Step | Hyp | Ref
| Expression |
1 | | yoneda.y |
. . . . 5
β’ π = (YonβπΆ) |
2 | | yoneda.b |
. . . . 5
β’ π΅ = (BaseβπΆ) |
3 | | yoneda.1 |
. . . . 5
β’ 1 =
(IdβπΆ) |
4 | | yoneda.o |
. . . . 5
β’ π = (oppCatβπΆ) |
5 | | yoneda.s |
. . . . 5
β’ π = (SetCatβπ) |
6 | | yoneda.t |
. . . . 5
β’ π = (SetCatβπ) |
7 | | yoneda.q |
. . . . 5
β’ π = (π FuncCat π) |
8 | | yoneda.h |
. . . . 5
β’ π» =
(HomFβπ) |
9 | | yoneda.r |
. . . . 5
β’ π
= ((π Γc π) FuncCat π) |
10 | | yoneda.e |
. . . . 5
β’ πΈ = (π evalF π) |
11 | | yoneda.z |
. . . . 5
β’ π = (π» βfunc
((β¨(1st βπ), tpos (2nd βπ)β©
βfunc (π 2ndF π))
β¨,β©F (π 1stF π))) |
12 | | yoneda.c |
. . . . 5
β’ (π β πΆ β Cat) |
13 | | yoneda.w |
. . . . 5
β’ (π β π β π) |
14 | | yoneda.u |
. . . . 5
β’ (π β ran
(Homf βπΆ) β π) |
15 | | yoneda.v |
. . . . 5
β’ (π β (ran
(Homf βπ) βͺ π) β π) |
16 | | yonedalem21.f |
. . . . 5
β’ (π β πΉ β (π Func π)) |
17 | | yonedalem21.x |
. . . . 5
β’ (π β π β π΅) |
18 | | yonedalem4.n |
. . . . 5
β’ π = (π β (π Func π), π₯ β π΅ β¦ (π’ β ((1st βπ)βπ₯) β¦ (π¦ β π΅ β¦ (π β (π¦(Hom βπΆ)π₯) β¦ (((π₯(2nd βπ)π¦)βπ)βπ’))))) |
19 | | yonedalem4.p |
. . . . 5
β’ (π β π΄ β ((1st βπΉ)βπ)) |
20 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19 | yonedalem4a 18230 |
. . . 4
β’ (π β ((πΉππ)βπ΄) = (π¦ β π΅ β¦ (π β (π¦(Hom βπΆ)π) β¦ (((π(2nd βπΉ)π¦)βπ)βπ΄)))) |
21 | | oveq1 7408 |
. . . . . 6
β’ (π¦ = π§ β (π¦(Hom βπΆ)π) = (π§(Hom βπΆ)π)) |
22 | | oveq2 7409 |
. . . . . . . 8
β’ (π¦ = π§ β (π(2nd βπΉ)π¦) = (π(2nd βπΉ)π§)) |
23 | 22 | fveq1d 6883 |
. . . . . . 7
β’ (π¦ = π§ β ((π(2nd βπΉ)π¦)βπ) = ((π(2nd βπΉ)π§)βπ)) |
24 | 23 | fveq1d 6883 |
. . . . . 6
β’ (π¦ = π§ β (((π(2nd βπΉ)π¦)βπ)βπ΄) = (((π(2nd βπΉ)π§)βπ)βπ΄)) |
25 | 21, 24 | mpteq12dv 5229 |
. . . . 5
β’ (π¦ = π§ β (π β (π¦(Hom βπΆ)π) β¦ (((π(2nd βπΉ)π¦)βπ)βπ΄)) = (π β (π§(Hom βπΆ)π) β¦ (((π(2nd βπΉ)π§)βπ)βπ΄))) |
26 | 25 | cbvmptv 5251 |
. . . 4
β’ (π¦ β π΅ β¦ (π β (π¦(Hom βπΆ)π) β¦ (((π(2nd βπΉ)π¦)βπ)βπ΄))) = (π§ β π΅ β¦ (π β (π§(Hom βπΆ)π) β¦ (((π(2nd βπΉ)π§)βπ)βπ΄))) |
27 | 20, 26 | eqtrdi 2780 |
. . 3
β’ (π β ((πΉππ)βπ΄) = (π§ β π΅ β¦ (π β (π§(Hom βπΆ)π) β¦ (((π(2nd βπΉ)π§)βπ)βπ΄)))) |
28 | 4, 2 | oppcbas 17662 |
. . . . . . . . . . . . 13
β’ π΅ = (Baseβπ) |
29 | | eqid 2724 |
. . . . . . . . . . . . 13
β’ (Hom
βπ) = (Hom
βπ) |
30 | | eqid 2724 |
. . . . . . . . . . . . 13
β’ (Hom
βπ) = (Hom
βπ) |
31 | | relfunc 17811 |
. . . . . . . . . . . . . . 15
β’ Rel
(π Func π) |
32 | | 1st2ndbr 8021 |
. . . . . . . . . . . . . . 15
β’ ((Rel
(π Func π) β§ πΉ β (π Func π)) β (1st βπΉ)(π Func π)(2nd βπΉ)) |
33 | 31, 16, 32 | sylancr 586 |
. . . . . . . . . . . . . 14
β’ (π β (1st
βπΉ)(π Func π)(2nd βπΉ)) |
34 | 33 | adantr 480 |
. . . . . . . . . . . . 13
β’ ((π β§ π§ β π΅) β (1st βπΉ)(π Func π)(2nd βπΉ)) |
35 | 17 | adantr 480 |
. . . . . . . . . . . . 13
β’ ((π β§ π§ β π΅) β π β π΅) |
36 | | simpr 484 |
. . . . . . . . . . . . 13
β’ ((π β§ π§ β π΅) β π§ β π΅) |
37 | 28, 29, 30, 34, 35, 36 | funcf2 17817 |
. . . . . . . . . . . 12
β’ ((π β§ π§ β π΅) β (π(2nd βπΉ)π§):(π(Hom βπ)π§)βΆ(((1st βπΉ)βπ)(Hom βπ)((1st βπΉ)βπ§))) |
38 | 37 | adantr 480 |
. . . . . . . . . . 11
β’ (((π β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π)) β (π(2nd βπΉ)π§):(π(Hom βπ)π§)βΆ(((1st βπΉ)βπ)(Hom βπ)((1st βπΉ)βπ§))) |
39 | | simpr 484 |
