MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedalem4c Structured version   Visualization version   GIF version

Theorem yonedalem4c 18232
Description: Lemma for yoneda 18238. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y π‘Œ = (Yonβ€˜πΆ)
yoneda.b 𝐡 = (Baseβ€˜πΆ)
yoneda.1 1 = (Idβ€˜πΆ)
yoneda.o 𝑂 = (oppCatβ€˜πΆ)
yoneda.s 𝑆 = (SetCatβ€˜π‘ˆ)
yoneda.t 𝑇 = (SetCatβ€˜π‘‰)
yoneda.q 𝑄 = (𝑂 FuncCat 𝑆)
yoneda.h 𝐻 = (HomFβ€˜π‘„)
yoneda.r 𝑅 = ((𝑄 Γ—c 𝑂) FuncCat 𝑇)
yoneda.e 𝐸 = (𝑂 evalF 𝑆)
yoneda.z 𝑍 = (𝐻 ∘func ((⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
yoneda.c (πœ‘ β†’ 𝐢 ∈ Cat)
yoneda.w (πœ‘ β†’ 𝑉 ∈ π‘Š)
yoneda.u (πœ‘ β†’ ran (Homf β€˜πΆ) βŠ† π‘ˆ)
yoneda.v (πœ‘ β†’ (ran (Homf β€˜π‘„) βˆͺ π‘ˆ) βŠ† 𝑉)
yonedalem21.f (πœ‘ β†’ 𝐹 ∈ (𝑂 Func 𝑆))
yonedalem21.x (πœ‘ β†’ 𝑋 ∈ 𝐡)
yonedalem4.n 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), π‘₯ ∈ 𝐡 ↦ (𝑒 ∈ ((1st β€˜π‘“)β€˜π‘₯) ↦ (𝑦 ∈ 𝐡 ↦ (𝑔 ∈ (𝑦(Hom β€˜πΆ)π‘₯) ↦ (((π‘₯(2nd β€˜π‘“)𝑦)β€˜π‘”)β€˜π‘’)))))
yonedalem4.p (πœ‘ β†’ 𝐴 ∈ ((1st β€˜πΉ)β€˜π‘‹))
Assertion
Ref Expression
yonedalem4c (πœ‘ β†’ ((𝐹𝑁𝑋)β€˜π΄) ∈ (((1st β€˜π‘Œ)β€˜π‘‹)(𝑂 Nat 𝑆)𝐹))
Distinct variable groups:   𝑓,𝑔,π‘₯,𝑦, 1   𝑒,𝑔,𝐴,𝑦   𝑒,𝑓,𝐢,𝑔,π‘₯,𝑦   𝑓,𝐸,𝑔,𝑒,𝑦   𝑓,𝐹,𝑔,𝑒,π‘₯,𝑦   𝐡,𝑓,𝑔,𝑒,π‘₯,𝑦   𝑓,𝑂,𝑔,𝑒,π‘₯,𝑦   𝑆,𝑓,𝑔,𝑒,π‘₯,𝑦   𝑄,𝑓,𝑔,𝑒,π‘₯   𝑇,𝑓,𝑔,𝑒,𝑦   πœ‘,𝑓,𝑔,𝑒,π‘₯,𝑦   𝑒,𝑅   𝑓,π‘Œ,𝑔,𝑒,π‘₯,𝑦   𝑓,𝑍,𝑔,𝑒,π‘₯,𝑦   𝑓,𝑋,𝑔,𝑒,π‘₯,𝑦
Allowed substitution hints:   𝐴(π‘₯,𝑓)   𝑄(𝑦)   𝑅(π‘₯,𝑦,𝑓,𝑔)   𝑇(π‘₯)   π‘ˆ(π‘₯,𝑦,𝑒,𝑓,𝑔)   1 (𝑒)   𝐸(π‘₯)   𝐻(π‘₯,𝑦,𝑒,𝑓,𝑔)   𝑁(π‘₯,𝑦,𝑒,𝑓,𝑔)   𝑉(π‘₯,𝑦,𝑒,𝑓,𝑔)   π‘Š(π‘₯,𝑦,𝑒,𝑓,𝑔)

Proof of Theorem yonedalem4c
Dummy variables β„Ž π‘˜ 𝑀 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 yoneda.y . . . . 5 π‘Œ = (Yonβ€˜πΆ)
2 yoneda.b . . . . 5 𝐡 = (Baseβ€˜πΆ)
3 yoneda.1 . . . . 5 1 = (Idβ€˜πΆ)
4 yoneda.o . . . . 5 𝑂 = (oppCatβ€˜πΆ)
5 yoneda.s . . . . 5 𝑆 = (SetCatβ€˜π‘ˆ)
6 yoneda.t . . . . 5 𝑇 = (SetCatβ€˜π‘‰)
7 yoneda.q . . . . 5 𝑄 = (𝑂 FuncCat 𝑆)
8 yoneda.h . . . . 5 𝐻 = (HomFβ€˜π‘„)
9 yoneda.r . . . . 5 𝑅 = ((𝑄 Γ—c 𝑂) FuncCat 𝑇)
10 yoneda.e . . . . 5 𝐸 = (𝑂 evalF 𝑆)
11 yoneda.z . . . . 5 𝑍 = (𝐻 ∘func ((⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
12 yoneda.c . . . . 5 (πœ‘ β†’ 𝐢 ∈ Cat)
13 yoneda.w . . . . 5 (πœ‘ β†’ 𝑉 ∈ π‘Š)
14 yoneda.u . . . . 5 (πœ‘ β†’ ran (Homf β€˜πΆ) βŠ† π‘ˆ)
15 yoneda.v . . . . 5 (πœ‘ β†’ (ran (Homf β€˜π‘„) βˆͺ π‘ˆ) βŠ† 𝑉)
16 yonedalem21.f . . . . 5 (πœ‘ β†’ 𝐹 ∈ (𝑂 Func 𝑆))
17 yonedalem21.x . . . . 5 (πœ‘ β†’ 𝑋 ∈ 𝐡)
18 yonedalem4.n . . . . 5 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), π‘₯ ∈ 𝐡 ↦ (𝑒 ∈ ((1st β€˜π‘“)β€˜π‘₯) ↦ (𝑦 ∈ 𝐡 ↦ (𝑔 ∈ (𝑦(Hom β€˜πΆ)π‘₯) ↦ (((π‘₯(2nd β€˜π‘“)𝑦)β€˜π‘”)β€˜π‘’)))))
19 yonedalem4.p . . . . 5 (πœ‘ β†’ 𝐴 ∈ ((1st β€˜πΉ)β€˜π‘‹))
201, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19yonedalem4a 18230 . . . 4 (πœ‘ β†’ ((𝐹𝑁𝑋)β€˜π΄) = (𝑦 ∈ 𝐡 ↦ (𝑔 ∈ (𝑦(Hom β€˜πΆ)𝑋) ↦ (((𝑋(2nd β€˜πΉ)𝑦)β€˜π‘”)β€˜π΄))))
21 oveq1 7408 . . . . . 6 (𝑦 = 𝑧 β†’ (𝑦(Hom β€˜πΆ)𝑋) = (𝑧(Hom β€˜πΆ)𝑋))
22 oveq2 7409 . . . . . . . 8 (𝑦 = 𝑧 β†’ (𝑋(2nd β€˜πΉ)𝑦) = (𝑋(2nd β€˜πΉ)𝑧))
2322fveq1d 6883 . . . . . . 7 (𝑦 = 𝑧 β†’ ((𝑋(2nd β€˜πΉ)𝑦)β€˜π‘”) = ((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘”))
2423fveq1d 6883 . . . . . 6 (𝑦 = 𝑧 β†’ (((𝑋(2nd β€˜πΉ)𝑦)β€˜π‘”)β€˜π΄) = (((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘”)β€˜π΄))
2521, 24mpteq12dv 5229 . . . . 5 (𝑦 = 𝑧 β†’ (𝑔 ∈ (𝑦(Hom β€˜πΆ)𝑋) ↦ (((𝑋(2nd β€˜πΉ)𝑦)β€˜π‘”)β€˜π΄)) = (𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋) ↦ (((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘”)β€˜π΄)))
2625cbvmptv 5251 . . . 4 (𝑦 ∈ 𝐡 ↦ (𝑔 ∈ (𝑦(Hom β€˜πΆ)𝑋) ↦ (((𝑋(2nd β€˜πΉ)𝑦)β€˜π‘”)β€˜π΄))) = (𝑧 ∈ 𝐡 ↦ (𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋) ↦ (((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘”)β€˜π΄)))
2720, 26eqtrdi 2780 . . 3 (πœ‘ β†’ ((𝐹𝑁𝑋)β€˜π΄) = (𝑧 ∈ 𝐡 ↦ (𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋) ↦ (((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘”)β€˜π΄))))
284, 2oppcbas 17662 . . . . . . . . . . . . 13 𝐡 = (Baseβ€˜π‘‚)
29 eqid 2724 . . . . . . . . . . . . 13 (Hom β€˜π‘‚) = (Hom β€˜π‘‚)
30 eqid 2724 . . . . . . . . . . . . 13 (Hom β€˜π‘†) = (Hom β€˜π‘†)
31 relfunc 17811 . . . . . . . . . . . . . . 15 Rel (𝑂 Func 𝑆)
32 1st2ndbr 8021 . . . . . . . . . . . . . . 15 ((Rel (𝑂 Func 𝑆) ∧ 𝐹 ∈ (𝑂 Func 𝑆)) β†’ (1st β€˜πΉ)(𝑂 Func 𝑆)(2nd β€˜πΉ))
