Proof of Theorem yonedalem3a
| Step | Hyp | Ref
| Expression |
| 1 | | yonedalem21.f |
. . 3
⊢ (𝜑 → 𝐹 ∈ (𝑂 Func 𝑆)) |
| 2 | | yonedalem21.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 3 | | simpr 484 |
. . . . . . 7
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) |
| 4 | 3 | fveq2d 6885 |
. . . . . 6
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → ((1st ‘𝑌)‘𝑥) = ((1st ‘𝑌)‘𝑋)) |
| 5 | | simpl 482 |
. . . . . 6
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → 𝑓 = 𝐹) |
| 6 | 4, 5 | oveq12d 7428 |
. . . . 5
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → (((1st ‘𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) = (((1st ‘𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) |
| 7 | 3 | fveq2d 6885 |
. . . . . 6
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → (𝑎‘𝑥) = (𝑎‘𝑋)) |
| 8 | 3 | fveq2d 6885 |
. . . . . 6
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → ( 1 ‘𝑥) = ( 1 ‘𝑋)) |
| 9 | 7, 8 | fveq12d 6888 |
. . . . 5
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → ((𝑎‘𝑥)‘( 1 ‘𝑥)) = ((𝑎‘𝑋)‘( 1 ‘𝑋))) |
| 10 | 6, 9 | mpteq12dv 5212 |
. . . 4
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → (𝑎 ∈ (((1st ‘𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎‘𝑥)‘( 1 ‘𝑥))) = (𝑎 ∈ (((1st ‘𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎‘𝑋)‘( 1 ‘𝑋)))) |
| 11 | | yonedalem3a.m |
. . . 4
⊢ 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑎 ∈ (((1st ‘𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎‘𝑥)‘( 1 ‘𝑥)))) |
| 12 | | ovex 7443 |
. . . . 5
⊢
(((1st ‘𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ∈ V |
| 13 | 12 | mptex 7220 |
. . . 4
⊢ (𝑎 ∈ (((1st
‘𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎‘𝑋)‘( 1 ‘𝑋))) ∈ V |
| 14 | 10, 11, 13 | ovmpoa 7567 |
. . 3
⊢ ((𝐹 ∈ (𝑂 Func 𝑆) ∧ 𝑋 ∈ 𝐵) → (𝐹𝑀𝑋) = (𝑎 ∈ (((1st ‘𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎‘𝑋)‘( 1 ‘𝑋)))) |
| 15 | 1, 2, 14 | syl2anc 584 |
. 2
⊢ (𝜑 → (𝐹𝑀𝑋) = (𝑎 ∈ (((1st ‘𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎‘𝑋)‘( 1 ‘𝑋)))) |
| 16 | | eqid 2736 |
. . . . . . 7
⊢ (𝑂 Nat 𝑆) = (𝑂 Nat 𝑆) |
| 17 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ (((1st ‘𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝑎 ∈ (((1st ‘𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) |
| 18 | 16, 17 | nat1st2nd 17972 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ (((1st ‘𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝑎 ∈ (〈(1st
‘((1st ‘𝑌)‘𝑋)), (2nd ‘((1st
‘𝑌)‘𝑋))〉(𝑂 Nat 𝑆)〈(1st ‘𝐹), (2nd ‘𝐹)〉)) |
| 19 | | yoneda.o |
. . . . . . . 8
⊢ 𝑂 = (oppCat‘𝐶) |
| 20 | | yoneda.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐶) |
| 21 | 19, 20 | oppcbas 17735 |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑂) |
| 22 | | eqid 2736 |
. . . . . . 7
⊢ (Hom
‘𝑆) = (Hom
‘𝑆) |
