MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedalem4c Structured version   Visualization version   GIF version

Theorem yonedalem4c 18183
Description: Lemma for yoneda 18189. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y 𝑌 = (Yon‘𝐶)
yoneda.b 𝐵 = (Base‘𝐶)
yoneda.1 1 = (Id‘𝐶)
yoneda.o 𝑂 = (oppCat‘𝐶)
yoneda.s 𝑆 = (SetCat‘𝑈)
yoneda.t 𝑇 = (SetCat‘𝑉)
yoneda.q 𝑄 = (𝑂 FuncCat 𝑆)
yoneda.h 𝐻 = (HomF𝑄)
yoneda.r 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
yoneda.e 𝐸 = (𝑂 evalF 𝑆)
yoneda.z 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
yoneda.c (𝜑𝐶 ∈ Cat)
yoneda.w (𝜑𝑉𝑊)
yoneda.u (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
yoneda.v (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
yonedalem21.f (𝜑𝐹 ∈ (𝑂 Func 𝑆))
yonedalem21.x (𝜑𝑋𝐵)
yonedalem4.n 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))))
yonedalem4.p (𝜑𝐴 ∈ ((1st𝐹)‘𝑋))
Assertion
Ref Expression
yonedalem4c (𝜑 → ((𝐹𝑁𝑋)‘𝐴) ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦, 1   𝑢,𝑔,𝐴,𝑦   𝑢,𝑓,𝐶,𝑔,𝑥,𝑦   𝑓,𝐸,𝑔,𝑢,𝑦   𝑓,𝐹,𝑔,𝑢,𝑥,𝑦   𝐵,𝑓,𝑔,𝑢,𝑥,𝑦   𝑓,𝑂,𝑔,𝑢,𝑥,𝑦   𝑆,𝑓,𝑔,𝑢,𝑥,𝑦   𝑄,𝑓,𝑔,𝑢,𝑥   𝑇,𝑓,𝑔,𝑢,𝑦   𝜑,𝑓,𝑔,𝑢,𝑥,𝑦   𝑢,𝑅   𝑓,𝑌,𝑔,𝑢,𝑥,𝑦   𝑓,𝑍,𝑔,𝑢,𝑥,𝑦   𝑓,𝑋,𝑔,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑓)   𝑄(𝑦)   𝑅(𝑥,𝑦,𝑓,𝑔)   𝑇(𝑥)   𝑈(𝑥,𝑦,𝑢,𝑓,𝑔)   1 (𝑢)   𝐸(𝑥)   𝐻(𝑥,𝑦,𝑢,𝑓,𝑔)   𝑁(𝑥,𝑦,𝑢,𝑓,𝑔)   𝑉(𝑥,𝑦,𝑢,𝑓,𝑔)   𝑊(𝑥,𝑦,𝑢,𝑓,𝑔)

Proof of Theorem yonedalem4c
Dummy variables 𝑘 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 yoneda.y . . . . 5 𝑌 = (Yon‘𝐶)
2 yoneda.b . . . . 5 𝐵 = (Base‘𝐶)
3 yoneda.1 . . . . 5 1 = (Id‘𝐶)
4 yoneda.o . . . . 5 𝑂 = (oppCat‘𝐶)
5 yoneda.s . . . . 5 𝑆 = (SetCat‘𝑈)
6 yoneda.t . . . . 5 𝑇 = (SetCat‘𝑉)
7 yoneda.q . . . . 5 𝑄 = (𝑂 FuncCat 𝑆)
8 yoneda.h . . . . 5 𝐻 = (HomF𝑄)
9 yoneda.r . . . . 5 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
10 yoneda.e . . . . 5 𝐸 = (𝑂 evalF 𝑆)
11 yoneda.z . . . . 5 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
12 yoneda.c . . . . 5 (𝜑𝐶 ∈ Cat)
13 yoneda.w . . . . 5 (𝜑𝑉𝑊)
14 yoneda.u . . . . 5 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
15 yoneda.v . . . . 5 (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
16 yonedalem21.f . . . . 5 (𝜑𝐹 ∈ (𝑂 Func 𝑆))
17 yonedalem21.x . . . . 5 (𝜑𝑋𝐵)
18 yonedalem4.n . . . . 5 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))))
19 yonedalem4.p . . . . 5 (𝜑𝐴 ∈ ((1st𝐹)‘𝑋))
201, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19yonedalem4a 18181 . . . 4 (𝜑 → ((𝐹𝑁𝑋)‘𝐴) = (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))))
21 oveq1 7353 . . . . . 6 (𝑦 = 𝑧 → (𝑦(Hom ‘𝐶)𝑋) = (𝑧(Hom ‘𝐶)𝑋))
22 oveq2 7354 . . . . . . . 8 (𝑦 = 𝑧 → (𝑋(2nd𝐹)𝑦) = (𝑋(2nd𝐹)𝑧))
2322fveq1d 6824 . . . . . . 7 (𝑦 = 𝑧 → ((𝑋(2nd𝐹)𝑦)‘𝑔) = ((𝑋(2nd𝐹)𝑧)‘𝑔))
2423fveq1d 6824 . . . . . 6 (𝑦 = 𝑧 → (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴) = (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴))
2521, 24mpteq12dv 5176 . . . . 5 (𝑦 = 𝑧 → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴)) = (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)))