. . . . . . . . . . . 12
β’ (((π β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π)) β π β (π§(Hom βπΆ)π)) |
40 | | eqid 2724 |
. . . . . . . . . . . . 13
β’ (Hom
βπΆ) = (Hom
βπΆ) |
41 | 40, 4 | oppchom 17659 |
. . . . . . . . . . . 12
β’ (π(Hom βπ)π§) = (π§(Hom βπΆ)π) |
42 | 39, 41 | eleqtrrdi 2836 |
. . . . . . . . . . 11
β’ (((π β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π)) β π β (π(Hom βπ)π§)) |
43 | 38, 42 | ffvelcdmd 7077 |
. . . . . . . . . 10
β’ (((π β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π)) β ((π(2nd βπΉ)π§)βπ) β (((1st βπΉ)βπ)(Hom βπ)((1st βπΉ)βπ§))) |
44 | 15 | unssbd 4180 |
. . . . . . . . . . . . . 14
β’ (π β π β π) |
45 | 13, 44 | ssexd 5314 |
. . . . . . . . . . . . 13
β’ (π β π β V) |
46 | 45 | adantr 480 |
. . . . . . . . . . . 12
β’ ((π β§ π§ β π΅) β π β V) |
47 | 46 | adantr 480 |
. . . . . . . . . . 11
β’ (((π β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π)) β π β V) |
48 | | eqid 2724 |
. . . . . . . . . . . . . . 15
β’
(Baseβπ) =
(Baseβπ) |
49 | 28, 48, 33 | funcf1 17815 |
. . . . . . . . . . . . . 14
β’ (π β (1st
βπΉ):π΅βΆ(Baseβπ)) |
50 | 5, 45 | setcbas 18030 |
. . . . . . . . . . . . . . 15
β’ (π β π = (Baseβπ)) |
51 | 50 | feq3d 6694 |
. . . . . . . . . . . . . 14
β’ (π β ((1st
βπΉ):π΅βΆπ β (1st βπΉ):π΅βΆ(Baseβπ))) |
52 | 49, 51 | mpbird 257 |
. . . . . . . . . . . . 13
β’ (π β (1st
βπΉ):π΅βΆπ) |
53 | 52, 17 | ffvelcdmd 7077 |
. . . . . . . . . . . 12
β’ (π β ((1st
βπΉ)βπ) β π) |
54 | 53 | ad2antrr 723 |
. . . . . . . . . . 11
β’ (((π β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π)) β ((1st βπΉ)βπ) β π) |
55 | 52 | ffvelcdmda 7076 |
. . . . . . . . . . . 12
β’ ((π β§ π§ β π΅) β ((1st βπΉ)βπ§) β π) |
56 | 55 | adantr 480 |
. . . . . . . . . . 11
β’ (((π β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π)) β ((1st βπΉ)βπ§) β π) |
57 | 5, 47, 30, 54, 56 | elsetchom 18033 |
. . . . . . . . . 10
β’ (((π β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π)) β (((π(2nd βπΉ)π§)βπ) β (((1st βπΉ)βπ)(Hom βπ)((1st βπΉ)βπ§)) β ((π(2nd βπΉ)π§)βπ):((1st βπΉ)βπ)βΆ((1st βπΉ)βπ§))) |
58 | 43, 57 | mpbid 231 |
. . . . . . . . 9
β’ (((π β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π)) β ((π(2nd βπΉ)π§)βπ):((1st βπΉ)βπ)βΆ((1st βπΉ)βπ§)) |
59 | 19 | ad2antrr 723 |
. . . . . . . . 9
β’ (((π β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π)) β π΄ β ((1st βπΉ)βπ)) |
60 | 58, 59 | ffvelcdmd 7077 |
. . . . . . . 8
β’ (((π β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π)) β (((π(2nd βπΉ)π§)βπ)βπ΄) β ((1st βπΉ)βπ§)) |
61 | 60 | fmpttd 7106 |
. . . . . . 7
β’ ((π β§ π§ β π΅) β (π β (π§(Hom βπΆ)π) β¦ (((π(2nd βπΉ)π§)βπ)βπ΄)):(π§(Hom βπΆ)π)βΆ((1st βπΉ)βπ§)) |
62 | 12 | adantr 480 |
. . . . . . . . 9
β’ ((π β§ π§ β π΅) β πΆ β Cat) |
63 | 1, 2, 62, 35, 40, 36 | yon11 18219 |
. . . . . . . 8
β’ ((π β§ π§ β π΅) β ((1st
β((1st βπ)βπ))βπ§) = (π§(Hom βπΆ)π)) |
64 | 63 | feq2d 6693 |
. . . . . . 7
β’ ((π β§ π§ β π΅) β ((π β (π§(Hom βπΆ)π) β¦ (((π(2nd βπΉ)π§)βπ)βπ΄)):((1st β((1st
βπ)βπ))βπ§)βΆ((1st βπΉ)βπ§) β (π β (π§(Hom βπΆ)π) β¦ (((π(2nd βπΉ)π§)βπ)βπ΄)):(π§(Hom βπΆ)π)βΆ((1st βπΉ)βπ§))) |
65 | 61, 64 | mpbird 257 |
. . . . . 6
β’ ((π β§ π§ β π΅) β (π β (π§(Hom βπΆ)π) β¦ (((π(2nd βπΉ)π§)βπ)βπ΄)):((1st β((1st
βπ)βπ))βπ§)βΆ((1st βπΉ)βπ§)) |
