, π¦ β π β¦ ((Baseβπ¦) βm (Baseβπ₯))) β V) | |
21 | 2, 2, 20 | syl2anc 585 | . . 3 β’ (π β (π₯ β π, π¦ β π β¦ ((Baseβπ¦) βm (Baseβπ₯))) β V) |
22 | fvexd 6858 | . . . 4 β’ (π β (compβ(ExtStrCatβπ)) β V) | |
23 | 15, 22 | eqeltrd 2838 | . . 3 β’ (π β Β· β V) |
24 | rnghmfn 46195 | . . . . . 6 β’ RngHomo Fn (Rng Γ Rng) | |
25 | fnfun 6603 | . . . . . 6 β’ ( RngHomo Fn (Rng Γ Rng) β Fun RngHomo ) | |
26 | 24, 25 | mp1i 13 | . . . . 5 β’ (π β Fun RngHomo ) |
27 | sqxpexg 7690 | . . . . . 6 β’ (π΅ β V β (π΅ Γ π΅) β V) | |
28 | 10, 27 | syl 17 | . . . . 5 β’ (π β (π΅ Γ π΅) β V) |
29 | resfunexg 7166 | . . . . 5 β’ ((Fun RngHomo β§ (π΅ Γ π΅) β V) β ( RngHomo βΎ (π΅ Γ π΅)) β V) | |
30 | 26, 28, 29 | syl2anc 585 | . . . 4 β’ (π β ( RngHomo βΎ (π΅ Γ π΅)) β V) |
31 | 4, 30 | eqeltrd 2838 | . . 3 β’ (π β π» β V) |
32 | inss1 4189 | . . . 4 β’ (π β© Rng) β π | |
33 | 3, 32 | eqsstrdi 3999 | . . 3 β’ (π β π΅ β π) |
34 | 19, 2, 21, 23, 31, 33 | estrres 18028 | . 2 β’ (π β (((ExtStrCatβπ) βΎs π΅) sSet β¨(Hom βndx), π»β©) = {β¨(Baseβndx), π΅β©, β¨(Hom βndx), π»β©, β¨(compβndx), Β· β©}) |
35 | 5, 12, 34 | 3eqtrd 2781 | 1 β’ (π β πΆ = {β¨(Baseβndx), π΅β©, β¨(Hom βndx), π»β©, β¨(compβndx), Β· β©}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 Vcvv 3446 β© cin 3910 {ctp 4591 β¨cop 4593 Γ cxp 5632 βΎ cres 5636 β ccom 5638 Fun wfun 6491 Fn wfn 6492 βcfv 6497 (class class class)co 7358 β cmpo 7360 1st c1st 7920 2nd c2nd 7921 βm cmap 8766 sSet csts 17036 ndxcnx 17066 Basecbs 17084 βΎs cress 17113 Hom chom 17145 compcco 17146 βΎcat cresc 17692 ExtStrCatcestrc 18010 Rngcrng 46179 RngHomo crngh 46190 RngCatcrngc 46262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11108 ax-resscn 11109 ax-1cn 11110 ax-icn 11111 ax-addcl 11112 ax-addrcl 11113 ax-mulcl 11114 ax-mulrcl 11115 ax-mulcom 11116 ax-addass 11117 ax-mulass 11118 ax-distr 11119 ax-i2m1 11120 ax-1ne0 11121 ax-1rid 11122 ax-rnegex 11123 ax-rrecex 11124 ax-cnre 11125 ax-pre-lttri 11126 ax-pre-lttrn 11127 ax-pre-ltadd 11128 ax-pre-mulgt0 11129 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-tp 4592 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-1o 8413 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-fin 8888 df-pnf 11192 df-mnf 11193 df-xr 11194 df-ltxr 11195 df-le 11196 df-sub 11388 df-neg 11389 df-nn 12155 df-2 12217 df-3 12218 df-4 12219 df-5 12220 df-6 12221 df-7 12222 df-8 12223 df-9 12224 df-n0 12415 df-z 12501 df-dec 12620 df-uz 12765 df-fz 13426 df-struct 17020 df-sets 17037 df-slot 17055 df-ndx 17067 df-base 17085 df-ress 17114 df-hom 17158 df-cco 17159 df-resc 17695 df-estrc 18011 df-rnghomo 46192 df-rngc 46264 |
This theorem is referenced by: rngcresringcat 46335 |
Copyright terms: Public domain | W3C validator |