2625cbvmptv 5193 . . . 4 (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))) = (𝑧𝐵 ↦ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)))
2720, 26eqtrdi 2782 . . 3 (𝜑 → ((𝐹𝑁𝑋)‘𝐴) = (𝑧𝐵 ↦ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴))))
284, 2oppcbas 17624 . . . . . . . . . . . . 13 𝐵 = (Base‘𝑂)
29 eqid 2731 . . . . . . . . . . . . 13 (Hom ‘𝑂) = (Hom ‘𝑂)
30 eqid 2731 . . . . . . . . . . . . 13 (Hom ‘𝑆) = (Hom ‘𝑆)
31 relfunc 17769 . . . . . . . . . . . . . . 15 Rel (𝑂 Func 𝑆)
32 1st2ndbr 7974 . . . . . . . . . . . . . . 15 ((Rel (𝑂 Func 𝑆) ∧ 𝐹 ∈ (𝑂 Func 𝑆)) → (1st𝐹)(𝑂 Func 𝑆)(2nd𝐹))
3331, 16, 32sylancr 587 . . . . . . . . . . . . . 14 (𝜑 → (1st𝐹)(𝑂 Func 𝑆)(2nd𝐹))
3433adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧𝐵) → (1st𝐹)(𝑂 Func 𝑆)(2nd𝐹))
3517adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧𝐵) → 𝑋𝐵)
36 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑧𝐵) → 𝑧𝐵)
3728, 29, 30, 34, 35, 36funcf2 17775 . . . . . . . . . . . 12 ((𝜑𝑧𝐵) → (𝑋(2nd𝐹)𝑧):(𝑋(Hom ‘𝑂)𝑧)⟶(((1st𝐹)‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑧)))
3837adantr 480 . . . . . . . . . . 11 (((𝜑𝑧𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (𝑋(2nd𝐹)𝑧):(𝑋(Hom ‘𝑂)𝑧)⟶(((1st𝐹)‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑧)))
39 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑧𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋))
40 eqid 2731 . . . . . . . . . . . . 13 (Hom ‘𝐶) = (Hom ‘𝐶)
4140, 4oppchom 17621 . . . . . . . . . . . 12 (𝑋(Hom ‘𝑂)𝑧) = (𝑧(Hom ‘𝐶)𝑋)
4239, 41eleqtrrdi 2842 . . . . . . . . . . 11 (((𝜑𝑧𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝑔 ∈ (𝑋(Hom ‘𝑂)𝑧))
4338, 42ffvelcdmd 7018 . . . . . . . . . 10 (((𝜑𝑧𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((𝑋(2nd𝐹)𝑧)‘𝑔) ∈ (((1st𝐹)‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑧)))
4415unssbd 4141 . . . . . . . . . . . . . 14 (𝜑𝑈𝑉)
4513, 44ssexd 5260 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ V)
4645adantr 480 . . . . . . . . . . . 12 ((𝜑𝑧𝐵) → 𝑈 ∈ V)
4746adantr 480 . . . . . . . . . . 11 (((𝜑𝑧𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝑈 ∈ V)
48 eqid 2731 . . . . . . . . . . . . . . 15 (Base‘𝑆) = (Base‘𝑆)
4928, 48, 33funcf1 17773 . . . . . . . . . . . . . 14 (𝜑 → (1st𝐹):𝐵⟶(Base‘𝑆))
505, 45setcbas 17985 . . . . . . . . . . . . . . 15 (𝜑𝑈 = (Base‘𝑆))
5150feq3d 6636 . . . . . . . . . . . . . 14 (𝜑 → ((1st𝐹):𝐵𝑈 ↔ (1st𝐹):𝐵⟶(Base‘𝑆)))
5249, 51mpbird 257 . . . . . . . . . . . . 13 (𝜑 → (1st𝐹):𝐵𝑈)
5352, 17ffvelcdmd 7018 . . . . . . . . . . . 12 (𝜑 → ((1st𝐹)‘𝑋) ∈ 𝑈)
5453ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑧𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((1st𝐹)‘𝑋) ∈ 𝑈)
5552ffvelcdmda 7017 . . . . . . . . . . . 12 ((𝜑𝑧𝐵) → ((1st𝐹)‘𝑧) ∈ 𝑈)
5655adantr 480 . . . . . . . . . . 11 (((𝜑𝑧𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((1st𝐹)‘𝑧) ∈ 𝑈)