66 | 1, 2, 12, 17, 4, 5, 45, 14 | yon1cl 18218 |
. . . . . . . . . . 11
β’ (π β ((1st
βπ)βπ) β (π Func π)) |
67 | | 1st2ndbr 8021 |
. . . . . . . . . . 11
β’ ((Rel
(π Func π) β§ ((1st βπ)βπ) β (π Func π)) β (1st
β((1st βπ)βπ))(π Func π)(2nd β((1st
βπ)βπ))) |
68 | 31, 66, 67 | sylancr 586 |
. . . . . . . . . 10
β’ (π β (1st
β((1st βπ)βπ))(π Func π)(2nd β((1st
βπ)βπ))) |
69 | 28, 48, 68 | funcf1 17815 |
. . . . . . . . 9
β’ (π β (1st
β((1st βπ)βπ)):π΅βΆ(Baseβπ)) |
70 | 50 | feq3d 6694 |
. . . . . . . . 9
β’ (π β ((1st
β((1st βπ)βπ)):π΅βΆπ β (1st
β((1st βπ)βπ)):π΅βΆ(Baseβπ))) |
71 | 69, 70 | mpbird 257 |
. . . . . . . 8
β’ (π β (1st
β((1st βπ)βπ)):π΅βΆπ) |
72 | 71 | ffvelcdmda 7076 |
. . . . . . 7
β’ ((π β§ π§ β π΅) β ((1st
β((1st βπ)βπ))βπ§) β π) |
73 | 5, 46, 30, 72, 55 | elsetchom 18033 |
. . . . . 6
β’ ((π β§ π§ β π΅) β ((π β (π§(Hom βπΆ)π) β¦ (((π(2nd βπΉ)π§)βπ)βπ΄)) β (((1st
β((1st βπ)βπ))βπ§)(Hom βπ)((1st βπΉ)βπ§)) β (π β (π§(Hom βπΆ)π) β¦ (((π(2nd βπΉ)π§)βπ)βπ΄)):((1st β((1st
βπ)βπ))βπ§)βΆ((1st βπΉ)βπ§))) |
74 | 65, 73 | mpbird 257 |
. . . . 5
β’ ((π β§ π§ β π΅) β (π β (π§(Hom βπΆ)π) β¦ (((π(2nd βπΉ)π§)βπ)βπ΄)) β (((1st
β((1st βπ)βπ))βπ§)(Hom βπ)((1st βπΉ)βπ§))) |
75 | 74 | ralrimiva 3138 |
. . . 4
β’ (π β βπ§ β π΅ (π β (π§(Hom βπΆ)π) β¦ (((π(2nd βπΉ)π§)βπ)βπ΄)) β (((1st
β((1st βπ)βπ))βπ§)(Hom βπ)((1st βπΉ)βπ§))) |
76 | 2 | fvexi 6895 |
. . . . 5
β’ π΅ β V |
77 | | mptelixpg 8925 |
. . . . 5
β’ (π΅ β V β ((π§ β π΅ β¦ (π β (π§(Hom βπΆ)π) β¦ (((π(2nd βπΉ)π§)βπ)βπ΄))) β Xπ§ β π΅ (((1st β((1st
βπ)βπ))βπ§)(Hom βπ)((1st βπΉ)βπ§)) β βπ§ β π΅ (π β (π§(Hom βπΆ)π) β¦ (((π(2nd βπΉ)π§)βπ)βπ΄)) β (((1st
β((1st βπ)βπ))βπ§)(Hom βπ)((1st βπΉ)βπ§)))) |
78 | 76, 77 | ax-mp 5 |
. . . 4
β’ ((π§ β π΅ β¦ (π β (π§(Hom βπΆ)π) β¦ (((π(2nd βπΉ)π§)βπ)βπ΄))) β Xπ§ β π΅ (((1st β((1st
βπ)βπ))βπ§)(Hom βπ)((1st βπΉ)βπ§)) β βπ§ β π΅ (π β (π§(Hom βπΆ)π) β¦ (((π(2nd βπΉ)π§)βπ)βπ΄)) β (((1st
β((1st βπ)βπ))βπ§)(Hom βπ)((1st βπΉ)βπ§))) |
79 | 75, 78 | sylibr 233 |
. . 3
β’ (π β (π§ β π΅ β¦ (π β (π§(Hom βπΆ)π) β¦ (((π(2nd βπΉ)π§)βπ)βπ΄))) β Xπ§ β π΅ (((1st β((1st
βπ)βπ))βπ§)(Hom βπ)((1st βπΉ)βπ§))) |
80 | 27, 79 | eqeltrd 2825 |
. 2
β’ (π β ((πΉππ)βπ΄) β Xπ§ β π΅ (((1st β((1st
βπ)βπ))βπ§)(Hom βπ)((1st βπΉ)βπ§))) |
81 | 12 | adantr 480 |
. . . . . . . . . 10
β’ ((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β πΆ β Cat) |
82 | 17 | adantr 480 |
. . . . . . . . . 10
β’ ((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β π β π΅) |
83 | | simpr1 1191 |
. . . . . . . . . 10
β’ ((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β π§ β π΅) |
84 | 1, 2, 81, 82, 40, 83 | yon11 18219 |
. . . . . . . . 9
β’ ((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β ((1st
β((1st βπ)βπ))βπ§) = (π§(Hom βπΆ)π)) |
85 | 84 | eleq2d 2811 |
. . . . . . . 8
β’ ((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β (π β ((1st
β((1st βπ)βπ))βπ§) β π β (π§(Hom βπΆ)π))) |
86 | 85 | biimpa 476 |
. . . . . . 7
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β ((1st
β((1st βπ)βπ))βπ§)) β π β (π§(Hom βπΆ)π)) |
87 | | eqid 2724 |
. . . . . . . . . . . 12
β’
(compβπ) =
(compβπ) |
88 | | eqid 2724 |
. . . . . . . . . . . 12
β’
(compβπ) =
(compβπ) |
89 | 33 | adantr 480 |
. . . . . . . . . . . . 13
β’ ((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β (1st βπΉ)(π Func π)(2nd βπΉ)) |
