MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scottex Structured version   Visualization version   GIF version

Theorem scottex 9923
Description: Scott's trick collects all sets that have a certain property and are of the smallest possible rank. This theorem shows that the resulting collection, expressed as in Equation 9.3 of [Jech] p. 72, is a set. (Contributed by NM, 13-Oct-2003.)
Assertion
Ref Expression
scottex {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem scottex
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5313 . . . 4 ∅ ∈ V
2 eleq1 2827 . . . 4 (𝐴 = ∅ → (𝐴 ∈ V ↔ ∅ ∈ V))
31, 2mpbiri 258 . . 3 (𝐴 = ∅ → 𝐴 ∈ V)
4 rabexg 5343 . . 3 (𝐴 ∈ V → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V)
53, 4syl 17 . 2 (𝐴 = ∅ → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V)
6 neq0 4358 . . 3 𝐴 = ∅ ↔ ∃𝑦 𝑦𝐴)
7 nfra1 3282 . . . . . 6 𝑦𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)
8 nfcv 2903 . . . . . 6 𝑦𝐴
97, 8nfrabw 3473 . . . . 5 𝑦{𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)}
109nfel1 2920 . . . 4 𝑦{𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V
11 rsp 3245 . . . . . . . 8 (∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) → (𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))
1211com12 32 . . . . . . 7 (𝑦𝐴 → (∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) → (rank‘𝑥) ⊆ (rank‘𝑦)))
1312adantr 480 . . . . . 6 ((𝑦𝐴𝑥𝐴) → (∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) → (rank‘𝑥) ⊆ (rank‘𝑦)))
1413ss2rabdv 4086 . . . . 5 (𝑦𝐴 → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ⊆ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)})
15 rankon 9833 . . . . . . . 8 (rank‘𝑦) ∈ On
16 fveq2 6907 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (rank‘𝑥) = (rank‘𝑤))
1716sseq1d 4027 . . . . . . . . . . 11 (𝑥 = 𝑤 → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑤) ⊆ (rank‘𝑦)))
1817elrab 3695 . . . . . . . . . 10 (𝑤 ∈ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} ↔ (𝑤𝐴 ∧ (rank‘𝑤) ⊆ (rank‘𝑦)))
1918simprbi 496 . . . . . . . . 9 (𝑤 ∈ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} → (rank‘𝑤) ⊆ (rank‘𝑦))
2019rgen 3061 . . . . . . . 8 𝑤 ∈ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} (rank‘𝑤) ⊆ (rank‘𝑦)
21 sseq2 4022 . . . . . . . . . 10 (𝑧 = (rank‘𝑦) → ((rank‘𝑤) ⊆ 𝑧 ↔ (rank‘𝑤) ⊆ (rank‘𝑦)))
2221ralbidv 3176 . . . . . . . . 9 (𝑧 = (rank‘𝑦) → (∀𝑤 ∈ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} (rank‘𝑤) ⊆ 𝑧 ↔ ∀𝑤 ∈ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} (rank‘𝑤) ⊆ (rank‘𝑦)))
2322rspcev 3622 . . . . . . . 8 (((rank‘𝑦) ∈ On ∧ ∀𝑤 ∈ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} (rank‘𝑤) ⊆ (rank‘𝑦)) → ∃𝑧 ∈ On ∀𝑤 ∈ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} (rank‘𝑤) ⊆ 𝑧)
2415, 20, 23mp2an 692 . . . . . . 7 𝑧 ∈ On ∀𝑤 ∈ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} (rank‘𝑤) ⊆ 𝑧
25 bndrank 9879 . . . . . . 7 (∃𝑧 ∈ On ∀𝑤 ∈ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} (rank‘𝑤) ⊆ 𝑧 → {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V)
2624, 25ax-mp 5 . . . . . 6 {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V
2726ssex 5327 . . . . 5 ({𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ⊆ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V)
2814, 27syl 17 . . . 4 (𝑦𝐴 → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V)
2910, 28exlimi 2215 . . 3 (∃𝑦 𝑦𝐴 → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V)
306, 29sylbi 217 . 2 𝐴 = ∅ → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V)
315, 30pm2.61i 182 1 {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wex 1776  wcel 2106  wral 3059  wrex 3068  {crab 3433  Vcvv 3478  wss 3963  c0 4339  Oncon0 6386  cfv 6563  rankcrnk 9801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-reg 9630  ax-inf2 9679
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-r1 9802  df-rank 9803
This theorem is referenced by:  scottexs  9925  cplem2  9928  kardex  9932  scottexf  38155  scottex2  44241
  Copyright terms: Public domain W3C validator