MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedalem3a Structured version   Visualization version   GIF version

Theorem yonedalem3a 18226
Description: Lemma for yoneda 18235. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y π‘Œ = (Yonβ€˜πΆ)
yoneda.b 𝐡 = (Baseβ€˜πΆ)
yoneda.1 1 = (Idβ€˜πΆ)
yoneda.o 𝑂 = (oppCatβ€˜πΆ)
yoneda.s 𝑆 = (SetCatβ€˜π‘ˆ)
yoneda.t 𝑇 = (SetCatβ€˜π‘‰)
yoneda.q 𝑄 = (𝑂 FuncCat 𝑆)
yoneda.h 𝐻 = (HomFβ€˜π‘„)
yoneda.r 𝑅 = ((𝑄 Γ—c 𝑂) FuncCat 𝑇)
yoneda.e 𝐸 = (𝑂 evalF 𝑆)
yoneda.z 𝑍 = (𝐻 ∘func ((⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
yoneda.c (πœ‘ β†’ 𝐢 ∈ Cat)
yoneda.w (πœ‘ β†’ 𝑉 ∈ π‘Š)
yoneda.u (πœ‘ β†’ ran (Homf β€˜πΆ) βŠ† π‘ˆ)
yoneda.v (πœ‘ β†’ (ran (Homf β€˜π‘„) βˆͺ π‘ˆ) βŠ† 𝑉)
yonedalem21.f (πœ‘ β†’ 𝐹 ∈ (𝑂 Func 𝑆))
yonedalem21.x (πœ‘ β†’ 𝑋 ∈ 𝐡)
yonedalem3a.m 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), π‘₯ ∈ 𝐡 ↦ (π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘₯)(𝑂 Nat 𝑆)𝑓) ↦ ((π‘Žβ€˜π‘₯)β€˜( 1 β€˜π‘₯))))
Assertion
Ref Expression
yonedalem3a (πœ‘ β†’ ((𝐹𝑀𝑋) = (π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘‹)(𝑂 Nat 𝑆)𝐹) ↦ ((π‘Žβ€˜π‘‹)β€˜( 1 β€˜π‘‹))) ∧ (𝐹𝑀𝑋):(𝐹(1st β€˜π‘)𝑋)⟢(𝐹(1st β€˜πΈ)𝑋)))
Distinct variable groups:   𝑓,π‘Ž,π‘₯, 1   𝐢,π‘Ž,𝑓,π‘₯   𝐸,π‘Ž,𝑓   𝐹,π‘Ž,𝑓,π‘₯   𝐡,π‘Ž,𝑓,π‘₯   𝑂,π‘Ž,𝑓,π‘₯   𝑆,π‘Ž,𝑓,π‘₯   𝑄,π‘Ž,𝑓,π‘₯   𝑇,𝑓   πœ‘,π‘Ž,𝑓,π‘₯   π‘Œ,π‘Ž,𝑓,π‘₯   𝑍,π‘Ž,𝑓,π‘₯   𝑋,π‘Ž,𝑓,π‘₯
Allowed substitution hints:   𝑅(π‘₯,𝑓,π‘Ž)   𝑇(π‘₯,π‘Ž)   π‘ˆ(π‘₯,𝑓,π‘Ž)   𝐸(π‘₯)   𝐻(π‘₯,𝑓,π‘Ž)   𝑀(π‘₯,𝑓,π‘Ž)   𝑉(π‘₯,𝑓,π‘Ž)   π‘Š(π‘₯,𝑓,π‘Ž)

Proof of Theorem yonedalem3a
StepHypRef Expression
1 yonedalem21.f . . 3 (πœ‘ β†’ 𝐹 ∈ (𝑂 Func 𝑆))
2 yonedalem21.x . . 3 (πœ‘ β†’ 𝑋 ∈ 𝐡)
3 simpr 485 . . . . . . 7 ((𝑓 = 𝐹 ∧ π‘₯ = 𝑋) β†’ π‘₯ = 𝑋)
43fveq2d 6895 . . . . . 6 ((𝑓 = 𝐹 ∧ π‘₯ = 𝑋) β†’ ((1st β€˜π‘Œ)β€˜π‘₯) = ((1st β€˜π‘Œ)β€˜π‘‹))
5 simpl 483 . . . . . 6 ((𝑓 = 𝐹 ∧ π‘₯ = 𝑋) β†’ 𝑓 = 𝐹)
64, 5oveq12d 7426 . . . . 5 ((𝑓 = 𝐹 ∧ π‘₯ = 𝑋) β†’ (((1st β€˜π‘Œ)β€˜π‘₯)(𝑂 Nat 𝑆)𝑓) = (((1st β€˜π‘Œ)β€˜π‘‹)(𝑂 Nat 𝑆)𝐹))
73fveq2d 6895 . . . . . 6 ((𝑓 = 𝐹 ∧ π‘₯ = 𝑋) β†’ (π‘Žβ€˜π‘₯) = (π‘Žβ€˜π‘‹))
83fveq2d 6895 . . . . . 6 ((𝑓 = 𝐹 ∧ π‘₯ = 𝑋) β†’ ( 1 β€˜π‘₯) = ( 1 β€˜π‘‹))
