| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfrngc2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the category of non-unital rings (in a universe). (Contributed by AV, 16-Mar-2020.) |
| Ref | Expression |
|---|---|
| dfrngc2.c | ⊢ 𝐶 = (RngCat‘𝑈) |
| dfrngc2.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| dfrngc2.b | ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
| dfrngc2.h | ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) |
| dfrngc2.o | ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) |
| Ref | Expression |
|---|---|
| dfrngc2 | ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrngc2.c | . . 3 ⊢ 𝐶 = (RngCat‘𝑈) | |
| 2 | dfrngc2.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 3 | dfrngc2.b | . . 3 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) | |
| 4 | dfrngc2.h | . . 3 ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) | |
| 5 | 1, 2, 3, 4 | rngcval 20503 | . 2 ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
| 6 | eqid 2729 | . . 3 ⊢ ((ExtStrCat‘𝑈) ↾cat 𝐻) = ((ExtStrCat‘𝑈) ↾cat 𝐻) | |
| 7 | fvexd 6837 | . . 3 ⊢ (𝜑 → (ExtStrCat‘𝑈) ∈ V) | |
| 8 | inex1g 5258 | . . . . 5 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Rng) ∈ V) | |
| 9 | 2, 8 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑈 ∩ Rng) ∈ V) |
| 10 | 3, 9 | eqeltrd 2828 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
| 11 | 3, 4 | rnghmresfn 20504 | . . 3 ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) |
| 12 | 6, 7, 10, 11 | rescval2 17735 | . 2 ⊢ (𝜑 → ((ExtStrCat‘𝑈) ↾cat 𝐻) = (((ExtStrCat‘𝑈) ↾s 𝐵) sSet 〈(Hom ‘ndx), 𝐻〉)) |
| 13 | eqid 2729 | . . . 4 ⊢ (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈) | |
| 14 | eqidd 2730 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) | |
| 15 | dfrngc2.o | . . . . 5 ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) | |
| 16 | eqid 2729 | . . . . . 6 ⊢ (comp‘(ExtStrCat‘𝑈)) = (comp‘(ExtStrCat‘𝑈)) | |
| 17 | 13, 2, 16 | estrccofval 18035 | . . . . 5 ⊢ (𝜑 → (comp‘(ExtStrCat‘𝑈)) = (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd ‘𝑣))), 𝑓 ∈ ((Base‘(2nd ‘𝑣)) ↑m (Base‘(1st ‘𝑣))) ↦ (𝑔 ∘ 𝑓)))) |
| 18 | 15, 17 | eqtrd 2764 | . . . 4 ⊢ (𝜑 → · = (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd ‘𝑣))), 𝑓 ∈ ((Base‘(2nd ‘𝑣)) ↑m (Base‘(1st ‘𝑣))) ↦ (𝑔 ∘ 𝑓)))) |
| 19 | 13, 2, 14, 18 | estrcval 18030 | . . 3 ⊢ (𝜑 → (ExtStrCat‘𝑈) = {〈(Base‘ndx), 𝑈〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))〉, 〈(comp‘ndx), · 〉}) |
| 20 | mpoexga 8012 | . . . 4 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝑈 ∈ 𝑉) → (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) ∈ V) | |
| 21 | 2, 2, 20 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) ∈ V) |
| 22 | fvexd 6837 | . . . 4 ⊢ (𝜑 → (comp‘(ExtStrCat‘𝑈)) ∈ V) | |
| 23 | 15, 22 | eqeltrd 2828 | . . 3 ⊢ (𝜑 → · ∈ V) |
| 24 | rnghmfn 20324 | . . . . . 6 ⊢ RngHom Fn (Rng × Rng) | |
| 25 | fnfun 6582 | . . . . . 6 ⊢ ( RngHom Fn (Rng × Rng) → Fun RngHom ) | |
| 26 | 24, 25 | mp1i 13 | . . . . 5 ⊢ (𝜑 → Fun RngHom ) |
| 27 | sqxpexg 7691 | . . . . . 6 ⊢ (𝐵 ∈ V → (𝐵 × 𝐵) ∈ V) | |
| 28 | 10, 27 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐵 × 𝐵) ∈ V) |
| 29 | resfunexg 7151 | . . . . 5 ⊢ ((Fun RngHom ∧ (𝐵 × 𝐵) ∈ V) → ( RngHom ↾ (𝐵 × 𝐵)) ∈ V) | |
| 30 | 26, 28, 29 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ( RngHom ↾ (𝐵 × 𝐵)) ∈ V) |
| 31 | 4, 30 | eqeltrd 2828 | . . 3 ⊢ (𝜑 → 𝐻 ∈ V) |
| 32 | inss1 4188 | . . . 4 ⊢ (𝑈 ∩ Rng) ⊆ 𝑈 | |
| 33 | 3, 32 | eqsstrdi 3980 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝑈) |
| 34 | 19, 2, 21, 23, 31, 33 | estrres 18045 | . 2 ⊢ (𝜑 → (((ExtStrCat‘𝑈) ↾s 𝐵) sSet 〈(Hom ‘ndx), 𝐻〉) = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) |
| 35 | 5, 12, 34 | 3eqtrd 2768 | 1 ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∩ cin 3902 {ctp 4581 〈cop 4583 × cxp 5617 ↾ cres 5621 ∘ ccom 5623 Fun wfun 6476 Fn wfn 6477 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 1st c1st 7922 2nd c2nd 7923 ↑m cmap 8753 sSet csts 17074 ndxcnx 17104 Basecbs 17120 ↾s cress 17141 Hom chom 17172 compcco 17173 ↾cat cresc 17715 ExtStrCatcestrc 18028 Rngcrng 20037 RngHom crnghm 20319 RngCatcrngc 20501 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-hom 17185 df-cco 17186 df-resc 17718 df-estrc 18029 df-rnghm 20321 df-rngc 20502 |
| This theorem is referenced by: rngcresringcat 20554 |
| Copyright terms: Public domain | W3C validator |