MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scottex Structured version   Visualization version   GIF version

Theorem scottex 9643
Description: Scott's trick collects all sets that have a certain property and are of the smallest possible rank. This theorem shows that the resulting collection, expressed as in Equation 9.3 of [Jech] p. 72, is a set. (Contributed by NM, 13-Oct-2003.)
Assertion
Ref Expression
scottex {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem scottex
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5231 . . . 4 ∅ ∈ V
2 eleq1 2826 . . . 4 (𝐴 = ∅ → (𝐴 ∈ V ↔ ∅ ∈ V))
31, 2mpbiri 257 . . 3 (𝐴 = ∅ → 𝐴 ∈ V)
4 rabexg 5255 . . 3 (𝐴 ∈ V → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V)
53, 4syl 17 . 2 (𝐴 = ∅ → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V)
6 neq0 4279 . . 3 𝐴 = ∅ ↔ ∃𝑦 𝑦𝐴)
7 nfra1 3144 . . . . . 6 𝑦𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)
8 nfcv 2907 . . . . . 6 𝑦𝐴
97, 8nfrabw 3318 . . . . 5 𝑦{𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)}
109nfel1 2923 . . . 4 𝑦{𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V
11 rsp 3131 . . . . . . . 8 (∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) → (𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))
1211com12 32 . . . . . . 7 (𝑦𝐴 → (∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) → (rank‘𝑥) ⊆ (rank‘𝑦)))
1312ralrimivw 3104 . . . . . 6 (𝑦𝐴 → ∀𝑥𝐴 (∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) → (rank‘𝑥) ⊆ (rank‘𝑦)))
14 ss2rab 4004 . . . . . 6 ({𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ⊆ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} ↔ ∀𝑥𝐴 (∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) → (rank‘𝑥) ⊆ (rank‘𝑦)))
1513, 14sylibr 233 . . . . 5 (𝑦𝐴 → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ⊆ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)})
16 rankon 9553 . . . . . . . 8 (rank‘𝑦) ∈ On
17 fveq2 6774 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (rank‘𝑥) = (rank‘𝑤))
1817sseq1d 3952 . . . . . . . . . . 11 (𝑥 = 𝑤 → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑤) ⊆ (rank‘𝑦)))
1918elrab 3624 . . . . . . . . . 10 (𝑤 ∈ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} ↔ (𝑤𝐴 ∧ (rank‘𝑤) ⊆ (rank‘𝑦)))
2019simprbi 497 . . . . . . . . 9 (𝑤 ∈ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} → (rank‘𝑤) ⊆ (rank‘𝑦))
2120rgen 3074 . . . . . . . 8 𝑤 ∈ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} (rank‘𝑤) ⊆ (rank‘𝑦)
22 sseq2 3947 . . . . . . . . . 10 (𝑧 = (rank‘𝑦) → ((rank‘𝑤) ⊆ 𝑧 ↔ (rank‘𝑤) ⊆ (rank‘𝑦)))
2322ralbidv 3112 . . . . . . . . 9 (𝑧 = (rank‘𝑦) → (∀𝑤 ∈ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} (rank‘𝑤) ⊆ 𝑧 ↔ ∀𝑤 ∈ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} (rank‘𝑤) ⊆ (rank‘𝑦)))
2423rspcev 3561 . . . . . . . 8 (((rank‘𝑦) ∈ On ∧ ∀𝑤 ∈ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} (rank‘𝑤) ⊆ (rank‘𝑦)) → ∃𝑧 ∈ On ∀𝑤 ∈ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} (rank‘𝑤) ⊆ 𝑧)
2516, 21, 24mp2an 689 . . . . . . 7 𝑧 ∈ On ∀𝑤 ∈ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} (rank‘𝑤) ⊆ 𝑧
26 bndrank 9599 . . . . . . 7 (∃𝑧 ∈ On ∀𝑤 ∈ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} (rank‘𝑤) ⊆ 𝑧 → {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V)
2725, 26ax-mp 5 . . . . . 6 {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V
2827ssex 5245 . . . . 5 ({𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ⊆ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V)
2915, 28syl 17 . . . 4 (𝑦𝐴 → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V)
3010, 29exlimi 2210 . . 3 (∃𝑦 𝑦𝐴 → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V)
316, 30sylbi 216 . 2 𝐴 = ∅ → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V)
325, 31pm2.61i 182 1 {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wex 1782  wcel 2106  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  wss 3887  c0 4256  Oncon0 6266  cfv 6433  rankcrnk 9521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-reg 9351  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-r1 9522  df-rank 9523
This theorem is referenced by:  scottexs  9645  cplem2  9648  kardex  9652  scottexf  36326  scottex2  41863
  Copyright terms: Public domain W3C validator