97, 8fveq12d 6898 . . . . 5 ((𝑓 = 𝐹 ∧ π‘₯ = 𝑋) β†’ ((π‘Žβ€˜π‘₯)β€˜( 1 β€˜π‘₯)) = ((π‘Žβ€˜π‘‹)β€˜( 1 β€˜π‘‹)))
106, 9mpteq12dv 5239 . . . 4 ((𝑓 = 𝐹 ∧ π‘₯ = 𝑋) β†’ (π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘₯)(𝑂 Nat 𝑆)𝑓) ↦ ((π‘Žβ€˜π‘₯)β€˜( 1 β€˜π‘₯))) = (π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘‹)(𝑂 Nat 𝑆)𝐹) ↦ ((π‘Žβ€˜π‘‹)β€˜( 1 β€˜π‘‹))))
11 yonedalem3a.m . . . 4 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), π‘₯ ∈ 𝐡 ↦ (π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘₯)(𝑂 Nat 𝑆)𝑓) ↦ ((π‘Žβ€˜π‘₯)β€˜( 1 β€˜π‘₯))))
12 ovex 7441 . . . . 5 (((1st β€˜π‘Œ)β€˜π‘‹)(𝑂 Nat 𝑆)𝐹) ∈ V
1312mptex 7224 . . . 4 (π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘‹)(𝑂 Nat 𝑆)𝐹) ↦ ((π‘Žβ€˜π‘‹)β€˜( 1 β€˜π‘‹))) ∈ V
1410, 11, 13ovmpoa 7562 . . 3 ((𝐹 ∈ (𝑂 Func 𝑆) ∧ 𝑋 ∈ 𝐡) β†’ (𝐹𝑀𝑋) = (π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘‹)(𝑂 Nat 𝑆)𝐹) ↦ ((π‘Žβ€˜π‘‹)β€˜( 1 β€˜π‘‹))))
151, 2, 14syl2anc 584 . 2 (πœ‘ β†’ (𝐹𝑀𝑋) = (π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘‹)(𝑂 Nat 𝑆)𝐹) ↦ ((π‘Žβ€˜π‘‹)β€˜( 1 β€˜π‘‹))))
16 eqid 2732 . . . . . . 7 (𝑂 Nat 𝑆) = (𝑂 Nat 𝑆)
17 simpr 485 . . . . . . . 8 ((πœ‘ ∧ π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘‹)(𝑂 Nat 𝑆)𝐹)) β†’ π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘‹)(𝑂 Nat 𝑆)𝐹))
1816, 17nat1st2nd 17901 . . . . . . 7 ((πœ‘ ∧ π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘‹)(𝑂 Nat 𝑆)𝐹)) β†’ π‘Ž ∈ (⟨(1st β€˜((1st β€˜π‘Œ)β€˜π‘‹)), (2nd β€˜((1st β€˜π‘Œ)β€˜π‘‹))⟩(𝑂 Nat 𝑆)⟨(1st β€˜πΉ), (2nd β€˜πΉ)⟩))
19 yoneda.o . . . . . . . 8 𝑂 = (oppCatβ€˜πΆ)
20 yoneda.b . . . . . . . 8 𝐡 = (Baseβ€˜πΆ)
2119, 20oppcbas 17662 . . . . . . 7 𝐡 = (Baseβ€˜π‘‚)
22 eqid 2732 . . . . . . 7 (Hom β€˜π‘†) = (Hom β€˜π‘†)
232adantr 481 . . . . . . 7 ((πœ‘ ∧ π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘‹)(𝑂 Nat 𝑆)𝐹)) β†’ 𝑋 ∈ 𝐡)
2416, 18, 21, 22, 23natcl 17903 . . . . . 6 ((πœ‘ ∧ π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘‹)(𝑂 Nat 𝑆)𝐹)) β†’ (π‘Žβ€˜π‘‹) ∈ (((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘‹)(Hom β€˜π‘†)((1st β€˜πΉ)β€˜π‘‹)))