| 23 | 2 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ (((1st ‘𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝑋 ∈ 𝐵) |
| 24 | 16, 18, 21, 22, 23 | natcl 17974 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ (((1st ‘𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (𝑎‘𝑋) ∈ (((1st
‘((1st ‘𝑌)‘𝑋))‘𝑋)(Hom ‘𝑆)((1st ‘𝐹)‘𝑋))) |
| 25 | | yoneda.s |
. . . . . . 7
⊢ 𝑆 = (SetCat‘𝑈) |
| 26 | | yoneda.w |
. . . . . . . . 9
⊢ (𝜑 → 𝑉 ∈ 𝑊) |
| 27 | | yoneda.v |
. . . . . . . . . 10
⊢ (𝜑 → (ran
(Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) |
| 28 | 27 | unssbd 4174 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ⊆ 𝑉) |
| 29 | 26, 28 | ssexd 5299 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ V) |
| 30 | 29 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ (((1st ‘𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝑈 ∈ V) |
| 31 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 32 | | relfunc 17880 |
. . . . . . . . . . . 12
⊢ Rel
(𝑂 Func 𝑆) |
| 33 | | yoneda.y |
. . . . . . . . . . . . 13
⊢ 𝑌 = (Yon‘𝐶) |
| 34 | | yoneda.c |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 35 | | yoneda.u |
. . . . . . . . . . . . 13
⊢ (𝜑 → ran
(Homf ‘𝐶) ⊆ 𝑈) |
| 36 | 33, 20, 34, 2, 19, 25, 29, 35 | yon1cl 18280 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((1st
‘𝑌)‘𝑋) ∈ (𝑂 Func 𝑆)) |
| 37 | | 1st2ndbr 8046 |
. . . . . . . . . . . 12
⊢ ((Rel
(𝑂 Func 𝑆) ∧ ((1st ‘𝑌)‘𝑋) ∈ (𝑂 Func 𝑆)) → (1st
‘((1st ‘𝑌)‘𝑋))(𝑂 Func 𝑆)(2nd ‘((1st
‘𝑌)‘𝑋))) |
| 38 | 32, 36, 37 | sylancr 587 |
. . . . . . . . . . 11
⊢ (𝜑 → (1st
‘((1st ‘𝑌)‘𝑋))(𝑂 Func 𝑆)(2nd ‘((1st
‘𝑌)‘𝑋))) |
| 39 | 21, 31, 38 | funcf1 17884 |
. . . . . . . . . 10
⊢ (𝜑 → (1st
‘((1st ‘𝑌)‘𝑋)):𝐵⟶(Base‘𝑆)) |
| 40 | 39, 2 | ffvelcdmd 7080 |
. . . . . . . . 9
⊢ (𝜑 → ((1st
‘((1st ‘𝑌)‘𝑋))‘𝑋) ∈ (Base‘𝑆)) |
| 41 | 25, 29 | setcbas 18096 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 = (Base‘𝑆)) |
| 42 | 40, 41 | eleqtrrd 2838 |
. . . . . . . 8
⊢ (𝜑 → ((1st
‘((1st ‘𝑌)‘𝑋))‘𝑋) ∈ 𝑈) |
| 43 | 42 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ (((1st ‘𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((1st
‘((1st ‘𝑌)‘𝑋))‘𝑋) ∈ 𝑈) |
| 44 | | 1st2ndbr 8046 |
. . . . . . . . . . . 12
⊢ ((Rel
(𝑂 Func 𝑆) ∧ 𝐹 ∈ (𝑂 Func 𝑆)) → (1st ‘𝐹)(𝑂 Func 𝑆)(2nd ‘𝐹)) |
| 45 | 32, 1, 44 | sylancr 587 |
. . . . . . . . . . 11
⊢ (𝜑 → (1st
‘𝐹)(𝑂 Func 𝑆)(2nd ‘𝐹)) |
| 46 | 21, 31, 45 | funcf1 17884 |
. . . . . . . . . 10
⊢ (𝜑 → (1st
‘𝐹):𝐵⟶(Base‘𝑆)) |
| 47 | 46, 2 | ffvelcdmd 7080 |
. . . . . . . . 9
⊢ (𝜑 → ((1st
‘𝐹)‘𝑋) ∈ (Base‘𝑆)) |
| 48 | 47, 41 | eleqtrrd 2838 |
. . . . . . . 8
⊢ (𝜑 → ((1st
‘𝐹)‘𝑋) ∈ 𝑈) |
| 49 | 48 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ (((1st ‘𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((1st ‘𝐹)‘𝑋) ∈ 𝑈) |
| 50 | 25, 30, 22, 43, 49 | elsetchom 18099 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ (((1st ‘𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎‘𝑋) ∈ (((1st