3331, 16, 32sylancr 586 . . . . . . . . . . . . . 14 (πœ‘ β†’ (1st β€˜πΉ)(𝑂 Func 𝑆)(2nd β€˜πΉ))
3433adantr 480 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑧 ∈ 𝐡) β†’ (1st β€˜πΉ)(𝑂 Func 𝑆)(2nd β€˜πΉ))
3517adantr 480 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑧 ∈ 𝐡) β†’ 𝑋 ∈ 𝐡)
36 simpr 484 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑧 ∈ 𝐡) β†’ 𝑧 ∈ 𝐡)
3728, 29, 30, 34, 35, 36funcf2 17817 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑧 ∈ 𝐡) β†’ (𝑋(2nd β€˜πΉ)𝑧):(𝑋(Hom β€˜π‘‚)𝑧)⟢(((1st β€˜πΉ)β€˜π‘‹)(Hom β€˜π‘†)((1st β€˜πΉ)β€˜π‘§)))
3837adantr 480 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑧 ∈ 𝐡) ∧ 𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ (𝑋(2nd β€˜πΉ)𝑧):(𝑋(Hom β€˜π‘‚)𝑧)⟢(((1st β€˜πΉ)β€˜π‘‹)(Hom β€˜π‘†)((1st β€˜πΉ)β€˜π‘§)))
39 simpr 484 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑧 ∈ 𝐡) ∧ 𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ 𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋))
40 eqid 2724 . . . . . . . . . . . . 13 (Hom β€˜πΆ) = (Hom β€˜πΆ)
4140, 4oppchom 17659 . . . . . . . . . . . 12 (𝑋(Hom β€˜π‘‚)𝑧) = (𝑧(Hom β€˜πΆ)𝑋)
4239, 41eleqtrrdi 2836 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑧 ∈ 𝐡) ∧ 𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ 𝑔 ∈ (𝑋(Hom β€˜π‘‚)𝑧))
4338, 42ffvelcdmd 7077 . . . . . . . . . 10 (((πœ‘ ∧ 𝑧 ∈ 𝐡) ∧ 𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ ((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘”) ∈ (((1st β€˜πΉ)β€˜π‘‹)(Hom β€˜π‘†)((1st β€˜πΉ)β€˜π‘§)))
4415unssbd 4180 . . . . . . . . . . . . . 14 (πœ‘ β†’ π‘ˆ βŠ† 𝑉)
4513, 44ssexd 5314 . . . . . . . . . . . . 13 (πœ‘ β†’ π‘ˆ ∈ V)
4645adantr 480 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑧 ∈ 𝐡) β†’ π‘ˆ ∈ V)
4746adantr 480 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑧 ∈ 𝐡) ∧ 𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ π‘ˆ ∈ V)
48 eqid 2724 . . . . . . . . . . . . . . 15 (Baseβ€˜π‘†) = (Baseβ€˜π‘†)
4928, 48, 33funcf1 17815 . . . . . . . . . . . . . 14 (πœ‘ β†’ (1st β€˜πΉ):𝐡⟢(Baseβ€˜π‘†))
505, 45setcbas 18030 . . . . . . . . . . . . . . 15 (πœ‘ β†’ π‘ˆ = (Baseβ€˜π‘†))
5150feq3d 6694 . . . . . . . . . . . . . 14 (πœ‘ β†’ ((1st β€˜πΉ):π΅βŸΆπ‘ˆ ↔ (1st β€˜πΉ):𝐡⟢(Baseβ€˜π‘†)))
5249, 51mpbird 257 . . . . . . . . . . . . 13 (πœ‘ β†’ (1st β€˜πΉ):π΅βŸΆπ‘ˆ)
5352, 17ffvelcdmd 7077 . . . . . . . . . . . 12 (πœ‘ β†’ ((1st β€˜πΉ)β€˜π‘‹) ∈ π‘ˆ)
5453ad2antrr 723 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑧 ∈ 𝐡) ∧ 𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ ((1st β€˜πΉ)β€˜π‘‹) ∈ π‘ˆ)
5552ffvelcdmda 7076 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑧 ∈ 𝐡) β†’ ((1st β€˜πΉ)β€˜π‘§) ∈ π‘ˆ)
5655adantr 480 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑧 ∈ 𝐡) ∧ 𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ ((1st β€˜πΉ)β€˜π‘§) ∈ π‘ˆ)
575, 47, 30, 54, 56elsetchom 18033 . . . . . . . . . 10 (((πœ‘ ∧ 𝑧 ∈ 𝐡) ∧ 𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ (((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘”) ∈ (((1st β€˜πΉ)β€˜π‘‹)(Hom β€˜π‘†)((1st β€˜πΉ)β€˜π‘§)) ↔ ((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘”):((1st β€˜πΉ)β€˜π‘‹)⟢((1st β€˜πΉ)β€˜π‘§)))
5843, 57mpbid 231 . . . . . . . . 9 (((πœ‘ ∧ 𝑧 ∈ 𝐡) ∧ 𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ ((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘”):((1st β€˜πΉ)β€˜π‘‹)⟢((1st β€˜πΉ)β€˜π‘§))
5919ad2antrr 723 . . . . . . . . 9 (((πœ‘ ∧ 𝑧 ∈ 𝐡) ∧ 𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ 𝐴 ∈ ((1st β€˜πΉ)β€˜π‘‹))
6058, 59ffvelcdmd 7077 . . . . . . . 8 (((πœ‘ ∧ 𝑧 ∈ 𝐡) ∧ 𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ (((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘”)β€˜π΄) ∈ ((1st β€˜πΉ)β€˜π‘§))
6160fmpttd 7106 . . . . . . 7 ((πœ‘ ∧ 𝑧 ∈ 𝐡) β†’ (𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋) ↦ (((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘”)β€˜π΄)):(𝑧(Hom β€˜πΆ)𝑋)⟢((1st β€˜πΉ)β€˜π‘§))
6212adantr 480 . . . . . . . . 9 ((πœ‘ ∧ 𝑧 ∈ 𝐡) β†’ 𝐢 ∈ Cat)
631, 2, 62, 35, 40, 36yon11 18219 . . . . . . . 8 ((πœ‘ ∧ 𝑧 ∈ 𝐡) β†’ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§) = (𝑧(Hom β€˜πΆ)𝑋))