90 | 89 | adantr 480 |
. . . . . . . . . . . 12
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β (1st βπΉ)(π Func π)(2nd βπΉ)) |
91 | 82 | adantr 480 |
. . . . . . . . . . . 12
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β π β π΅) |
92 | 83 | adantr 480 |
. . . . . . . . . . . 12
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β π§ β π΅) |
93 | | simpr2 1192 |
. . . . . . . . . . . . 13
β’ ((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β π€ β π΅) |
94 | 93 | adantr 480 |
. . . . . . . . . . . 12
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β π€ β π΅) |
95 | | simpr 484 |
. . . . . . . . . . . . 13
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β π β (π§(Hom βπΆ)π)) |
96 | 95, 41 | eleqtrrdi 2836 |
. . . . . . . . . . . 12
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β π β (π(Hom βπ)π§)) |
97 | | simplr3 1214 |
. . . . . . . . . . . 12
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β β β (π§(Hom βπ)π€)) |
98 | 28, 29, 87, 88, 90, 91, 92, 94, 96, 97 | funcco 17820 |
. . . . . . . . . . 11
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β ((π(2nd βπΉ)π€)β(β(β¨π, π§β©(compβπ)π€)π)) = (((π§(2nd βπΉ)π€)ββ)(β¨((1st βπΉ)βπ), ((1st βπΉ)βπ§)β©(compβπ)((1st βπΉ)βπ€))((π(2nd βπΉ)π§)βπ))) |
99 | | eqid 2724 |
. . . . . . . . . . . . 13
β’
(compβπΆ) =
(compβπΆ) |
100 | 2, 99, 4, 91, 92, 94 | oppcco 17661 |
. . . . . . . . . . . 12
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β (β(β¨π, π§β©(compβπ)π€)π) = (π(β¨π€, π§β©(compβπΆ)π)β)) |
101 | 100 | fveq2d 6885 |
. . . . . . . . . . 11
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β ((π(2nd βπΉ)π€)β(β(β¨π, π§β©(compβπ)π€)π)) = ((π(2nd βπΉ)π€)β(π(β¨π€, π§β©(compβπΆ)π)β))) |
102 | 45 | adantr 480 |
. . . . . . . . . . . . 13
β’ ((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β π β V) |
103 | 102 | adantr 480 |
. . . . . . . . . . . 12
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β π β V) |
104 | 53 | ad2antrr 723 |
. . . . . . . . . . . 12
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β ((1st βπΉ)βπ) β π) |
105 | 55 | 3ad2antr1 1185 |
. . . . . . . . . . . . 13
β’ ((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β ((1st βπΉ)βπ§) β π) |
106 | 105 | adantr 480 |
. . . . . . . . . . . 12
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β ((1st βπΉ)βπ§) β π) |
107 | 52 | adantr 480 |
. . . . . . . . . . . . . 14
β’ ((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β (1st βπΉ):π΅βΆπ) |
108 | 107, 93 | ffvelcdmd 7077 |
. . . . . . . . . . . . 13
β’ ((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β ((1st βπΉ)βπ€) β π) |
109 | 108 | adantr 480 |
. . . . . . . . . . . 12
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β ((1st βπΉ)βπ€) β π) |
110 | 28, 29, 30, 89, 82, 83 | funcf2 17817 |
. . . . . . . . . . . . . . 15
β’ ((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β (π(2nd βπΉ)π§):(π(Hom βπ)π§)βΆ(((1st βπΉ)βπ)(Hom βπ)((1st βπΉ)βπ§))) |
111 | 110 | adantr 480 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β (π(2nd βπΉ)π§):(π(Hom βπ)π§)βΆ(((1st βπΉ)βπ)(Hom βπ)((1st βπΉ)βπ§))) |
112 | 111, 96 | ffvelcdmd 7077 |
. . . . . . . . . . . . 13
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β ((π(2nd βπΉ)π§)βπ) β (((1st βπΉ)βπ)(Hom βπ)((1st βπΉ)βπ§))) |