25 yoneda.s . . . . . . 7 𝑆 = (SetCatβ€˜π‘ˆ)
26 yoneda.w . . . . . . . . 9 (πœ‘ β†’ 𝑉 ∈ π‘Š)
27 yoneda.v . . . . . . . . . 10 (πœ‘ β†’ (ran (Homf β€˜π‘„) βˆͺ π‘ˆ) βŠ† 𝑉)
2827unssbd 4188 . . . . . . . . 9 (πœ‘ β†’ π‘ˆ βŠ† 𝑉)
2926, 28ssexd 5324 . . . . . . . 8 (πœ‘ β†’ π‘ˆ ∈ V)
3029adantr 481 . . . . . . 7 ((πœ‘ ∧ π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘‹)(𝑂 Nat 𝑆)𝐹)) β†’ π‘ˆ ∈ V)
31 eqid 2732 . . . . . . . . . . 11 (Baseβ€˜π‘†) = (Baseβ€˜π‘†)
32 relfunc 17811 . . . . . . . . . . . 12 Rel (𝑂 Func 𝑆)
33 yoneda.y . . . . . . . . . . . . 13 π‘Œ = (Yonβ€˜πΆ)
34 yoneda.c . . . . . . . . . . . . 13 (πœ‘ β†’ 𝐢 ∈ Cat)
35 yoneda.u . . . . . . . . . . . . 13 (πœ‘ β†’ ran (Homf β€˜πΆ) βŠ† π‘ˆ)
3633, 20, 34, 2, 19, 25, 29, 35yon1cl 18215 . . . . . . . . . . . 12 (πœ‘ β†’ ((1st β€˜π‘Œ)β€˜π‘‹) ∈ (𝑂 Func 𝑆))
37 1st2ndbr 8027 . . . . . . . . . . . 12 ((Rel (𝑂 Func 𝑆) ∧ ((1st β€˜π‘Œ)β€˜π‘‹) ∈ (𝑂 Func 𝑆)) β†’ (1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))(𝑂 Func 𝑆)(2nd β€˜((1st β€˜π‘Œ)β€˜π‘‹)))
3832, 36, 37sylancr 587 . . . . . . . . . . 11 (πœ‘ β†’ (1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))(𝑂 Func 𝑆)(2nd β€˜((1st β€˜π‘Œ)β€˜π‘‹)))
3921, 31, 38funcf1 17815 . . . . . . . . . 10 (πœ‘ β†’ (1st β€˜((1st β€˜π‘Œ)β€˜π‘‹)):𝐡⟢(Baseβ€˜π‘†))
4039, 2ffvelcdmd 7087 . . . . . . . . 9 (πœ‘ β†’ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘‹) ∈ (Baseβ€˜π‘†))
4125, 29setcbas 18027 . . . . . . . . 9 (πœ‘ β†’ π‘ˆ = (Baseβ€˜π‘†))
4240, 41eleqtrrd 2836 . . . . . . . 8 (πœ‘ β†’ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘‹) ∈ π‘ˆ)
4342adantr 481 . . . . . . 7 ((πœ‘ ∧ π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘‹)(𝑂 Nat 𝑆)𝐹)) β†’ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘‹) ∈ π‘ˆ)
44 1st2ndbr 8027 . . . . . . . . . . . 12 ((Rel (𝑂 Func 𝑆) ∧ 𝐹 ∈ (𝑂 Func 𝑆)) β†’ (1st β€˜πΉ)(𝑂 Func 𝑆)(2nd β€˜πΉ))
4532, 1, 44sylancr 587 . . . . . . . . . . 11 (πœ‘ β†’ (1st β€˜πΉ)(𝑂 Func 𝑆)(2nd β€˜πΉ))
4621, 31, 45funcf1 17815 . . . . . . . . . 10 (πœ‘ β†’ (1st β€˜πΉ):𝐡⟢(Baseβ€˜π‘†))
4746, 2ffvelcdmd 7087 . . . . . . . . 9 (πœ‘ β†’ ((1st β€˜πΉ)β€˜π‘‹) ∈ (Baseβ€˜π‘†))
4847, 41eleqtrrd 2836 . . . . . . . 8 (πœ‘ β†’ ((1st β€˜πΉ)β€˜π‘‹) ∈ π‘ˆ)
4948adantr 481 . . . . . . 7 ((πœ‘ ∧ π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘‹)(𝑂 Nat 𝑆)𝐹)) β†’ ((1st β€˜πΉ)β€˜π‘‹) ∈ π‘ˆ)
5025, 30, 22, 43, 49elsetchom 18030 . . . . . 6 ((πœ‘ ∧ π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘‹)(𝑂 Nat 𝑆)𝐹)) β†’ ((π‘Žβ€˜π‘‹) ∈ (((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘‹)(Hom β€˜π‘†)((1st β€˜πΉ)β€˜π‘‹)) ↔ (π‘Žβ€˜π‘‹):((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘‹)⟢((1st β€˜πΉ)β€˜π‘‹)))
5124, 50mpbid 231 . . . . 5 ((πœ‘ ∧ π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘‹)(𝑂 Nat 𝑆)𝐹)) β†’ (π‘Žβ€˜π‘‹):((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘‹)⟢((1st β€˜πΉ)β€˜π‘‹))
52 eqid 2732 . . . . . . . 8 (Hom β€˜πΆ) = (Hom β€˜πΆ)
53 yoneda.1 . . . . . . . 8 1 = (Idβ€˜πΆ)
5420, 52, 53, 34, 2catidcl 17625 . . . . . . 7 (πœ‘ β†’ ( 1 β€˜π‘‹) ∈ (𝑋(Hom β€˜πΆ)𝑋))
5533, 20, 34, 2, 52, 2yon11 18216 . . . . . . 7 (πœ‘ β†’ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘‹) = (𝑋(Hom β€˜πΆ)𝑋))
5654, 55eleqtrrd 2836 . . . . . 6 (πœ‘ β†’ ( 1 β€˜π‘‹) ∈ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘‹))
5756adantr 481 . . . . 5 ((πœ‘ ∧ π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘‹)(𝑂 Nat 𝑆)𝐹)) β†’ ( 1 β€˜π‘‹) ∈ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘‹))
5851, 57ffvelcdmd 7087 . . . 4 ((πœ‘ ∧ π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘‹)(𝑂 Nat 𝑆)𝐹)) β†’ ((π‘Žβ€˜π‘‹)β€˜( 1 β€˜π‘‹)) ∈ ((1st β€˜πΉ)β€˜π‘‹))
5958fmpttd 7114 . . 3 (πœ‘ β†’ (π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘‹)(𝑂 Nat 𝑆)𝐹) ↦ ((π‘Žβ€˜π‘‹)β€˜( 1 β€˜π‘‹))):(((1st β€˜π‘Œ)β€˜π‘‹)(𝑂 Nat 𝑆)𝐹)⟢((1st β€˜πΉ)β€˜π‘‹))
60 yoneda.t . . . . 5 𝑇 = (SetCatβ€˜π‘‰)
61 yoneda.q . . . . 5 𝑄 = (𝑂 FuncCat 𝑆)
62 yoneda.h . . . . 5 𝐻 = (HomFβ€˜π‘„)
63 yoneda.r . . . . 5 𝑅 = ((𝑄 Γ—c 𝑂) FuncCat 𝑇)
64 yoneda.e . . . . 5 𝐸 = (𝑂 evalF 𝑆)
65 yoneda.z . . . . 5 𝑍 = (𝐻 ∘func ((⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
6633, 20, 53, 19, 25, 60, 61, 62, 63, 64, 65, 34, 26, 35, 27, 1, 2yonedalem21 18225 . . . 4 (πœ‘ β†’ (𝐹(1st β€˜π‘)𝑋) = (((1st β€˜π‘Œ)β€˜π‘‹)(𝑂 Nat 𝑆)𝐹))