6463feq2d 6693 . . . . . . 7 ((πœ‘ ∧ 𝑧 ∈ 𝐡) β†’ ((𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋) ↦ (((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘”)β€˜π΄)):((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§)⟢((1st β€˜πΉ)β€˜π‘§) ↔ (𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋) ↦ (((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘”)β€˜π΄)):(𝑧(Hom β€˜πΆ)𝑋)⟢((1st β€˜πΉ)β€˜π‘§)))
6561, 64mpbird 257 . . . . . 6 ((πœ‘ ∧ 𝑧 ∈ 𝐡) β†’ (𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋) ↦ (((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘”)β€˜π΄)):((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§)⟢((1st β€˜πΉ)β€˜π‘§))
661, 2, 12, 17, 4, 5, 45, 14yon1cl 18218 . . . . . . . . . . 11 (πœ‘ β†’ ((1st β€˜π‘Œ)β€˜π‘‹) ∈ (𝑂 Func 𝑆))
67 1st2ndbr 8021 . . . . . . . . . . 11 ((Rel (𝑂 Func 𝑆) ∧ ((1st β€˜π‘Œ)β€˜π‘‹) ∈ (𝑂 Func 𝑆)) β†’ (1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))(𝑂 Func 𝑆)(2nd β€˜((1st β€˜π‘Œ)β€˜π‘‹)))
6831, 66, 67sylancr 586 . . . . . . . . . 10 (πœ‘ β†’ (1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))(𝑂 Func 𝑆)(2nd β€˜((1st β€˜π‘Œ)β€˜π‘‹)))
6928, 48, 68funcf1 17815 . . . . . . . . 9 (πœ‘ β†’ (1st β€˜((1st β€˜π‘Œ)β€˜π‘‹)):𝐡⟢(Baseβ€˜π‘†))
7050feq3d 6694 . . . . . . . . 9 (πœ‘ β†’ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹)):π΅βŸΆπ‘ˆ ↔ (1st β€˜((1st β€˜π‘Œ)β€˜π‘‹)):𝐡⟢(Baseβ€˜π‘†)))
7169, 70mpbird 257 . . . . . . . 8 (πœ‘ β†’ (1st β€˜((1st β€˜π‘Œ)β€˜π‘‹)):π΅βŸΆπ‘ˆ)
7271ffvelcdmda 7076 . . . . . . 7 ((πœ‘ ∧ 𝑧 ∈ 𝐡) β†’ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§) ∈ π‘ˆ)
735, 46, 30, 72, 55elsetchom 18033 . . . . . 6 ((πœ‘ ∧ 𝑧 ∈ 𝐡) β†’ ((𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋) ↦ (((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘”)β€˜π΄)) ∈ (((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§)(Hom β€˜π‘†)((1st β€˜πΉ)β€˜π‘§)) ↔ (𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋) ↦ (((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘”)β€˜π΄)):((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§)⟢((1st β€˜πΉ)β€˜π‘§)))
7465, 73mpbird 257 . . . . 5 ((πœ‘ ∧ 𝑧 ∈ 𝐡) β†’ (𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋) ↦ (((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘”)β€˜π΄)) ∈ (((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§)(Hom β€˜π‘†)((1st β€˜πΉ)β€˜π‘§)))
7574ralrimiva 3138 . . . 4 (πœ‘ β†’ βˆ€π‘§ ∈ 𝐡 (𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋) ↦ (((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘”)β€˜π΄)) ∈ (((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§)(Hom β€˜π‘†)((1st β€˜πΉ)β€˜π‘§)))
762fvexi 6895 . . . . 5 𝐡 ∈ V
77 mptelixpg 8925 . . . . 5 (𝐡 ∈ V β†’ ((𝑧 ∈ 𝐡 ↦ (𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋) ↦ (((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘”)β€˜π΄))) ∈ X𝑧 ∈ 𝐡 (((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§)(Hom β€˜π‘†)((1st β€˜πΉ)β€˜π‘§)) ↔ βˆ€π‘§ ∈ 𝐡 (𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋) ↦ (((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘”)β€˜π΄)) ∈ (((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§)(Hom β€˜π‘†)((1st β€˜πΉ)β€˜π‘§))))
7876, 77ax-mp 5 . . . 4 ((𝑧 ∈ 𝐡 ↦ (𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋) ↦ (((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘”)β€˜π΄))) ∈ X𝑧 ∈ 𝐡 (((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§)(Hom β€˜π‘†)((1st β€˜πΉ)β€˜π‘§)) ↔ βˆ€π‘§ ∈ 𝐡 (𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋) ↦ (((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘”)β€˜π΄)) ∈ (((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§)(Hom β€˜π‘†)((1st β€˜πΉ)β€˜π‘§)))
7975, 78sylibr 233 . . 3 (πœ‘ β†’ (𝑧 ∈ 𝐡 ↦ (𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋) ↦ (((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘”)β€˜π΄))) ∈ X𝑧 ∈ 𝐡 (((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§)(Hom β€˜π‘†)((1st β€˜πΉ)β€˜π‘§)))
8027, 79eqeltrd 2825 . 2 (πœ‘ β†’ ((𝐹𝑁𝑋)β€˜π΄) ∈ X𝑧 ∈ 𝐡 (((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§)(Hom β€˜π‘†)((1st β€˜πΉ)β€˜π‘§)))
8112adantr 480 . . . . . . . . . 10 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) β†’ 𝐢 ∈ Cat)
8217adantr 480 . . . . . . . . . 10 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) β†’ 𝑋 ∈ 𝐡)
83 simpr1 1191 . . . . . . . . . 10 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) β†’ 𝑧 ∈ 𝐡)
