| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mainpart | Structured version Visualization version GIF version | ||
| Description: Partition with general 𝑅 also imply member partition. (Contributed by Peter Mazsa, 23-Sep-2021.) (Revised by Peter Mazsa, 22-Dec-2024.) |
| Ref | Expression |
|---|---|
| mainpart | ⊢ (𝑅 Part 𝐴 → MembPart 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | partimcomember 38774 | . 2 ⊢ (𝑅 Part 𝐴 → CoMembEr 𝐴) | |
| 2 | mpet 38778 | . 2 ⊢ ( MembPart 𝐴 ↔ CoMembEr 𝐴) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ (𝑅 Part 𝐴 → MembPart 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 CoMembEr wcomember 38148 Part wpart 38159 MembPart wmembpart 38161 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3357 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-id 5545 df-eprel 5550 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-ec 8715 df-qs 8719 df-coss 38350 df-coels 38351 df-refrel 38451 df-cnvrefrel 38466 df-symrel 38483 df-trrel 38513 df-eqvrel 38524 df-coeleqvrel 38526 df-dmqs 38578 df-erALTV 38603 df-comember 38605 df-funALTV 38621 df-disjALTV 38644 df-eldisj 38646 df-part 38705 df-membpart 38707 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |