| Step | Hyp | Ref
| Expression |
| 1 | | 0ex 5289 |
. . . 4
⊢ ∅
∈ V |
| 2 | | eleq1 2821 |
. . . 4
⊢ (𝐴 = ∅ → (𝐴 ∈ V ↔ ∅ ∈
V)) |
| 3 | 1, 2 | mpbiri 258 |
. . 3
⊢ (𝐴 = ∅ → 𝐴 ∈ V) |
| 4 | | rabexg 5319 |
. . 3
⊢ (𝐴 ∈ V → {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V) |
| 5 | 3, 4 | syl 17 |
. 2
⊢ (𝐴 = ∅ → {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V) |
| 6 | | neq0 4334 |
. . 3
⊢ (¬
𝐴 = ∅ ↔
∃𝑦 𝑦 ∈ 𝐴) |
| 7 | | nfra1 3270 |
. . . . . 6
⊢
Ⅎ𝑦∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) |
| 8 | | nfcv 2897 |
. . . . . 6
⊢
Ⅎ𝑦𝐴 |
| 9 | 7, 8 | nfrabw 3459 |
. . . . 5
⊢
Ⅎ𝑦{𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} |
| 10 | 9 | nfel1 2914 |
. . . 4
⊢
Ⅎ𝑦{𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V |
| 11 | | rsp 3234 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) → (𝑦 ∈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) |
| 12 | 11 | com12 32 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) → (rank‘𝑥) ⊆ (rank‘𝑦))) |
| 13 | 12 | adantr 480 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) → (rank‘𝑥) ⊆ (rank‘𝑦))) |
| 14 | 13 | ss2rabdv 4058 |
. . . . 5
⊢ (𝑦 ∈ 𝐴 → {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ⊆ {𝑥 ∈ 𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)}) |
| 15 | | rankon 9818 |
. . . . . . . 8
⊢
(rank‘𝑦)
∈ On |
| 16 | | fveq2 6887 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → (rank‘𝑥) = (rank‘𝑤)) |
| 17 | 16 | sseq1d 3997 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑤) ⊆ (rank‘𝑦))) |
| 18 | 17 | elrab 3676 |
. . . . . . . . . 10
⊢ (𝑤 ∈ {𝑥 ∈ 𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} ↔ (𝑤 ∈ 𝐴 ∧ (rank‘𝑤) ⊆ (rank‘𝑦))) |
| 19 | 18 | simprbi 496 |
. . . . . . . . 9
⊢ (𝑤 ∈ {𝑥 ∈ 𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} → (rank‘𝑤) ⊆ (rank‘𝑦)) |
| 20 | 19 | rgen 3052 |
. . . . . . . 8
⊢
∀𝑤 ∈
{𝑥 ∈ 𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} (rank‘𝑤) ⊆ (rank‘𝑦) |
| 21 | | sseq2 3992 |
. . . . . . . . . 10
⊢ (𝑧 = (rank‘𝑦) → ((rank‘𝑤) ⊆ 𝑧 ↔ (rank‘𝑤) ⊆ (rank‘𝑦))) |
| 22 | 21 | ralbidv 3165 |
. . . . . . . . 9
⊢ (𝑧 = (rank‘𝑦) → (∀𝑤 ∈ {𝑥 ∈ 𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} (rank‘𝑤) ⊆ 𝑧 ↔ ∀𝑤 ∈ {𝑥 ∈ 𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} (rank‘𝑤) ⊆ (rank‘𝑦))) |
| 23 | 22 | rspcev 3606 |
. . . . . . . 8
⊢
(((rank‘𝑦)
∈ On ∧ ∀𝑤
∈ {𝑥 ∈ 𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} (rank‘𝑤) ⊆ (rank‘𝑦)) → ∃𝑧 ∈ On ∀𝑤 ∈ {𝑥 ∈ 𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} (rank‘𝑤) ⊆ 𝑧) |
| 24 | 15, 20, 23 | mp2an 692 |
. . . . . . 7
⊢
∃𝑧 ∈ On
∀𝑤 ∈ {𝑥 ∈ 𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} (rank‘𝑤) ⊆ 𝑧 |
| 25 | | bndrank 9864 |
. . . . . . 7
⊢
(∃𝑧 ∈ On
∀𝑤 ∈ {𝑥 ∈ 𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} (rank‘𝑤) ⊆ 𝑧 → {𝑥 ∈ 𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V) |
| 26 | 24, 25 | ax-mp 5 |
. . . . . 6
⊢ {𝑥 ∈ 𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V |
| 27 | 26 | ssex 5303 |
. . . . 5
⊢ ({𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ⊆ {𝑥 ∈ 𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} → {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V) |
| 28 | 14, 27 | syl 17 |
. . . 4
⊢ (𝑦 ∈ 𝐴 → {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V) |
| 29 | 10, 28 | exlimi 2216 |
. . 3
⊢
(∃𝑦 𝑦 ∈ 𝐴 → {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V) |
| 30 | 6, 29 | sylbi 217 |
. 2
⊢ (¬
𝐴 = ∅ → {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V) |
| 31 | 5, 30 | pm2.61i 182 |
1
⊢ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V |