841, 2, 81, 82, 40, 83yon11 18219 . . . . . . . . 9 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) β†’ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§) = (𝑧(Hom β€˜πΆ)𝑋))
8584eleq2d 2811 . . . . . . . 8 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) β†’ (π‘˜ ∈ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§) ↔ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)))
8685biimpa 476 . . . . . . 7 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§)) β†’ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋))
87 eqid 2724 . . . . . . . . . . . 12 (compβ€˜π‘‚) = (compβ€˜π‘‚)
88 eqid 2724 . . . . . . . . . . . 12 (compβ€˜π‘†) = (compβ€˜π‘†)
8933adantr 480 . . . . . . . . . . . . 13 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) β†’ (1st β€˜πΉ)(𝑂 Func 𝑆)(2nd β€˜πΉ))
9089adantr 480 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ (1st β€˜πΉ)(𝑂 Func 𝑆)(2nd β€˜πΉ))
9182adantr 480 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ 𝑋 ∈ 𝐡)
9283adantr 480 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ 𝑧 ∈ 𝐡)
93 simpr2 1192 . . . . . . . . . . . . 13 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) β†’ 𝑀 ∈ 𝐡)
9493adantr 480 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ 𝑀 ∈ 𝐡)
95 simpr 484 . . . . . . . . . . . . 13 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋))
9695, 41eleqtrrdi 2836 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ π‘˜ ∈ (𝑋(Hom β€˜π‘‚)𝑧))
97 simplr3 1214 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))
9828, 29, 87, 88, 90, 91, 92, 94, 96, 97funcco 17820 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ ((𝑋(2nd β€˜πΉ)𝑀)β€˜(β„Ž(βŸ¨π‘‹, π‘§βŸ©(compβ€˜π‘‚)𝑀)π‘˜)) = (((𝑧(2nd β€˜πΉ)𝑀)β€˜β„Ž)(⟨((1st β€˜πΉ)β€˜π‘‹), ((1st β€˜πΉ)β€˜π‘§)⟩(compβ€˜π‘†)((1st β€˜πΉ)β€˜π‘€))((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘˜)))
99 eqid 2724 . . . . . . . . . . . . 13 (compβ€˜πΆ) = (compβ€˜πΆ)
1002, 99, 4, 91, 92, 94oppcco 17661 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ (β„Ž(βŸ¨π‘‹, π‘§βŸ©(compβ€˜π‘‚)𝑀)π‘˜) = (π‘˜(βŸ¨π‘€, π‘§βŸ©(compβ€˜πΆ)𝑋)β„Ž))
101100fveq2d 6885 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ ((𝑋(2nd β€˜πΉ)𝑀)β€˜(β„Ž(βŸ¨π‘‹, π‘§βŸ©(compβ€˜π‘‚)𝑀)π‘˜)) = ((𝑋(2nd β€˜πΉ)𝑀)β€˜(π‘˜(βŸ¨π‘€, π‘§βŸ©(compβ€˜πΆ)𝑋)β„Ž)))
10245adantr 480 . . . . . . . . . . . . 13 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) β†’ π‘ˆ ∈ V)
103102adantr 480 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ π‘ˆ ∈ V)
10453ad2antrr 723 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ ((1st β€˜πΉ)β€˜π‘‹) ∈ π‘ˆ)
105553ad2antr1 1185 . . . . . . . . . . . . 13 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) β†’ ((1st β€˜πΉ)β€˜π‘§) ∈ π‘ˆ)
106105adantr 480 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ ((1st β€˜πΉ)β€˜π‘§) ∈ π‘ˆ)
10752adantr 480 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) β†’ (1st β€˜πΉ):π΅βŸΆπ‘ˆ)
108107, 93ffvelcdmd 7077 . . . . . . . . . . . . 13 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) β†’ ((1st β€˜πΉ)β€˜π‘€) ∈ π‘ˆ)
109108adantr 480 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ ((1st β€˜πΉ)β€˜π‘€) ∈ π‘ˆ)
11028, 29, 30, 89, 82, 83funcf2 17817 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) β†’ (𝑋(2nd β€˜πΉ)𝑧):(𝑋(Hom β€˜π‘‚)𝑧)⟢(((1st β€˜πΉ)β€˜π‘‹)(Hom β€˜π‘†)((1st β€˜πΉ)β€˜π‘§)))
111110adantr 480 . . . . . . . . . . . . . 14 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ (𝑋(2nd β€˜πΉ)𝑧):(𝑋(Hom β€˜π‘‚)𝑧)⟢(((1st β€˜πΉ)β€˜π‘‹)(Hom β€˜π‘†)((1st β€˜πΉ)β€˜π‘§)))
112111, 96ffvelcdmd 7077 . . . . . . . . . . . . 13 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ ((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘˜) ∈ (((1st β€˜πΉ)β€˜π‘‹)(Hom β€˜π‘†)((1st β€˜πΉ)β€˜π‘§)))
1135, 103, 30, 104, 106elsetchom 18033 . . . . . . . . . . . . 13 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ (((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘˜) ∈ (((1st β€˜πΉ)β€˜π‘‹)(Hom β€˜π‘†)((1st β€˜πΉ)β€˜π‘§)) ↔ ((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘˜):((1st β€˜πΉ)β€˜π‘‹)⟢((1st β€˜πΉ)β€˜π‘§)))
114112, 113mpbid 231 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ ((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘˜):((1st β€˜πΉ)β€˜π‘‹)⟢((1st β€˜πΉ)β€˜π‘§))
11528, 29, 30, 89, 83, 93funcf2 17817 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) β†’ (𝑧(2nd β€˜πΉ)𝑀):(𝑧(Hom β€˜π‘‚)𝑀)⟢(((1st β€˜πΉ)β€˜π‘§)(Hom β€˜π‘†)((1st β€˜πΉ)β€˜π‘€)))
116 simpr3 1193 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) β†’ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))
117115, 116ffvelcdmd 7077 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) β†’ ((𝑧(2nd β€˜πΉ)𝑀)β€˜β„Ž) ∈ (((1st β€˜πΉ)β€˜π‘§)(Hom β€˜π‘†)((1st β€˜πΉ)β€˜π‘€)))
1185, 102, 30, 105, 108elsetchom 18033 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) β†’ (((𝑧(2nd β€˜πΉ)𝑀)β€˜β„Ž) ∈ (((1st β€˜πΉ)β€˜π‘§)(Hom β€˜π‘†)((1st β€˜πΉ)β€˜π‘€)) ↔ ((𝑧(2nd β€˜πΉ)𝑀)β€˜β„Ž):((1st β€˜πΉ)β€˜π‘§)⟢((1st β€˜πΉ)β€˜π‘€)))
119117, 118mpbid 231 . . . . . . . . . . . . 13 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) β†’ ((𝑧(2nd β€˜πΉ)𝑀)β€˜β„Ž):((1st β€˜πΉ)β€˜π‘§)⟢((1st β€˜πΉ)β€˜π‘€))
120119adantr 480 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ ((𝑧(2nd β€˜πΉ)𝑀)β€˜β„Ž):((1st β€˜πΉ)β€˜π‘§)⟢((1st β€˜πΉ)β€˜π‘€))
1215, 103, 88, 104, 106, 109, 114, 120setcco 18035 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ (((𝑧(2nd β€˜πΉ)𝑀)β€˜β„Ž)(⟨((1st β€˜πΉ)β€˜π‘‹), ((1st β€˜πΉ)β€˜π‘§)⟩(compβ€˜π‘†)((1st β€˜πΉ)β€˜π‘€))((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘˜)) = (((𝑧(2nd β€˜πΉ)𝑀)β€˜β„Ž) ∘ ((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘˜)))
12298, 101, 1213eqtr3d 2772 . . . . . . . . . 10 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ ((𝑋(2nd β€˜πΉ)𝑀)β€˜(π‘˜(βŸ¨π‘€, π‘§βŸ©(compβ€˜πΆ)𝑋)β„Ž)) = (((𝑧(2nd β€˜πΉ)𝑀)β€˜β„Ž) ∘ ((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘˜)))
123122fveq1d 6883 . . . . . . . . 9 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ (((𝑋(2nd β€˜πΉ)𝑀)β€˜(π‘˜(βŸ¨π‘€, π‘§βŸ©(compβ€˜πΆ)𝑋)β„Ž))β€˜π΄) = ((((𝑧(2nd β€˜πΉ)𝑀)β€˜β„Ž) ∘ ((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘˜))β€˜π΄))
12419ad2antrr 723 . . . . . . . . . 10 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ 𝐴 ∈ ((1st β€˜πΉ)β€˜π‘‹))
125 fvco3 6980 . . . . . . . . . 10 ((((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘˜):((1st β€˜πΉ)β€˜π‘‹)⟢((1st β€˜πΉ)β€˜π‘§) ∧ 𝐴 ∈ ((1st β€˜πΉ)β€˜π‘‹)) β†’ ((((𝑧(2nd β€˜πΉ)𝑀)β€˜β„Ž) ∘ ((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘˜))β€˜π΄) = (((𝑧(2nd β€˜πΉ)𝑀)β€˜β„Ž)β€˜(((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘˜)β€˜π΄)))
126114, 124, 125syl2anc 583 . . . . . . . . 9 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ ((((𝑧(2nd β€˜πΉ)𝑀)β€˜β„Ž) ∘ ((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘˜))β€˜π΄) = (((𝑧(2nd β€˜πΉ)𝑀)β€˜β„Ž)β€˜(((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘˜)β€˜π΄)))
127123, 126eqtrd 2764 . . . . . . . 8 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ (((𝑋(2nd β€˜πΉ)𝑀)β€˜(π‘˜(βŸ¨π‘€, π‘§βŸ©(compβ€˜πΆ)𝑋)β„Ž))β€˜π΄) = (((𝑧(2nd β€˜πΉ)𝑀)β€˜β„Ž)β€˜(((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘˜)β€˜π΄)))
12881adantr 480 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ 𝐢 ∈ Cat)
12940, 4oppchom 17659 . . . . . . . . . . . 12 (𝑧(Hom β€˜π‘‚)𝑀) = (𝑀(Hom β€˜πΆ)𝑧)
13097, 129eleqtrdi 2835 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ β„Ž ∈ (𝑀(Hom β€˜πΆ)𝑧))
1311, 2, 128, 91, 40, 92, 99, 94, 130, 95yon12 18220 . . . . . . . . . 10 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ (((𝑧(2nd β€˜((1st β€˜π‘Œ)β€˜π‘‹))𝑀)β€˜β„Ž)β€˜π‘˜) = (π‘˜(βŸ¨π‘€, π‘§βŸ©(compβ€˜πΆ)𝑋)β„Ž))
132131fveq2d 6885 . . . . . . . . 9 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ ((((𝐹𝑁𝑋)β€˜π΄)β€˜π‘€)β€˜(((𝑧(2nd β€˜((1st β€˜π‘Œ)β€˜π‘‹))𝑀)β€˜β„Ž)β€˜π‘˜)) = ((((𝐹𝑁𝑋)β€˜π΄)β€˜π‘€)β€˜(π‘˜(βŸ¨π‘€, π‘§βŸ©(compβ€˜πΆ)𝑋)β„Ž)))
13313ad2antrr 723 . . . . . . . . . 10 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ 𝑉 ∈ π‘Š)
13414ad2antrr 723 . . . . . . . . . 10 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ ran (Homf β€˜πΆ) βŠ† π‘ˆ)
13515ad2antrr 723 . . . . . . . . . 10 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ (ran (Homf β€˜π‘„) βˆͺ π‘ˆ) βŠ† 𝑉)
13616ad2antrr 723 . . . . . . . . . 10 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ 𝐹 ∈ (𝑂 Func 𝑆))
1372, 40, 99, 128, 94, 92, 91, 130, 95catcocl 17628 . . . . . . . . . 10 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ (π‘˜(βŸ¨π‘€, π‘§βŸ©(compβ€˜πΆ)𝑋)β„Ž) ∈ (𝑀(Hom β€˜πΆ)𝑋))
1381, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 128, 133, 134, 135, 136, 91, 18, 124, 94, 137yonedalem4b 18231 . . . . . . . . 9 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ ((((𝐹𝑁𝑋)β€˜π΄)β€˜π‘€)β€˜(π‘˜(βŸ¨π‘€, π‘§βŸ©(compβ€˜πΆ)𝑋)β„Ž)) = (((𝑋(2nd β€˜πΉ)𝑀)β€˜(π‘˜(βŸ¨π‘€, π‘§βŸ©(compβ€˜πΆ)𝑋)β„Ž))β€˜π΄))
139132, 138eqtrd 2764 . . . . . . . 8 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ ((((𝐹𝑁𝑋)β€˜π΄)β€˜π‘€)β€˜(((𝑧(2nd β€˜((1st β€˜π‘Œ)β€˜π‘‹))𝑀)β€˜β„Ž)β€˜π‘˜)) = (((𝑋(2nd β€˜πΉ)𝑀)β€˜(π‘˜(βŸ¨π‘€, π‘§βŸ©(compβ€˜πΆ)𝑋)β„Ž))β€˜π΄))
1401, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 128, 133, 134, 135, 136, 91, 18, 124, 92, 95yonedalem4b 18231 . . . . . . . . 9 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ ((((𝐹𝑁𝑋)β€˜π΄)β€˜π‘§)β€˜π‘˜) = (((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘˜)β€˜π΄))
141140fveq2d 6885 . . . . . . . 8 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ (((𝑧(2nd β€˜πΉ)𝑀)β€˜β„Ž)β€˜((((𝐹𝑁𝑋)β€˜π΄)β€˜π‘§)β€˜π‘˜)) = (((𝑧(2nd β€˜πΉ)𝑀)β€˜β„Ž)β€˜(((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘˜)β€˜π΄)))
142127, 139, 1413eqtr4d 2774 . . . . . . 7 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑋)) β†’ ((((𝐹𝑁𝑋)β€˜π΄)β€˜π‘€)β€˜(((𝑧(2nd β€˜((1st β€˜π‘Œ)β€˜π‘‹))𝑀)β€˜β„Ž)β€˜π‘˜)) = (((𝑧(2nd β€˜πΉ)𝑀)β€˜β„Ž)β€˜((((𝐹𝑁𝑋)β€˜π΄)β€˜π‘§)β€˜π‘˜)))
14386, 142syldan 590 . . . . . 6 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) ∧ π‘˜ ∈ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§)) β†’ ((((𝐹𝑁𝑋)β€˜π΄)β€˜π‘€)β€˜(((𝑧(2nd β€˜((1st β€˜π‘Œ)β€˜π‘‹))𝑀)β€˜β„Ž)β€˜π‘˜)) = (((𝑧(2nd β€˜πΉ)𝑀)β€˜β„Ž)β€˜((((𝐹𝑁𝑋)β€˜π΄)β€˜π‘§)β€˜π‘˜)))
144143mpteq2dva 5238 . . . . 5 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) β†’ (π‘˜ ∈ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§) ↦ ((((𝐹𝑁𝑋)β€˜π΄)β€˜π‘€)β€˜(((𝑧(2nd β€˜((1st β€˜π‘Œ)β€˜π‘‹))𝑀)β€˜β„Ž)β€˜π‘˜))) = (π‘˜ ∈ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§) ↦ (((𝑧(2nd β€˜πΉ)𝑀)β€˜β„Ž)β€˜((((𝐹𝑁𝑋)β€˜π΄)β€˜π‘§)β€˜π‘˜))))
145 fveq2 6881 . . . . . . . 8 (𝑧 = 𝑀 β†’ (((𝐹𝑁𝑋)β€˜π΄)β€˜π‘§) = (((𝐹𝑁𝑋)β€˜π΄)β€˜π‘€))
146 fveq2 6881 . . . . . . . 8 (𝑧 = 𝑀 β†’ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§) = ((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘€))
147 fveq2 6881 . . . . . . . 8 (𝑧 = 𝑀 β†’ ((1st β€˜πΉ)β€˜π‘§) = ((1st β€˜πΉ)β€˜π‘€))
148145, 146, 147feq123d 6696 . . . . . . 7 (𝑧 = 𝑀 β†’ ((((𝐹𝑁𝑋)β€˜π΄)β€˜π‘§):((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§)⟢((1st β€˜πΉ)β€˜π‘§) ↔ (((𝐹𝑁𝑋)β€˜π΄)β€˜π‘€):((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘€)⟢((1st β€˜πΉ)β€˜π‘€)))
14927fveq1d 6883 . . . . . . . . . . . 12 (πœ‘ β†’ (((𝐹𝑁𝑋)β€˜π΄)β€˜π‘§) = ((𝑧 ∈ 𝐡 ↦ (𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋) ↦ (((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘”)β€˜π΄)))β€˜π‘§))
150 ovex 7434 . . . . . . . . . . . . . 14 (𝑧(Hom β€˜πΆ)𝑋) ∈ V
151150mptex 7216 . . . . . . . . . . . . 13 (𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋) ↦ (((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘”)β€˜π΄)) ∈ V
152 eqid 2724 . . . . . . . . . . . . . 14 (𝑧 ∈ 𝐡 ↦ (𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋) ↦ (((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘”)β€˜π΄))) = (𝑧 ∈ 𝐡 ↦ (𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋) ↦ (((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘”)β€˜π΄)))
153152fvmpt2 6999 . . . . . . . . . . . . 13 ((𝑧 ∈ 𝐡 ∧ (𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋) ↦ (((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘”)β€˜π΄)) ∈ V) β†’ ((𝑧 ∈ 𝐡 ↦ (𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋) ↦ (((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘”)β€˜π΄)))β€˜π‘§) = (𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋) ↦ (((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘”)β€˜π΄)))
154151, 153mpan2 688 . . . . . . . . . . . 12 (𝑧 ∈ 𝐡 β†’ ((𝑧 ∈ 𝐡 ↦ (𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋) ↦ (((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘”)β€˜π΄)))β€˜π‘§) = (𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋) ↦ (((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘”)β€˜π΄)))
155149, 154sylan9eq 2784 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑧 ∈ 𝐡) β†’ (((𝐹𝑁𝑋)β€˜π΄)β€˜π‘§) = (𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋) ↦ (((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘”)β€˜π΄)))
156155feq1d 6692 . . . . . . . . . 10 ((πœ‘ ∧ 𝑧 ∈ 𝐡) β†’ ((((𝐹𝑁𝑋)β€˜π΄)β€˜π‘§):((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§)⟢((1st β€˜πΉ)β€˜π‘§) ↔ (𝑔 ∈ (𝑧(Hom β€˜πΆ)𝑋) ↦ (((𝑋(2nd β€˜πΉ)𝑧)β€˜π‘”)β€˜π΄)):((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§)⟢((1st β€˜πΉ)β€˜π‘§)))
15765, 156mpbird 257 . . . . . . . . 9 ((πœ‘ ∧ 𝑧 ∈ 𝐡) β†’ (((𝐹𝑁𝑋)β€˜π΄)β€˜π‘§):((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§)⟢((1st β€˜πΉ)β€˜π‘§))
158157ralrimiva 3138 . . . . . . . 8 (πœ‘ β†’ βˆ€π‘§ ∈ 𝐡 (((𝐹𝑁𝑋)β€˜π΄)β€˜π‘§):((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§)⟢((1st β€˜πΉ)β€˜π‘§))
159158adantr 480 . . . . . . 7 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) β†’ βˆ€π‘§ ∈ 𝐡 (((𝐹𝑁𝑋)β€˜π΄)β€˜π‘§):((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§)⟢((1st β€˜πΉ)β€˜π‘§))
160148, 159, 93rspcdva 3605 . . . . . 6 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) β†’ (((𝐹𝑁𝑋)β€˜π΄)β€˜π‘€):((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘€)⟢((1st β€˜πΉ)β€˜π‘€))
16168adantr 480 . . . . . . . . 9 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) β†’ (1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))(𝑂 Func 𝑆)(2nd β€˜((1st β€˜π‘Œ)β€˜π‘‹)))
16228, 29, 30, 161, 83, 93funcf2 17817 . . . . . . . 8 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) β†’ (𝑧(2nd β€˜((1st β€˜π‘Œ)β€˜π‘‹))𝑀):(𝑧(Hom β€˜π‘‚)𝑀)⟢(((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§)(Hom β€˜π‘†)((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘€)))
163162, 116ffvelcdmd 7077 . . . . . . 7 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) β†’ ((𝑧(2nd β€˜((1st β€˜π‘Œ)β€˜π‘‹))𝑀)β€˜β„Ž) ∈ (((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§)(Hom β€˜π‘†)((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘€)))
164723ad2antr1 1185 . . . . . . . 8 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) β†’ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§) ∈ π‘ˆ)
16571adantr 480 . . . . . . . . 9 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) β†’ (1st β€˜((1st β€˜π‘Œ)β€˜π‘‹)):π΅βŸΆπ‘ˆ)
166165, 93ffvelcdmd 7077 . . . . . . . 8 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) β†’ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘€) ∈ π‘ˆ)
1675, 102, 30, 164, 166elsetchom 18033 . . . . . . 7 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) β†’ (((𝑧(2nd β€˜((1st β€˜π‘Œ)β€˜π‘‹))𝑀)β€˜β„Ž) ∈ (((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§)(Hom β€˜π‘†)((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘€)) ↔ ((𝑧(2nd β€˜((1st β€˜π‘Œ)β€˜π‘‹))𝑀)β€˜β„Ž):((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§)⟢((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘€)))
168163, 167mpbid 231 . . . . . 6 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) β†’ ((𝑧(2nd β€˜((1st β€˜π‘Œ)β€˜π‘‹))𝑀)β€˜β„Ž):((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§)⟢((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘€))
169 fcompt 7123 . . . . . 6 (((((𝐹𝑁𝑋)β€˜π΄)β€˜π‘€):((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘€)⟢((1st β€˜πΉ)β€˜π‘€) ∧ ((𝑧(2nd β€˜((1st β€˜π‘Œ)β€˜π‘‹))𝑀)β€˜β„Ž):((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§)⟢((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘€)) β†’ ((((𝐹𝑁𝑋)β€˜π΄)β€˜π‘€) ∘ ((𝑧(2nd β€˜((1st β€˜π‘Œ)β€˜π‘‹))𝑀)β€˜β„Ž)) = (π‘˜ ∈ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§) ↦ ((((𝐹𝑁𝑋)β€˜π΄)β€˜π‘€)β€˜(((𝑧(2nd β€˜((1st β€˜π‘Œ)β€˜π‘‹))𝑀)β€˜β„Ž)β€˜π‘˜))))
170160, 168, 169syl2anc 583 . . . . 5 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) β†’ ((((𝐹𝑁𝑋)β€˜π΄)β€˜π‘€) ∘ ((𝑧(2nd β€˜((1st β€˜π‘Œ)β€˜π‘‹))𝑀)β€˜β„Ž)) = (π‘˜ ∈ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§) ↦ ((((𝐹𝑁𝑋)β€˜π΄)β€˜π‘€)β€˜(((𝑧(2nd β€˜((1st β€˜π‘Œ)β€˜π‘‹))𝑀)β€˜β„Ž)β€˜π‘˜))))
1711573ad2antr1 1185 . . . . . 6 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) β†’ (((𝐹𝑁𝑋)β€˜π΄)β€˜π‘§):((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§)⟢((1st β€˜πΉ)β€˜π‘§))
172 fcompt 7123 . . . . . 6 ((((𝑧(2nd β€˜πΉ)𝑀)β€˜β„Ž):((1st β€˜πΉ)β€˜π‘§)⟢((1st β€˜πΉ)β€˜π‘€) ∧ (((𝐹𝑁𝑋)β€˜π΄)β€˜π‘§):((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§)⟢((1st β€˜πΉ)β€˜π‘§)) β†’ (((𝑧(2nd β€˜πΉ)𝑀)β€˜β„Ž) ∘ (((𝐹𝑁𝑋)β€˜π΄)β€˜π‘§)) = (π‘˜ ∈ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§) ↦ (((𝑧(2nd β€˜πΉ)𝑀)β€˜β„Ž)β€˜((((𝐹𝑁𝑋)β€˜π΄)β€˜π‘§)β€˜π‘˜))))
173119, 171, 172syl2anc 583 . . . . 5 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) β†’ (((𝑧(2nd β€˜πΉ)𝑀)β€˜β„Ž) ∘ (((𝐹𝑁𝑋)β€˜π΄)β€˜π‘§)) = (π‘˜ ∈ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§) ↦ (((𝑧(2nd β€˜πΉ)𝑀)β€˜β„Ž)β€˜((((𝐹𝑁𝑋)β€˜π΄)β€˜π‘§)β€˜π‘˜))))
174144, 170, 1733eqtr4d 2774 . . . 4 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) β†’ ((((𝐹𝑁𝑋)β€˜π΄)β€˜π‘€) ∘ ((𝑧(2nd β€˜((1st β€˜π‘Œ)β€˜π‘‹))𝑀)β€˜β„Ž)) = (((𝑧(2nd β€˜πΉ)𝑀)β€˜β„Ž) ∘ (((𝐹𝑁𝑋)β€˜π΄)β€˜π‘§)))
1755, 102, 88, 164, 166, 108, 168, 160setcco 18035 . . . 4 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) β†’ ((((𝐹𝑁𝑋)β€˜π΄)β€˜π‘€)(⟨((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§), ((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘€)⟩(compβ€˜π‘†)((1st β€˜πΉ)β€˜π‘€))((𝑧(2nd β€˜((1st β€˜π‘Œ)β€˜π‘‹))𝑀)β€˜β„Ž)) = ((((𝐹𝑁𝑋)β€˜π΄)β€˜π‘€) ∘ ((𝑧(2nd β€˜((1st β€˜π‘Œ)β€˜π‘‹))𝑀)β€˜β„Ž)))
1765, 102, 88, 164, 105, 108, 171, 119setcco 18035 . . . 4 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) β†’ (((𝑧(2nd β€˜πΉ)𝑀)β€˜β„Ž)(⟨((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§), ((1st β€˜πΉ)β€˜π‘§)⟩(compβ€˜π‘†)((1st β€˜πΉ)β€˜π‘€))(((𝐹𝑁𝑋)β€˜π΄)β€˜π‘§)) = (((𝑧(2nd β€˜πΉ)𝑀)β€˜β„Ž) ∘ (((𝐹𝑁𝑋)β€˜π΄)β€˜π‘§)))
177174, 175, 1763eqtr4d 2774 . . 3 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡 ∧ β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀))) β†’ ((((𝐹𝑁𝑋)β€˜π΄)β€˜π‘€)(⟨((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§), ((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘€)⟩(compβ€˜π‘†)((1st β€˜πΉ)β€˜π‘€))((𝑧(2nd β€˜((1st β€˜π‘Œ)β€˜π‘‹))𝑀)β€˜β„Ž)) = (((𝑧(2nd β€˜πΉ)𝑀)β€˜β„Ž)(⟨((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§), ((1st β€˜πΉ)β€˜π‘§)⟩(compβ€˜π‘†)((1st β€˜πΉ)β€˜π‘€))(((𝐹𝑁𝑋)β€˜π΄)β€˜π‘§)))
178177ralrimivvva 3195 . 2 (πœ‘ β†’ βˆ€π‘§ ∈ 𝐡 βˆ€π‘€ ∈ 𝐡 βˆ€β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀)((((𝐹𝑁𝑋)β€˜π΄)β€˜π‘€)(⟨((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§), ((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘€)⟩(compβ€˜π‘†)((1st β€˜πΉ)β€˜π‘€))((𝑧(2nd β€˜((1st β€˜π‘Œ)β€˜π‘‹))𝑀)β€˜β„Ž)) = (((𝑧(2nd β€˜πΉ)𝑀)β€˜β„Ž)(⟨((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§), ((1st β€˜πΉ)β€˜π‘§)⟩(compβ€˜π‘†)((1st β€˜πΉ)β€˜π‘€))(((𝐹𝑁𝑋)β€˜π΄)β€˜π‘§)))
179 eqid 2724 . . 3 (𝑂 Nat 𝑆) = (𝑂 Nat 𝑆)
180179, 28, 29, 30, 88, 66, 16isnat2 17901 . 2 (πœ‘ β†’ (((𝐹𝑁𝑋)β€˜π΄) ∈ (((1st β€˜π‘Œ)β€˜π‘‹)(𝑂 Nat 𝑆)𝐹) ↔ (((𝐹𝑁𝑋)β€˜π΄) ∈ X𝑧 ∈ 𝐡 (((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§)(Hom β€˜π‘†)((1st β€˜πΉ)β€˜π‘§)) ∧ βˆ€π‘§ ∈ 𝐡 βˆ€π‘€ ∈ 𝐡 βˆ€β„Ž ∈ (𝑧(Hom β€˜π‘‚)𝑀)((((𝐹𝑁𝑋)β€˜π΄)β€˜π‘€)(⟨((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§), ((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘€)⟩(compβ€˜π‘†)((1st β€˜πΉ)β€˜π‘€))((𝑧(2nd β€˜((1st β€˜π‘Œ)β€˜π‘‹))𝑀)β€˜β„Ž)) = (((𝑧(2nd β€˜πΉ)𝑀)β€˜β„Ž)(⟨((1st β€˜((1st β€˜π‘Œ)β€˜π‘‹))β€˜π‘§), ((1st β€˜πΉ)β€˜π‘§)⟩(compβ€˜π‘†)((1st β€˜πΉ)β€˜π‘€))(((𝐹𝑁𝑋)β€˜π΄)β€˜π‘§)))))
18180, 178, 180mpbir2and 710 1 (πœ‘ β†’ ((𝐹𝑁𝑋)β€˜π΄) ∈ (((1st β€˜π‘Œ)β€˜π‘‹)(𝑂 Nat 𝑆)𝐹))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βˆ€wral 3053  Vcvv 3466   βˆͺ cun 3938   βŠ† wss 3940  βŸ¨cop 4626   class class class wbr 5138   ↦ cmpt 5221  ran crn 5667   ∘ ccom 5670  Rel wrel 5671  βŸΆwf 6529  β€˜cfv 6533  (class class class)co 7401   ∈ cmpo 7403  1st c1st 7966  2nd c2nd 7967  tpos ctpos 8205  Xcixp 8887  Basecbs 17143  Hom chom 17207  compcco 17208  Catccat 17607  Idccid 17608  Homf chomf 17609  oppCatcoppc 17654   Func cfunc 17803   ∘func ccofu 17805   Nat cnat 17894   FuncCat cfuc 17895  SetCatcsetc 18027   Γ—c cxpc 18122   1stF c1stf 18123   2ndF c2ndf 18124   ⟨,⟩F cprf 18125   evalF cevlf 18164  HomFchof 18203  Yoncyon 18204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-tpos 8206  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-map 8818  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-z 12556  df-dec 12675  df-uz 12820  df-fz 13482  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-hom 17220  df-cco 17221  df-cat 17611  df-cid 17612  df-homf 17613  df-comf 17614  df-oppc 17655  df-func 17807  df-nat 17896  df-fuc 17897  df-setc 18028  df-xpc 18126  df-curf 18169  df-hof 18205  df-yon 18206
This theorem is referenced by:  yonedainv  18236
  Copyright terms: Public domain W3C validator