113 | 5, 103, 30, 104, 106 | elsetchom 18033 |
. . . . . . . . . . . . 13
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β (((π(2nd βπΉ)π§)βπ) β (((1st βπΉ)βπ)(Hom βπ)((1st βπΉ)βπ§)) β ((π(2nd βπΉ)π§)βπ):((1st βπΉ)βπ)βΆ((1st βπΉ)βπ§))) |
114 | 112, 113 | mpbid 231 |
. . . . . . . . . . . 12
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β ((π(2nd βπΉ)π§)βπ):((1st βπΉ)βπ)βΆ((1st βπΉ)βπ§)) |
115 | 28, 29, 30, 89, 83, 93 | funcf2 17817 |
. . . . . . . . . . . . . . 15
β’ ((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β (π§(2nd βπΉ)π€):(π§(Hom βπ)π€)βΆ(((1st βπΉ)βπ§)(Hom βπ)((1st βπΉ)βπ€))) |
116 | | simpr3 1193 |
. . . . . . . . . . . . . . 15
β’ ((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β β β (π§(Hom βπ)π€)) |
117 | 115, 116 | ffvelcdmd 7077 |
. . . . . . . . . . . . . 14
β’ ((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β ((π§(2nd βπΉ)π€)ββ) β (((1st βπΉ)βπ§)(Hom βπ)((1st βπΉ)βπ€))) |
118 | 5, 102, 30, 105, 108 | elsetchom 18033 |
. . . . . . . . . . . . . 14
β’ ((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β (((π§(2nd βπΉ)π€)ββ) β (((1st βπΉ)βπ§)(Hom βπ)((1st βπΉ)βπ€)) β ((π§(2nd βπΉ)π€)ββ):((1st βπΉ)βπ§)βΆ((1st βπΉ)βπ€))) |
119 | 117, 118 | mpbid 231 |
. . . . . . . . . . . . 13
β’ ((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β ((π§(2nd βπΉ)π€)ββ):((1st βπΉ)βπ§)βΆ((1st βπΉ)βπ€)) |
120 | 119 | adantr 480 |
. . . . . . . . . . . 12
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β ((π§(2nd βπΉ)π€)ββ):((1st βπΉ)βπ§)βΆ((1st βπΉ)βπ€)) |
121 | 5, 103, 88, 104, 106, 109, 114, 120 | setcco 18035 |
. . . . . . . . . . 11
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β (((π§(2nd βπΉ)π€)ββ)(β¨((1st βπΉ)βπ), ((1st βπΉ)βπ§)β©(compβπ)((1st βπΉ)βπ€))((π(2nd βπΉ)π§)βπ)) = (((π§(2nd βπΉ)π€)ββ) β ((π(2nd βπΉ)π§)βπ))) |
122 | 98, 101, 121 | 3eqtr3d 2772 |
. . . . . . . . . 10
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β ((π(2nd βπΉ)π€)β(π(β¨π€, π§β©(compβπΆ)π)β)) = (((π§(2nd βπΉ)π€)ββ) β ((π(2nd βπΉ)π§)βπ))) |
123 | 122 | fveq1d 6883 |
. . . . . . . . 9
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β (((π(2nd βπΉ)π€)β(π(β¨π€, π§β©(compβπΆ)π)β))βπ΄) = ((((π§(2nd βπΉ)π€)ββ) β ((π(2nd βπΉ)π§)βπ))βπ΄)) |
124 | 19 | ad2antrr 723 |
. . . . . . . . . 10
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β π΄ β ((1st βπΉ)βπ)) |
125 | | fvco3 6980 |
. . . . . . . . . 10
β’ ((((π(2nd βπΉ)π§)βπ):((1st βπΉ)βπ)βΆ((1st βπΉ)βπ§) β§ π΄ β ((1st βπΉ)βπ)) β ((((π§(2nd βπΉ)π€)ββ) β ((π(2nd βπΉ)π§)βπ))βπ΄) = (((π§(2nd βπΉ)π€)ββ)β(((π(2nd βπΉ)π§)βπ)βπ΄))) |
126 | 114, 124,
125 | syl2anc 583 |
. . . . . . . . 9
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β ((((π§(2nd βπΉ)π€)ββ) β ((π(2nd βπΉ)π§)βπ))βπ΄) = (((π§(2nd βπΉ)π€)ββ)β(((π(2nd βπΉ)π§)βπ)βπ΄))) |
127 | 123, 126 | eqtrd 2764 |
. . . . . . . 8
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β (((π(2nd βπΉ)π€)β(π(β¨π€, π§β©(compβπΆ)π)β))βπ΄) = (((π§(2nd βπΉ)π€)ββ)β(((π(2nd βπΉ)π§)βπ)βπ΄))) |
128 | 81 | adantr 480 |
. . . . . . . . . . 11
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β πΆ β Cat) |
129 | 40, 4 | oppchom 17659 |
. . . . . . . . . . . 12
β’ (π§(Hom βπ)π€) = (π€(Hom βπΆ)π§) |
130 | 97, 129 | eleqtrdi 2835 |
. . . . . . . . . . 11
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β β β (π€(Hom βπΆ)π§)) |