‘((1st ‘𝑌)‘𝑋))‘𝑋)(Hom ‘𝑆)((1st ‘𝐹)‘𝑋)) ↔ (𝑎‘𝑋):((1st ‘((1st
‘𝑌)‘𝑋))‘𝑋)⟶((1st ‘𝐹)‘𝑋))) |
| 51 | 24, 50 | mpbid 232 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ (((1st ‘𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (𝑎‘𝑋):((1st ‘((1st
‘𝑌)‘𝑋))‘𝑋)⟶((1st ‘𝐹)‘𝑋)) |
| 52 | | eqid 2736 |
. . . . . . . 8
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 53 | | yoneda.1 |
. . . . . . . 8
⊢ 1 =
(Id‘𝐶) |
| 54 | 20, 52, 53, 34, 2 | catidcl 17699 |
. . . . . . 7
⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋)) |
| 55 | 33, 20, 34, 2, 52, 2 | yon11 18281 |
. . . . . . 7
⊢ (𝜑 → ((1st
‘((1st ‘𝑌)‘𝑋))‘𝑋) = (𝑋(Hom ‘𝐶)𝑋)) |
| 56 | 54, 55 | eleqtrrd 2838 |
. . . . . 6
⊢ (𝜑 → ( 1 ‘𝑋) ∈ ((1st
‘((1st ‘𝑌)‘𝑋))‘𝑋)) |
| 57 | 56 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ (((1st ‘𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ( 1 ‘𝑋) ∈ ((1st
‘((1st ‘𝑌)‘𝑋))‘𝑋)) |
| 58 | 51, 57 | ffvelcdmd 7080 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ (((1st ‘𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎‘𝑋)‘( 1 ‘𝑋)) ∈ ((1st ‘𝐹)‘𝑋)) |
| 59 | 58 | fmpttd 7110 |
. . 3
⊢ (𝜑 → (𝑎 ∈ (((1st ‘𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎‘𝑋)‘( 1 ‘𝑋))):(((1st ‘𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)⟶((1st ‘𝐹)‘𝑋)) |
| 60 | | yoneda.t |
. . . . 5
⊢ 𝑇 = (SetCat‘𝑉) |
| 61 | | yoneda.q |
. . . . 5
⊢ 𝑄 = (𝑂 FuncCat 𝑆) |
| 62 | | yoneda.h |
. . . . 5
⊢ 𝐻 =
(HomF‘𝑄) |
| 63 | | yoneda.r |
. . . . 5
⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) |
| 64 | | yoneda.e |
. . . . 5
⊢ 𝐸 = (𝑂 evalF 𝑆) |
| 65 | | yoneda.z |
. . . . 5
⊢ 𝑍 = (𝐻 ∘func
((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉
∘func (𝑄 2ndF 𝑂))
〈,〉F (𝑄 1stF 𝑂))) |
| 66 | 33, 20, 53, 19, 25, 60, 61, 62, 63, 64, 65, 34, 26, 35, 27, 1, 2 | yonedalem21 18290 |
. . . 4
⊢ (𝜑 → (𝐹(1st ‘𝑍)𝑋) = (((1st ‘𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) |
| 67 | 19 | oppccat 17739 |
. . . . . 6
⊢ (𝐶 ∈ Cat → 𝑂 ∈ Cat) |
| 68 | 34, 67 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑂 ∈ Cat) |
| 69 | 25 | setccat 18103 |
. . . . . 6
⊢ (𝑈 ∈ V → 𝑆 ∈ Cat) |
| 70 | 29, 69 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ Cat) |
| 71 | 64, 68, 70, 21, 1, 2 | evlf1 18237 |
. . . 4
⊢ (𝜑 → (𝐹(1st ‘𝐸)𝑋) = ((1st ‘𝐹)‘𝑋)) |
| 72 | 15, 66, 71 | feq123d 6700 |
. . 3
⊢ (𝜑 → ((𝐹𝑀𝑋):(𝐹(1st ‘𝑍)𝑋)⟶(𝐹(1st ‘𝐸)𝑋) ↔ (𝑎 ∈ (((1st ‘𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎‘𝑋)‘( 1 ‘𝑋))):(((1st ‘𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)⟶((1st ‘𝐹)‘𝑋))) |
| 73 | 59, 72 | mpbird 257 |
. 2
⊢ (𝜑 → (𝐹𝑀𝑋):(𝐹(1st ‘𝑍)𝑋)⟶(𝐹(1st ‘𝐸)𝑋)) |
| 74 | 15, 73 | jca 511 |
1
⊢ (𝜑 → ((𝐹𝑀𝑋) = (𝑎 ∈ (((1st ‘𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎‘𝑋)‘( 1 ‘𝑋))) ∧ (𝐹𝑀𝑋):(𝐹(1st ‘𝑍)𝑋)⟶(𝐹(1st ‘𝐸)𝑋))) |