|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > dfrngc2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the category of non-unital rings (in a universe). (Contributed by AV, 16-Mar-2020.) | 
| Ref | Expression | 
|---|---|
| dfrngc2.c | ⊢ 𝐶 = (RngCat‘𝑈) | 
| dfrngc2.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) | 
| dfrngc2.b | ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) | 
| dfrngc2.h | ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) | 
| dfrngc2.o | ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) | 
| Ref | Expression | 
|---|---|
| dfrngc2 | ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfrngc2.c | . . 3 ⊢ 𝐶 = (RngCat‘𝑈) | |
| 2 | dfrngc2.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 3 | dfrngc2.b | . . 3 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) | |
| 4 | dfrngc2.h | . . 3 ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) | |
| 5 | 1, 2, 3, 4 | rngcval 20619 | . 2 ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻)) | 
| 6 | eqid 2736 | . . 3 ⊢ ((ExtStrCat‘𝑈) ↾cat 𝐻) = ((ExtStrCat‘𝑈) ↾cat 𝐻) | |
| 7 | fvexd 6920 | . . 3 ⊢ (𝜑 → (ExtStrCat‘𝑈) ∈ V) | |
| 8 | inex1g 5318 | . . . . 5 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Rng) ∈ V) | |
| 9 | 2, 8 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑈 ∩ Rng) ∈ V) | 
| 10 | 3, 9 | eqeltrd 2840 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) | 
| 11 | 3, 4 | rnghmresfn 20620 | . . 3 ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) | 
| 12 | 6, 7, 10, 11 | rescval2 17873 | . 2 ⊢ (𝜑 → ((ExtStrCat‘𝑈) ↾cat 𝐻) = (((ExtStrCat‘𝑈) ↾s 𝐵) sSet 〈(Hom ‘ndx), 𝐻〉)) | 
| 13 | eqid 2736 | . . . 4 ⊢ (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈) | |
| 14 | eqidd 2737 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) | |
| 15 | dfrngc2.o | . . . . 5 ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) | |
| 16 | eqid 2736 | . . . . . 6 ⊢ (comp‘(ExtStrCat‘𝑈)) = (comp‘(ExtStrCat‘𝑈)) | |
| 17 | 13, 2, 16 | estrccofval 18174 | . . . . 5 ⊢ (𝜑 → (comp‘(ExtStrCat‘𝑈)) = (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd ‘𝑣))), 𝑓 ∈ ((Base‘(2nd ‘𝑣)) ↑m (Base‘(1st ‘𝑣))) ↦ (𝑔 ∘ 𝑓)))) | 
| 18 | 15, 17 | eqtrd 2776 | . . . 4 ⊢ (𝜑 → · = (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd ‘𝑣))), 𝑓 ∈ ((Base‘(2nd ‘𝑣)) ↑m (Base‘(1st ‘𝑣))) ↦ (𝑔 ∘ 𝑓)))) | 
| 19 | 13, 2, 14, 18 | estrcval 18169 | . . 3 ⊢ (𝜑 → (ExtStrCat‘𝑈) = {〈(Base‘ndx), 𝑈〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))〉, 〈(comp‘ndx), · 〉}) | 
| 20 | mpoexga 8103 | . . . 4 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝑈 ∈ 𝑉) → (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) ∈ V) | |
| 21 | 2, 2, 20 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) ∈ V) | 
| 22 | fvexd 6920 | . . . 4 ⊢ (𝜑 → (comp‘(ExtStrCat‘𝑈)) ∈ V) | |
| 23 | 15, 22 | eqeltrd 2840 | . . 3 ⊢ (𝜑 → · ∈ V) | 
| 24 | rnghmfn 20440 | . . . . . 6 ⊢ RngHom Fn (Rng × Rng) | |
| 25 | fnfun 6667 | . . . . . 6 ⊢ ( RngHom Fn (Rng × Rng) → Fun RngHom ) | |
| 26 | 24, 25 | mp1i 13 | . . . . 5 ⊢ (𝜑 → Fun RngHom ) | 
| 27 | sqxpexg 7776 | . . . . . 6 ⊢ (𝐵 ∈ V → (𝐵 × 𝐵) ∈ V) | |
| 28 | 10, 27 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐵 × 𝐵) ∈ V) | 
| 29 | resfunexg 7236 | . . . . 5 ⊢ ((Fun RngHom ∧ (𝐵 × 𝐵) ∈ V) → ( RngHom ↾ (𝐵 × 𝐵)) ∈ V) | |
| 30 | 26, 28, 29 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ( RngHom ↾ (𝐵 × 𝐵)) ∈ V) | 
| 31 | 4, 30 | eqeltrd 2840 | . . 3 ⊢ (𝜑 → 𝐻 ∈ V) | 
| 32 | inss1 4236 | . . . 4 ⊢ (𝑈 ∩ Rng) ⊆ 𝑈 | |
| 33 | 3, 32 | eqsstrdi 4027 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝑈) | 
| 34 | 19, 2, 21, 23, 31, 33 | estrres 18185 | . 2 ⊢ (𝜑 → (((ExtStrCat‘𝑈) ↾s 𝐵) sSet 〈(Hom ‘ndx), 𝐻〉) = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) | 
| 35 | 5, 12, 34 | 3eqtrd 2780 | 1 ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3479 ∩ cin 3949 {ctp 4629 〈cop 4631 × cxp 5682 ↾ cres 5686 ∘ ccom 5688 Fun wfun 6554 Fn wfn 6555 ‘cfv 6560 (class class class)co 7432 ∈ cmpo 7434 1st c1st 8013 2nd c2nd 8014 ↑m cmap 8867 sSet csts 17201 ndxcnx 17231 Basecbs 17248 ↾s cress 17275 Hom chom 17309 compcco 17310 ↾cat cresc 17853 ExtStrCatcestrc 18167 Rngcrng 20150 RngHom crnghm 20435 RngCatcrngc 20617 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-fz 13549 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-hom 17322 df-cco 17323 df-resc 17856 df-estrc 18168 df-rnghm 20437 df-rngc 20618 | 
| This theorem is referenced by: rngcresringcat 20670 | 
| Copyright terms: Public domain | W3C validator |