131 | 1, 2, 128, 91, 40, 92, 99, 94, 130, 95 | yon12 18220 |
. . . . . . . . . 10
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β (((π§(2nd β((1st
βπ)βπ))π€)ββ)βπ) = (π(β¨π€, π§β©(compβπΆ)π)β)) |
132 | 131 | fveq2d 6885 |
. . . . . . . . 9
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β ((((πΉππ)βπ΄)βπ€)β(((π§(2nd β((1st
βπ)βπ))π€)ββ)βπ)) = ((((πΉππ)βπ΄)βπ€)β(π(β¨π€, π§β©(compβπΆ)π)β))) |
133 | 13 | ad2antrr 723 |
. . . . . . . . . 10
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β π β π) |
134 | 14 | ad2antrr 723 |
. . . . . . . . . 10
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β ran (Homf
βπΆ) β π) |
135 | 15 | ad2antrr 723 |
. . . . . . . . . 10
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β (ran (Homf
βπ) βͺ π) β π) |
136 | 16 | ad2antrr 723 |
. . . . . . . . . 10
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β πΉ β (π Func π)) |
137 | 2, 40, 99, 128, 94, 92, 91, 130, 95 | catcocl 17628 |
. . . . . . . . . 10
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β (π(β¨π€, π§β©(compβπΆ)π)β) β (π€(Hom βπΆ)π)) |
138 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 128, 133, 134, 135, 136, 91, 18, 124, 94, 137 | yonedalem4b 18231 |
. . . . . . . . 9
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β ((((πΉππ)βπ΄)βπ€)β(π(β¨π€, π§β©(compβπΆ)π)β)) = (((π(2nd βπΉ)π€)β(π(β¨π€, π§β©(compβπΆ)π)β))βπ΄)) |
139 | 132, 138 | eqtrd 2764 |
. . . . . . . 8
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β ((((πΉππ)βπ΄)βπ€)β(((π§(2nd β((1st
βπ)βπ))π€)ββ)βπ)) = (((π(2nd βπΉ)π€)β(π(β¨π€, π§β©(compβπΆ)π)β))βπ΄)) |
140 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 128, 133, 134, 135, 136, 91, 18, 124, 92, 95 | yonedalem4b 18231 |
. . . . . . . . 9
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β ((((πΉππ)βπ΄)βπ§)βπ) = (((π(2nd βπΉ)π§)βπ)βπ΄)) |
141 | 140 | fveq2d 6885 |
. . . . . . . 8
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β (((π§(2nd βπΉ)π€)ββ)β((((πΉππ)βπ΄)βπ§)βπ)) = (((π§(2nd βπΉ)π€)ββ)β(((π(2nd βπΉ)π§)βπ)βπ΄))) |
142 | 127, 139,
141 | 3eqtr4d 2774 |
. . . . . . 7
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β (π§(Hom βπΆ)π)) β ((((πΉππ)βπ΄)βπ€)β(((π§(2nd β((1st
βπ)βπ))π€)ββ)βπ)) = (((π§(2nd βπΉ)π€)ββ)β((((πΉππ)βπ΄)βπ§)βπ))) |
143 | 86, 142 | syldan 590 |
. . . . . 6
β’ (((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β§ π β ((1st
β((1st βπ)βπ))βπ§)) β ((((πΉππ)βπ΄)βπ€)β(((π§(2nd β((1st
βπ)βπ))π€)ββ)βπ)) = (((π§(2nd βπΉ)π€)ββ)β((((πΉππ)βπ΄)βπ§)βπ))) |
144 | 143 | mpteq2dva 5238 |
. . . . 5
β’ ((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β (π β ((1st
β((1st βπ)βπ))βπ§) β¦ ((((πΉππ)βπ΄)βπ€)β(((π§(2nd β((1st
βπ)βπ))π€)ββ)βπ))) = (π β ((1st
β((1st βπ)βπ))βπ§) β¦ (((π§(2nd βπΉ)π€)ββ)β((((πΉππ)βπ΄)βπ§)βπ)))) |
145 | | fveq2 6881 |
. . . . . . . 8
β’ (π§ = π€ β (((πΉππ)βπ΄)βπ§) = (((πΉππ)βπ΄)βπ€)) |
146 | | fveq2 6881 |
. . . . . . . 8
β’ (π§ = π€ β ((1st
β((1st βπ)βπ))βπ§) = ((1st β((1st
βπ)βπ))βπ€)) |
147 | | fveq2 6881 |
. . . . . . . 8
β’ (π§ = π€ β ((1st βπΉ)βπ§) = ((1st βπΉ)βπ€)) |
148 | 145, 146,
147 | feq123d 6696 |
. . . . . . 7
β’ (π§ = π€ β ((((πΉππ)βπ΄)βπ§):((1st β((1st
βπ)βπ))βπ§)βΆ((1st βπΉ)βπ§) β (((πΉππ)βπ΄)βπ€):((1st β((1st
βπ)βπ))βπ€)βΆ((1st βπΉ)βπ€))) |
149 | 27 | fveq1d 6883 |
. . . . . . . . . . . 12