6719oppccat 17667 . . . . . 6 (𝐢 ∈ Cat β†’ 𝑂 ∈ Cat)
6834, 67syl 17 . . . . 5 (πœ‘ β†’ 𝑂 ∈ Cat)
6925setccat 18034 . . . . . 6 (π‘ˆ ∈ V β†’ 𝑆 ∈ Cat)
7029, 69syl 17 . . . . 5 (πœ‘ β†’ 𝑆 ∈ Cat)
7164, 68, 70, 21, 1, 2evlf1 18172 . . . 4 (πœ‘ β†’ (𝐹(1st β€˜πΈ)𝑋) = ((1st β€˜πΉ)β€˜π‘‹))
7215, 66, 71feq123d 6706 . . 3 (πœ‘ β†’ ((𝐹𝑀𝑋):(𝐹(1st β€˜π‘)𝑋)⟢(𝐹(1st β€˜πΈ)𝑋) ↔ (π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘‹)(𝑂 Nat 𝑆)𝐹) ↦ ((π‘Žβ€˜π‘‹)β€˜( 1 β€˜π‘‹))):(((1st β€˜π‘Œ)β€˜π‘‹)(𝑂 Nat 𝑆)𝐹)⟢((1st β€˜πΉ)β€˜π‘‹)))
7359, 72mpbird 256 . 2 (πœ‘ β†’ (𝐹𝑀𝑋):(𝐹(1st β€˜π‘)𝑋)⟢(𝐹(1st β€˜πΈ)𝑋))
7415, 73jca 512 1 (πœ‘ β†’ ((𝐹𝑀𝑋) = (π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘‹)(𝑂 Nat 𝑆)𝐹) ↦ ((π‘Žβ€˜π‘‹)β€˜( 1 β€˜π‘‹))) ∧ (𝐹𝑀𝑋):(𝐹(1st β€˜π‘)𝑋)⟢(𝐹(1st β€˜πΈ)𝑋)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3474   βˆͺ cun 3946   βŠ† wss 3948  βŸ¨cop 4634   class class class wbr 5148   ↦ cmpt 5231  ran crn 5677  Rel wrel 5681  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7408   ∈ cmpo 7410  1st c1st 7972  2nd c2nd 7973  tpos ctpos 8209  Basecbs 17143  Hom chom 17207  Catccat 17607  Idccid 17608  Homf chomf 17609  oppCatcoppc 17654   Func cfunc 17803   ∘func ccofu 17805   Nat cnat 17891   FuncCat cfuc 17892  SetCatcsetc 18024   Γ—c cxpc 18119   1stF c1stf 18120   2ndF c2ndf 18121   ⟨,⟩F cprf 18122   evalF cevlf 18161  HomFchof 18200  Yoncyon 18201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-tpos 8210  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-map 8821  df-ixp 8891  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-dec 12677  df-uz 12822  df-fz 13484  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-hom 17220  df-cco 17221  df-cat 17611  df-cid 17612  df-homf 17613  df-comf 17614  df-oppc 17655  df-func 17807  df-cofu 17809  df-nat 17893  df-fuc 17894  df-setc 18025  df-xpc 18123  df-1stf 18124  df-2ndf 18125  df-prf 18126  df-evlf 18165  df-curf 18166  df-hof 18202  df-yon 18203
This theorem is referenced by:  yonedalem3b  18231  yonedalem3  18232  yonedainv  18233
  Copyright terms: Public domain W3C validator