Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfrngc2 | Structured version Visualization version GIF version |
Description: Alternate definition of the category of non-unital rings (in a universe). (Contributed by AV, 16-Mar-2020.) |
Ref | Expression |
---|---|
dfrngc2.c | ⊢ 𝐶 = (RngCat‘𝑈) |
dfrngc2.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
dfrngc2.b | ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
dfrngc2.h | ⊢ (𝜑 → 𝐻 = ( RngHomo ↾ (𝐵 × 𝐵))) |
dfrngc2.o | ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) |
Ref | Expression |
---|---|
dfrngc2 | ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrngc2.c | . . 3 ⊢ 𝐶 = (RngCat‘𝑈) | |
2 | dfrngc2.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
3 | dfrngc2.b | . . 3 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) | |
4 | dfrngc2.h | . . 3 ⊢ (𝜑 → 𝐻 = ( RngHomo ↾ (𝐵 × 𝐵))) | |
5 | 1, 2, 3, 4 | rngcval 45489 | . 2 ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
6 | eqid 2740 | . . 3 ⊢ ((ExtStrCat‘𝑈) ↾cat 𝐻) = ((ExtStrCat‘𝑈) ↾cat 𝐻) | |
7 | fvexd 6786 | . . 3 ⊢ (𝜑 → (ExtStrCat‘𝑈) ∈ V) | |
8 | inex1g 5247 | . . . . 5 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Rng) ∈ V) | |
9 | 2, 8 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑈 ∩ Rng) ∈ V) |
10 | 3, 9 | eqeltrd 2841 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
11 | 3, 4 | rnghmresfn 45490 | . . 3 ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) |
12 | 6, 7, 10, 11 | rescval2 17538 | . 2 ⊢ (𝜑 → ((ExtStrCat‘𝑈) ↾cat 𝐻) = (((ExtStrCat‘𝑈) ↾s 𝐵) sSet 〈(Hom ‘ndx), 𝐻〉)) |
13 | eqid 2740 | . . . 4 ⊢ (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈) | |
14 | eqidd 2741 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) | |
15 | dfrngc2.o | . . . . 5 ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) | |
16 | eqid 2740 | . . . . . 6 ⊢ (comp‘(ExtStrCat‘𝑈)) = (comp‘(ExtStrCat‘𝑈)) | |
17 | 13, 2, 16 | estrccofval 17843 | . . . . 5 ⊢ (𝜑 → (comp‘(ExtStrCat‘𝑈)) = (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd ‘𝑣))), 𝑓 ∈ ((Base‘(2nd ‘𝑣)) ↑m (Base‘(1st ‘𝑣))) ↦ (𝑔 ∘ 𝑓)))) |
18 | 15, 17 | eqtrd 2780 | . . . 4 ⊢ (𝜑 → · = (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd ‘𝑣))), 𝑓 ∈ ((Base‘(2nd ‘𝑣)) ↑m (Base‘(1st ‘𝑣))) ↦ (𝑔 ∘ 𝑓)))) |
19 | 13, 2, 14, 18 | estrcval 17838 | . . 3 ⊢ (𝜑 → (ExtStrCat‘𝑈) = {〈(Base‘ndx), 𝑈〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))〉, 〈(comp‘ndx), · 〉}) |
20 | mpoexga 7911 | . . . 4 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝑈 ∈ 𝑉) → (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) ∈ V) | |
21 | 2, 2, 20 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) ∈ V) |
22 | fvexd 6786 | . . . 4 ⊢ (𝜑 → (comp‘(ExtStrCat‘𝑈)) ∈ V) | |
23 | 15, 22 | eqeltrd 2841 | . . 3 ⊢ (𝜑 → · ∈ V) |
24 | rnghmfn 45417 | . . . . . 6 ⊢ RngHomo Fn (Rng × Rng) | |
25 | fnfun 6531 | . . . . . 6 ⊢ ( RngHomo Fn (Rng × Rng) → Fun RngHomo ) | |
26 | 24, 25 | mp1i 13 | . . . . 5 ⊢ (𝜑 → Fun RngHomo ) |
27 | sqxpexg 7599 | . . . . . 6 ⊢ (𝐵 ∈ V → (𝐵 × 𝐵) ∈ V) | |
28 | 10, 27 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐵 × 𝐵) ∈ V) |
29 | resfunexg 7088 | . . . . 5 ⊢ ((Fun RngHomo ∧ (𝐵 × 𝐵) ∈ V) → ( RngHomo ↾ (𝐵 × 𝐵)) ∈ V) | |
30 | 26, 28, 29 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ( RngHomo ↾ (𝐵 × 𝐵)) ∈ V) |
31 | 4, 30 | eqeltrd 2841 | . . 3 ⊢ (𝜑 → 𝐻 ∈ V) |
32 | inss1 4168 | . . . 4 ⊢ (𝑈 ∩ Rng) ⊆ 𝑈 | |
33 | 3, 32 | eqsstrdi 3980 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝑈) |
34 | 19, 2, 21, 23, 31, 33 | estrres 17854 | . 2 ⊢ (𝜑 → (((ExtStrCat‘𝑈) ↾s 𝐵) sSet 〈(Hom ‘ndx), 𝐻〉) = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) |
35 | 5, 12, 34 | 3eqtrd 2784 | 1 ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 Vcvv 3431 ∩ cin 3891 {ctp 4571 〈cop 4573 × cxp 5588 ↾ cres 5592 ∘ ccom 5594 Fun wfun 6426 Fn wfn 6427 ‘cfv 6432 (class class class)co 7271 ∈ cmpo 7273 1st c1st 7822 2nd c2nd 7823 ↑m cmap 8598 sSet csts 16862 ndxcnx 16892 Basecbs 16910 ↾s cress 16939 Hom chom 16971 compcco 16972 ↾cat cresc 17518 ExtStrCatcestrc 17836 Rngcrng 45401 RngHomo crngh 45412 RngCatcrngc 45484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12437 df-uz 12582 df-fz 13239 df-struct 16846 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-hom 16984 df-cco 16985 df-resc 17521 df-estrc 17837 df-rnghomo 45414 df-rngc 45486 |
This theorem is referenced by: rngcresringcat 45557 |
Copyright terms: Public domain | W3C validator |