β’ (π β (((πΉππ)βπ΄)βπ§) = ((π§ β π΅ β¦ (π β (π§(Hom βπΆ)π) β¦ (((π(2nd βπΉ)π§)βπ)βπ΄)))βπ§)) |
150 | | ovex 7434 |
. . . . . . . . . . . . . 14
β’ (π§(Hom βπΆ)π) β V |
151 | 150 | mptex 7216 |
. . . . . . . . . . . . 13
β’ (π β (π§(Hom βπΆ)π) β¦ (((π(2nd βπΉ)π§)βπ)βπ΄)) β V |
152 | | eqid 2724 |
. . . . . . . . . . . . . 14
β’ (π§ β π΅ β¦ (π β (π§(Hom βπΆ)π) β¦ (((π(2nd βπΉ)π§)βπ)βπ΄))) = (π§ β π΅ β¦ (π β (π§(Hom βπΆ)π) β¦ (((π(2nd βπΉ)π§)βπ)βπ΄))) |
153 | 152 | fvmpt2 6999 |
. . . . . . . . . . . . 13
β’ ((π§ β π΅ β§ (π β (π§(Hom βπΆ)π) β¦ (((π(2nd βπΉ)π§)βπ)βπ΄)) β V) β ((π§ β π΅ β¦ (π β (π§(Hom βπΆ)π) β¦ (((π(2nd βπΉ)π§)βπ)βπ΄)))βπ§) = (π β (π§(Hom βπΆ)π) β¦ (((π(2nd βπΉ)π§)βπ)βπ΄))) |
154 | 151, 153 | mpan2 688 |
. . . . . . . . . . . 12
β’ (π§ β π΅ β ((π§ β π΅ β¦ (π β (π§(Hom βπΆ)π) β¦ (((π(2nd βπΉ)π§)βπ)βπ΄)))βπ§) = (π β (π§(Hom βπΆ)π) β¦ (((π(2nd βπΉ)π§)βπ)βπ΄))) |
155 | 149, 154 | sylan9eq 2784 |
. . . . . . . . . . 11
β’ ((π β§ π§ β π΅) β (((πΉππ)βπ΄)βπ§) = (π β (π§(Hom βπΆ)π) β¦ (((π(2nd βπΉ)π§)βπ)βπ΄))) |
156 | 155 | feq1d 6692 |
. . . . . . . . . 10
β’ ((π β§ π§ β π΅) β ((((πΉππ)βπ΄)βπ§):((1st β((1st
βπ)βπ))βπ§)βΆ((1st βπΉ)βπ§) β (π β (π§(Hom βπΆ)π) β¦ (((π(2nd βπΉ)π§)βπ)βπ΄)):((1st β((1st
βπ)βπ))βπ§)βΆ((1st βπΉ)βπ§))) |
157 | 65, 156 | mpbird 257 |
. . . . . . . . 9
β’ ((π β§ π§ β π΅) β (((πΉππ)βπ΄)βπ§):((1st β((1st
βπ)βπ))βπ§)βΆ((1st βπΉ)βπ§)) |
158 | 157 | ralrimiva 3138 |
. . . . . . . 8
β’ (π β βπ§ β π΅ (((πΉππ)βπ΄)βπ§):((1st β((1st
βπ)βπ))βπ§)βΆ((1st βπΉ)βπ§)) |
159 | 158 | adantr 480 |
. . . . . . 7
β’ ((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β βπ§ β π΅ (((πΉππ)βπ΄)βπ§):((1st β((1st
βπ)βπ))βπ§)βΆ((1st βπΉ)βπ§)) |
160 | 148, 159,
93 | rspcdva 3605 |
. . . . . 6
β’ ((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β (((πΉππ)βπ΄)βπ€):((1st β((1st
βπ)βπ))βπ€)βΆ((1st βπΉ)βπ€)) |
161 | 68 | adantr 480 |
. . . . . . . . 9
β’ ((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β (1st
β((1st βπ)βπ))(π Func π)(2nd β((1st
βπ)βπ))) |
162 | 28, 29, 30, 161, 83, 93 | funcf2 17817 |
. . . . . . . 8
β’ ((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β (π§(2nd β((1st
βπ)βπ))π€):(π§(Hom βπ)π€)βΆ(((1st
β((1st βπ)βπ))βπ§)(Hom βπ)((1st β((1st
βπ)βπ))βπ€))) |
163 | 162, 116 | ffvelcdmd 7077 |
. . . . . . 7
β’ ((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β ((π§(2nd β((1st
βπ)βπ))π€)ββ) β (((1st
β((1st βπ)βπ))βπ§)(Hom βπ)((1st β((1st
βπ)βπ))βπ€))) |
164 | 72 | 3ad2antr1 1185 |
. . . . . . . 8
β’ ((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β ((1st
β((1st βπ)βπ))βπ§) β π) |
165 | 71 | adantr 480 |
. . . . . . . . 9
β’ ((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β (1st
β((1st βπ)βπ)):π΅βΆπ) |
166 | 165, 93 | ffvelcdmd 7077 |
. . . . . . . 8
β’ ((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β ((1st
β((1st βπ)βπ))βπ€) β π) |
167 | 5, 102, 30, 164, 166 | elsetchom 18033 |
. . . . . . 7
β’ ((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β (((π§(2nd β((1st
βπ)βπ))π€)ββ) β (((1st
β((1st βπ)βπ))βπ§)(Hom βπ)((1st β((1st
βπ)βπ))βπ€)) β ((π§(2nd β((1st
βπ)βπ))π€)ββ):((1st β((1st
βπ)βπ))βπ§)βΆ((1st
β((1st βπ)βπ))βπ€))) |
168 | 163, 167 | mpbid 231 |
. . . . . 6
β’ ((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β ((π§(2nd β((1st
βπ)βπ))π€)ββ):((1st β((1st
βπ)βπ))βπ§)βΆ((1st
β((1st βπ)βπ))βπ€)) |
169 | | fcompt 7123 |
. . . . . 6
β’
(((((πΉππ)βπ΄)βπ€):((1st β((1st
βπ)βπ))βπ€)βΆ((1st βπΉ)βπ€) β§ ((π§(2nd β((1st
βπ)βπ))π€)ββ):((1st β((1st
βπ)βπ))βπ§)βΆ((1st
β((1st βπ)βπ))βπ€)) β ((((πΉππ)βπ΄)βπ€) β ((π§(2nd β((1st
βπ)βπ))π€)ββ)) = (π β ((1st
β((1st βπ)βπ))βπ§) β¦ ((((πΉππ)βπ΄)βπ€)β(((π§(2nd β((1st
βπ)βπ))π€)ββ)βπ)))) |
170 | 160, 168,
169 | syl2anc 583 |
. . . . 5
β’ ((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β ((((πΉππ)βπ΄)βπ€) β ((π§(2nd β((1st
βπ)βπ))π€)ββ)) = (π β ((1st
β((1st βπ)βπ))βπ§) β¦ ((((πΉππ)βπ΄)βπ€)β(((π§(2nd β((1st
βπ)βπ))π€)ββ)βπ)))) |
171 | 157 | 3ad2antr1 1185 |
. . . . . 6
β’ ((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β (((πΉππ)βπ΄)βπ§):((1st β((1st
βπ)βπ))βπ§)βΆ((1st βπΉ)βπ§)) |
172 | | fcompt 7123 |
. . . . . 6
β’ ((((π§(2nd βπΉ)π€)ββ):((1st βπΉ)βπ§)βΆ((1st βπΉ)βπ€) β§ (((πΉππ)βπ΄)βπ§):((1st β((1st
βπ)βπ))βπ§)βΆ((1st βπΉ)βπ§)) β (((π§(2nd βπΉ)π€)ββ) β (((πΉππ)βπ΄)βπ§)) = (π β ((1st
β((1st βπ)βπ))βπ§) β¦ (((π§(2nd βπΉ)π€)ββ)β((((πΉππ)βπ΄)βπ§)βπ)))) |
173 | 119, 171,
172 | syl2anc 583 |
. . . . 5
β’ ((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β (((π§(2nd βπΉ)π€)ββ) β (((πΉππ)βπ΄)βπ§)) = (π β ((1st
β((1st βπ)βπ))βπ§) β¦ (((π§(2nd βπΉ)π€)ββ)β((((πΉππ)βπ΄)βπ§)βπ)))) |
174 | 144, 170,
173 | 3eqtr4d 2774 |
. . . 4
β’ ((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β ((((πΉππ)βπ΄)βπ€) β ((π§(2nd β((1st
βπ)βπ))π€)ββ)) = (((π§(2nd βπΉ)π€)ββ) β (((πΉππ)βπ΄)βπ§))) |
175 | 5, 102, 88, 164, 166, 108, 168, 160 | setcco 18035 |
. . . 4
β’ ((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β ((((πΉππ)βπ΄)βπ€)(β¨((1st
β((1st βπ)βπ))βπ§), ((1st β((1st
βπ)βπ))βπ€)β©(compβπ)((1st βπΉ)βπ€))((π§(2nd β((1st
βπ)βπ))π€)ββ)) = ((((πΉππ)βπ΄)βπ€) β ((π§(2nd β((1st
βπ)βπ))π€)ββ))) |
176 | 5, 102, 88, 164, 105, 108, 171, 119 | setcco 18035 |
. . . 4
β’ ((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β (((π§(2nd βπΉ)π€)ββ)(β¨((1st
β((1st βπ)βπ))βπ§), ((1st βπΉ)βπ§)β©(compβπ)((1st βπΉ)βπ€))(((πΉππ)βπ΄)βπ§)) = (((π§(2nd βπΉ)π€)ββ) β (((πΉππ)βπ΄)βπ§))) |
177 | 174, 175,
176 | 3eqtr4d 2774 |
. . 3
β’ ((π β§ (π§ β π΅ β§ π€ β π΅ β§ β β (π§(Hom βπ)π€))) β ((((πΉππ)βπ΄)βπ€)(β¨((1st
β((1st βπ)βπ))βπ§), ((1st β((1st
βπ)βπ))βπ€)β©(compβπ)((1st βπΉ)βπ€))((π§(2nd β((1st
βπ)βπ))π€)ββ)) = (((π§(2nd βπΉ)π€)ββ)(β¨((1st
β((1st βπ)βπ))βπ§), ((1st βπΉ)βπ§)β©(compβπ)((1st βπΉ)βπ€))(((πΉππ)βπ΄)βπ§))) |
178 | 177 | ralrimivvva 3195 |
. 2
β’ (π β βπ§ β π΅ βπ€ β π΅ ββ β (π§(Hom βπ)π€)((((πΉππ)βπ΄)βπ€)(β¨((1st
β((1st βπ)βπ))βπ§), ((1st β((1st
βπ)βπ))βπ€)β©(compβπ)((1st βπΉ)βπ€))((π§(2nd β((1st
βπ)βπ))π€)ββ)) = (((π§(2nd βπΉ)π€)ββ)(β¨((1st
β((1st βπ)βπ))βπ§), ((1st βπΉ)βπ§)β©(compβπ)((1st βπΉ)βπ€))(((πΉππ)βπ΄)βπ§))) |
179 | | eqid 2724 |
. . 3
β’ (π Nat π) = (π Nat π) |
180 | 179, 28, 29, 30, 88, 66, 16 | isnat2 17901 |
. 2
β’ (π β (((πΉππ)βπ΄) β (((1st βπ)βπ)(π Nat π)πΉ) β (((πΉππ)βπ΄) β Xπ§ β π΅ (((1st β((1st
βπ)βπ))βπ§)(Hom βπ)((1st βπΉ)βπ§)) β§ βπ§ β π΅ βπ€ β π΅ ββ β (π§(Hom βπ)π€)((((πΉππ)βπ΄)βπ€)(β¨((1st
β((1st βπ)βπ))βπ§), ((1st β((1st
βπ)βπ))βπ€)β©(compβπ)((1st βπΉ)βπ€))((π§(2nd β((1st
βπ)βπ))π€)ββ)) = (((π§(2nd βπΉ)π€)ββ)(β¨((1st
β((1st βπ)βπ))βπ§), ((1st βπΉ)βπ§)β©(compβπ)((1st βπΉ)βπ€))(((πΉππ)βπ΄)βπ§))))) |
181 | 80, 178, 180 | mpbir2and 710 |
1
β’ (π β ((πΉππ)βπ΄) β (((1st βπ)βπ)(π Nat π)πΉ)) |