575, 47, 30, 54, 56elsetchom 17988 . . . . . . . . . 10 (((𝜑𝑧𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (((𝑋(2nd𝐹)𝑧)‘𝑔) ∈ (((1st𝐹)‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑧)) ↔ ((𝑋(2nd𝐹)𝑧)‘𝑔):((1st𝐹)‘𝑋)⟶((1st𝐹)‘𝑧)))
5843, 57mpbid 232 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((𝑋(2nd𝐹)𝑧)‘𝑔):((1st𝐹)‘𝑋)⟶((1st𝐹)‘𝑧))
5919ad2antrr 726 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝐴 ∈ ((1st𝐹)‘𝑋))
6058, 59ffvelcdmd 7018 . . . . . . . 8 (((𝜑𝑧𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴) ∈ ((1st𝐹)‘𝑧))
6160fmpttd 7048 . . . . . . 7 ((𝜑𝑧𝐵) → (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)):(𝑧(Hom ‘𝐶)𝑋)⟶((1st𝐹)‘𝑧))
6212adantr 480 . . . . . . . . 9 ((𝜑𝑧𝐵) → 𝐶 ∈ Cat)
631, 2, 62, 35, 40, 36yon11 18170 . . . . . . . 8 ((𝜑𝑧𝐵) → ((1st ‘((1st𝑌)‘𝑋))‘𝑧) = (𝑧(Hom ‘𝐶)𝑋))
6463feq2d 6635 . . . . . . 7 ((𝜑𝑧𝐵) → ((𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st𝐹)‘𝑧) ↔ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)):(𝑧(Hom ‘𝐶)𝑋)⟶((1st𝐹)‘𝑧)))
6561, 64mpbird 257 . . . . . 6 ((𝜑𝑧𝐵) → (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st𝐹)‘𝑧))
661, 2, 12, 17, 4, 5, 45, 14yon1cl 18169 . . . . . . . . . . 11 (𝜑 → ((1st𝑌)‘𝑋) ∈ (𝑂 Func 𝑆))
67 1st2ndbr 7974 . . . . . . . . . . 11 ((Rel (𝑂 Func 𝑆) ∧ ((1st𝑌)‘𝑋) ∈ (𝑂 Func 𝑆)) → (1st ‘((1st𝑌)‘𝑋))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑋)))
6831, 66, 67sylancr 587 . . . . . . . . . 10 (𝜑 → (1st ‘((1st𝑌)‘𝑋))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑋)))
6928, 48, 68funcf1 17773 . . . . . . . . 9 (𝜑 → (1st ‘((1st𝑌)‘𝑋)):𝐵⟶(Base‘𝑆))
7050feq3d 6636 . . . . . . . . 9 (𝜑 → ((1st ‘((1st𝑌)‘𝑋)):𝐵𝑈 ↔ (1st ‘((1st𝑌)‘𝑋)):𝐵⟶(Base‘𝑆)))
7169, 70mpbird 257 . . . . . . . 8 (𝜑 → (1st ‘((1st𝑌)‘𝑋)):𝐵𝑈)
7271ffvelcdmda 7017 . . . . . . 7 ((𝜑𝑧𝐵) → ((1st ‘((1st𝑌)‘𝑋))‘𝑧) ∈ 𝑈)
735, 46, 30, 72, 55elsetchom 17988 . . . . . 6 ((𝜑𝑧𝐵) → ((𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑧)) ↔ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st𝐹)‘𝑧)))
7465, 73mpbird 257 . . . . 5 ((𝜑𝑧𝐵) → (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑧)))
7574ralrimiva 3124 . . . 4 (𝜑 → ∀𝑧𝐵 (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑧)))
762fvexi 6836 . . . . 5 𝐵 ∈ V
77 mptelixpg 8859 . . . . 5 (𝐵 ∈ V → ((𝑧𝐵 ↦ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴))) ∈ X𝑧𝐵 (((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑧)) ↔ ∀𝑧𝐵 (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑧))))
7876, 77ax-mp 5 . . . 4 ((𝑧𝐵 ↦ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴))) ∈ X𝑧𝐵 (((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑧)) ↔ ∀𝑧𝐵 (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑧)))
7975, 78sylibr 234 . . 3 (𝜑 → (𝑧𝐵 ↦ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴))) ∈ X𝑧𝐵 (((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑧)))
8027, 79eqeltrd 2831 . 2 (𝜑 → ((𝐹𝑁𝑋)‘𝐴) ∈ X𝑧𝐵 (((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑧)))
8112adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → 𝐶 ∈ Cat)
8217adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → 𝑋𝐵)
83 simpr1 1195 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → 𝑧𝐵)
841, 2, 81, 82, 40, 83yon11 18170 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((1st ‘((1st𝑌)‘𝑋))‘𝑧) = (𝑧(Hom ‘𝐶)𝑋))
8584eleq2d 2817 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (𝑘 ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑧) ↔ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)))
8685biimpa 476 . . . . . . 7 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑧)) → 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋))
87 eqid 2731 . . . . . . . . . . . 12 (comp‘𝑂) = (comp‘𝑂)
88 eqid 2731 . . . . . . . . . . . 12 (comp‘𝑆) = (comp‘𝑆)
8933adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (1st𝐹)(𝑂 Func 𝑆)(2nd𝐹))
9089adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (1st𝐹)(𝑂 Func 𝑆)(2nd𝐹))
9182adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝑋𝐵)
9283adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝑧𝐵)
93 simpr2 1196 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → 𝑤𝐵)
9493adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝑤𝐵)
95 simpr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋))
9695, 41eleqtrrdi 2842 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝑘 ∈ (𝑋(Hom ‘𝑂)𝑧))
97 simplr3 1218 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ∈ (𝑧(Hom ‘𝑂)𝑤))
9828, 29, 87, 88, 90, 91, 92, 94, 96, 97funcco 17778 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((𝑋(2nd𝐹)𝑤)‘((⟨𝑋, 𝑧⟩(comp‘𝑂)𝑤)𝑘)) = (((𝑧(2nd𝐹)𝑤)‘)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑧)⟩(comp‘𝑆)((1st𝐹)‘𝑤))((𝑋(2nd𝐹)𝑧)‘𝑘)))
99 eqid 2731 . . . . . . . . . . . . 13 (comp‘𝐶) = (comp‘𝐶)
1002, 99, 4, 91, 92, 94oppcco 17623 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((⟨𝑋, 𝑧⟩(comp‘𝑂)𝑤)𝑘) = (𝑘(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑋)))
101100fveq2d 6826 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((𝑋(2nd𝐹)𝑤)‘((⟨𝑋, 𝑧⟩(comp‘𝑂)𝑤)𝑘)) = ((𝑋(2nd𝐹)𝑤)‘(𝑘(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑋))))
10245adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → 𝑈 ∈ V)
103102adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝑈 ∈ V)
10453ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((1st𝐹)‘𝑋) ∈ 𝑈)
105553ad2antr1 1189 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((1st𝐹)‘𝑧) ∈ 𝑈)
106105adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((1st𝐹)‘𝑧) ∈ 𝑈)
10752adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (1st𝐹):𝐵𝑈)
108107, 93ffvelcdmd 7018 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((1st𝐹)‘𝑤) ∈ 𝑈)
109108adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((1st𝐹)‘𝑤) ∈ 𝑈)
11028, 29, 30, 89, 82, 83funcf2 17775 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (𝑋(2nd𝐹)𝑧):(𝑋(Hom ‘𝑂)𝑧)⟶(((1st𝐹)‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑧)))
111110adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (𝑋(2nd𝐹)𝑧):(𝑋(Hom ‘𝑂)𝑧)⟶(((1st𝐹)‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑧)))
112111, 96ffvelcdmd 7018 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((𝑋(2nd𝐹)𝑧)‘𝑘) ∈ (((1st𝐹)‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑧)))
1135, 103, 30, 104, 106elsetchom 17988 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (((𝑋(2nd𝐹)𝑧)‘𝑘) ∈ (((1st𝐹)‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑧)) ↔ ((𝑋(2nd𝐹)𝑧)‘𝑘):((1st𝐹)‘𝑋)⟶((1st𝐹)‘𝑧)))
114112, 113mpbid 232 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((𝑋(2nd𝐹)𝑧)‘𝑘):((1st𝐹)‘𝑋)⟶((1st𝐹)‘𝑧))
11528, 29, 30, 89, 83, 93funcf2 17775 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (𝑧(2nd𝐹)𝑤):(𝑧(Hom ‘𝑂)𝑤)⟶(((1st𝐹)‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑤)))
116 simpr3 1197 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ∈ (𝑧(Hom ‘𝑂)𝑤))
117115, 116ffvelcdmd 7018 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((𝑧(2nd𝐹)𝑤)‘) ∈ (((1st𝐹)‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑤)))
1185, 102, 30, 105, 108elsetchom 17988 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (((𝑧(2nd𝐹)𝑤)‘) ∈ (((1st𝐹)‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑤)) ↔ ((𝑧(2nd𝐹)𝑤)‘):((1st𝐹)‘𝑧)⟶((1st𝐹)‘𝑤)))
119117, 118mpbid 232 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((𝑧(2nd𝐹)𝑤)‘):((1st𝐹)‘𝑧)⟶((1st𝐹)‘𝑤))
120119adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((𝑧(2nd𝐹)𝑤)‘):((1st𝐹)‘𝑧)⟶((1st𝐹)‘𝑤))
1215, 103, 88, 104, 106, 109, 114, 120setcco 17990 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (((𝑧(2nd𝐹)𝑤)‘)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑧)⟩(comp‘𝑆)((1st𝐹)‘𝑤))((𝑋(2nd𝐹)𝑧)‘𝑘)) = (((𝑧(2nd𝐹)𝑤)‘) ∘ ((𝑋(2nd𝐹)𝑧)‘𝑘)))
12298, 101, 1213eqtr3d 2774 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((𝑋(2nd𝐹)𝑤)‘(𝑘(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑋))) = (((𝑧(2nd𝐹)𝑤)‘) ∘ ((𝑋(2nd𝐹)𝑧)‘𝑘)))
123122fveq1d 6824 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (((𝑋(2nd𝐹)𝑤)‘(𝑘(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑋)))‘𝐴) = ((((𝑧(2nd𝐹)𝑤)‘) ∘ ((𝑋(2nd𝐹)𝑧)‘𝑘))‘𝐴))
12419ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝐴 ∈ ((1st𝐹)‘𝑋))
125 fvco3 6921 . . . . . . . . . 10 ((((𝑋(2nd𝐹)𝑧)‘𝑘):((1st𝐹)‘𝑋)⟶((1st𝐹)‘𝑧) ∧ 𝐴 ∈ ((1st𝐹)‘𝑋)) → ((((𝑧(2nd𝐹)𝑤)‘) ∘ ((𝑋(2nd𝐹)𝑧)‘𝑘))‘𝐴) = (((𝑧(2nd𝐹)𝑤)‘)‘(((𝑋(2nd𝐹)𝑧)‘𝑘)‘𝐴)))
126114, 124, 125syl2anc 584 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((((𝑧(2nd𝐹)𝑤)‘) ∘ ((𝑋(2nd𝐹)𝑧)‘𝑘))‘𝐴) = (((𝑧(2nd𝐹)𝑤)‘)‘(((𝑋(2nd𝐹)𝑧)‘𝑘)‘𝐴)))
127123, 126eqtrd 2766 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (((𝑋(2nd𝐹)𝑤)‘(𝑘(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑋)))‘𝐴) = (((𝑧(2nd𝐹)𝑤)‘)‘(((𝑋(2nd𝐹)𝑧)‘𝑘)‘𝐴)))
12881adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝐶 ∈ Cat)
12940, 4oppchom 17621 . . . . . . . . . . . 12 (𝑧(Hom ‘𝑂)𝑤) = (𝑤(Hom ‘𝐶)𝑧)
13097, 129eleqtrdi 2841 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ∈ (𝑤(Hom ‘𝐶)𝑧))
1311, 2, 128, 91, 40, 92, 99, 94, 130, 95yon12 18171 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)‘𝑘) = (𝑘(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑋)))
132131fveq2d 6826 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((((𝐹𝑁𝑋)‘𝐴)‘𝑤)‘(((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)‘𝑘)) = ((((𝐹𝑁𝑋)‘𝐴)‘𝑤)‘(𝑘(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑋))))
13313ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝑉𝑊)
13414ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ran (Homf𝐶) ⊆ 𝑈)
13515ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
13616ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝐹 ∈ (𝑂 Func 𝑆))
1372, 40, 99, 128, 94, 92, 91, 130, 95catcocl 17591 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (𝑘(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑋)) ∈ (𝑤(Hom ‘𝐶)𝑋))
1381, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 128, 133, 134, 135, 136, 91, 18, 124, 94, 137yonedalem4b 18182 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((((𝐹𝑁𝑋)‘𝐴)‘𝑤)‘(𝑘(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑋))) = (((𝑋(2nd𝐹)𝑤)‘(𝑘(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑋)))‘𝐴))
139132, 138eqtrd 2766 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((((𝐹𝑁𝑋)‘𝐴)‘𝑤)‘(((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)‘𝑘)) = (((𝑋(2nd𝐹)𝑤)‘(𝑘(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑋)))‘𝐴))
1401, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 128, 133, 134, 135, 136, 91, 18, 124, 92, 95yonedalem4b 18182 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((((𝐹𝑁𝑋)‘𝐴)‘𝑧)‘𝑘) = (((𝑋(2nd𝐹)𝑧)‘𝑘)‘𝐴))
141140fveq2d 6826 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (((𝑧(2nd𝐹)𝑤)‘)‘((((𝐹𝑁𝑋)‘𝐴)‘𝑧)‘𝑘)) = (((𝑧(2nd𝐹)𝑤)‘)‘(((𝑋(2nd𝐹)𝑧)‘𝑘)‘𝐴)))
142127, 139, 1413eqtr4d 2776 . . . . . . 7 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((((𝐹𝑁𝑋)‘𝐴)‘𝑤)‘(((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)‘𝑘)) = (((𝑧(2nd𝐹)𝑤)‘)‘((((𝐹𝑁𝑋)‘𝐴)‘𝑧)‘𝑘)))
14386, 142syldan 591 . . . . . 6 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑧)) → ((((𝐹𝑁𝑋)‘𝐴)‘𝑤)‘(((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)‘𝑘)) = (((𝑧(2nd𝐹)𝑤)‘)‘((((𝐹𝑁𝑋)‘𝐴)‘𝑧)‘𝑘)))
144143mpteq2dva 5182 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (𝑘 ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑧) ↦ ((((𝐹𝑁𝑋)‘𝐴)‘𝑤)‘(((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)‘𝑘))) = (𝑘 ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑧) ↦ (((𝑧(2nd𝐹)𝑤)‘)‘((((𝐹𝑁𝑋)‘𝐴)‘𝑧)‘𝑘))))
145 fveq2 6822 . . . . . . . 8 (𝑧 = 𝑤 → (((𝐹𝑁𝑋)‘𝐴)‘𝑧) = (((𝐹𝑁𝑋)‘𝐴)‘𝑤))
146 fveq2 6822 . . . . . . . 8 (𝑧 = 𝑤 → ((1st ‘((1st𝑌)‘𝑋))‘𝑧) = ((1st ‘((1st𝑌)‘𝑋))‘𝑤))
147 fveq2 6822 . . . . . . . 8 (𝑧 = 𝑤 → ((1st𝐹)‘𝑧) = ((1st𝐹)‘𝑤))
148145, 146, 147feq123d 6640 . . . . . . 7 (𝑧 = 𝑤 → ((((𝐹𝑁𝑋)‘𝐴)‘𝑧):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st𝐹)‘𝑧) ↔ (((𝐹𝑁𝑋)‘𝐴)‘𝑤):((1st ‘((1st𝑌)‘𝑋))‘𝑤)⟶((1st𝐹)‘𝑤)))
14927fveq1d 6824 . . . . . . . . . . . 12 (𝜑 → (((𝐹𝑁𝑋)‘𝐴)‘𝑧) = ((𝑧𝐵 ↦ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)))‘𝑧))
150 ovex 7379 . . . . . . . . . . . . . 14 (𝑧(Hom ‘𝐶)𝑋) ∈ V
151150mptex 7157 . . . . . . . . . . . . 13 (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)) ∈ V
152 eqid 2731 . . . . . . . . . . . . . 14 (𝑧𝐵 ↦ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴))) = (𝑧𝐵 ↦ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)))
153152fvmpt2 6940 . . . . . . . . . . . . 13 ((𝑧𝐵 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)) ∈ V) → ((𝑧𝐵 ↦ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)))‘𝑧) = (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)))
154151, 153mpan2 691 . . . . . . . . . . . 12 (𝑧𝐵 → ((𝑧𝐵 ↦ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)))‘𝑧) = (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)))
155149, 154sylan9eq 2786 . . . . . . . . . . 11 ((𝜑𝑧𝐵) → (((𝐹𝑁𝑋)‘𝐴)‘𝑧) = (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)))
156155feq1d 6633 . . . . . . . . . 10 ((𝜑𝑧𝐵) → ((((𝐹𝑁𝑋)‘𝐴)‘𝑧):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st𝐹)‘𝑧) ↔ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st𝐹)‘𝑧)))
15765, 156mpbird 257 . . . . . . . . 9 ((𝜑𝑧𝐵) → (((𝐹𝑁𝑋)‘𝐴)‘𝑧):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st𝐹)‘𝑧))
158157ralrimiva 3124 . . . . . . . 8 (𝜑 → ∀𝑧𝐵 (((𝐹𝑁𝑋)‘𝐴)‘𝑧):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st𝐹)‘𝑧))
159158adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ∀𝑧𝐵 (((𝐹𝑁𝑋)‘𝐴)‘𝑧):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st𝐹)‘𝑧))
160148, 159, 93rspcdva 3573 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (((𝐹𝑁𝑋)‘𝐴)‘𝑤):((1st ‘((1st𝑌)‘𝑋))‘𝑤)⟶((1st𝐹)‘𝑤))
16168adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (1st ‘((1st𝑌)‘𝑋))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑋)))
16228, 29, 30, 161, 83, 93funcf2 17775 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤):(𝑧(Hom ‘𝑂)𝑤)⟶(((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑋))‘𝑤)))
163162, 116ffvelcdmd 7018 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑋))‘𝑤)))
164723ad2antr1 1189 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((1st ‘((1st𝑌)‘𝑋))‘𝑧) ∈ 𝑈)
16571adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (1st ‘((1st𝑌)‘𝑋)):𝐵𝑈)
166165, 93ffvelcdmd 7018 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((1st ‘((1st𝑌)‘𝑋))‘𝑤) ∈ 𝑈)
1675, 102, 30, 164, 166elsetchom 17988 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑋))‘𝑤)) ↔ ((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑤)))
168163, 167mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑤))
169 fcompt 7066 . . . . . 6 (((((𝐹𝑁𝑋)‘𝐴)‘𝑤):((1st ‘((1st𝑌)‘𝑋))‘𝑤)⟶((1st𝐹)‘𝑤) ∧ ((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑤)) → ((((𝐹𝑁𝑋)‘𝐴)‘𝑤) ∘ ((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)) = (𝑘 ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑧) ↦ ((((𝐹𝑁𝑋)‘𝐴)‘𝑤)‘(((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)‘𝑘))))
170160, 168, 169syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((((𝐹𝑁𝑋)‘𝐴)‘𝑤) ∘ ((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)) = (𝑘 ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑧) ↦ ((((𝐹𝑁𝑋)‘𝐴)‘𝑤)‘(((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)‘𝑘))))
1711573ad2antr1 1189 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (((𝐹𝑁𝑋)‘𝐴)‘𝑧):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st𝐹)‘𝑧))
172 fcompt 7066 . . . . . 6 ((((𝑧(2nd𝐹)𝑤)‘):((1st𝐹)‘𝑧)⟶((1st𝐹)‘𝑤) ∧ (((𝐹𝑁𝑋)‘𝐴)‘𝑧):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st𝐹)‘𝑧)) → (((𝑧(2nd𝐹)𝑤)‘) ∘ (((𝐹𝑁𝑋)‘𝐴)‘𝑧)) = (𝑘 ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑧) ↦ (((𝑧(2nd𝐹)𝑤)‘)‘((((𝐹𝑁𝑋)‘𝐴)‘𝑧)‘𝑘))))
173119, 171, 172syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (((𝑧(2nd𝐹)𝑤)‘) ∘ (((𝐹𝑁𝑋)‘𝐴)‘𝑧)) = (𝑘 ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑧) ↦ (((𝑧(2nd𝐹)𝑤)‘)‘((((𝐹𝑁𝑋)‘𝐴)‘𝑧)‘𝑘))))
174144, 170, 1733eqtr4d 2776 . . . 4 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((((𝐹𝑁𝑋)‘𝐴)‘𝑤) ∘ ((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)) = (((𝑧(2nd𝐹)𝑤)‘) ∘ (((𝐹𝑁𝑋)‘𝐴)‘𝑧)))
1755, 102, 88, 164, 166, 108, 168, 160setcco 17990 . . . 4 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((((𝐹𝑁𝑋)‘𝐴)‘𝑤)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑧), ((1st ‘((1st𝑌)‘𝑋))‘𝑤)⟩(comp‘𝑆)((1st𝐹)‘𝑤))((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)) = ((((𝐹𝑁𝑋)‘𝐴)‘𝑤) ∘ ((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)))
1765, 102, 88, 164, 105, 108, 171, 119setcco 17990 . . . 4 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (((𝑧(2nd𝐹)𝑤)‘)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑧), ((1st𝐹)‘𝑧)⟩(comp‘𝑆)((1st𝐹)‘𝑤))(((𝐹𝑁𝑋)‘𝐴)‘𝑧)) = (((𝑧(2nd𝐹)𝑤)‘) ∘ (((𝐹𝑁𝑋)‘𝐴)‘𝑧)))
177174, 175, 1763eqtr4d 2776 . . 3 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((((𝐹𝑁𝑋)‘𝐴)‘𝑤)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑧), ((1st ‘((1st𝑌)‘𝑋))‘𝑤)⟩(comp‘𝑆)((1st𝐹)‘𝑤))((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)) = (((𝑧(2nd𝐹)𝑤)‘)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑧), ((1st𝐹)‘𝑧)⟩(comp‘𝑆)((1st𝐹)‘𝑤))(((𝐹𝑁𝑋)‘𝐴)‘𝑧)))
178177ralrimivvva 3178 . 2 (𝜑 → ∀𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤)((((𝐹𝑁𝑋)‘𝐴)‘𝑤)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑧), ((1st ‘((1st𝑌)‘𝑋))‘𝑤)⟩(comp‘𝑆)((1st𝐹)‘𝑤))((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)) = (((𝑧(2nd𝐹)𝑤)‘)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑧), ((1st𝐹)‘𝑧)⟩(comp‘𝑆)((1st𝐹)‘𝑤))(((𝐹𝑁𝑋)‘𝐴)‘𝑧)))
179 eqid 2731 . . 3 (𝑂 Nat 𝑆) = (𝑂 Nat 𝑆)
180179, 28, 29, 30, 88, 66, 16isnat2 17858 . 2 (𝜑 → (((𝐹𝑁𝑋)‘𝐴) ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↔ (((𝐹𝑁𝑋)‘𝐴) ∈ X𝑧𝐵 (((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑧)) ∧ ∀𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤)((((𝐹𝑁𝑋)‘𝐴)‘𝑤)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑧), ((1st ‘((1st𝑌)‘𝑋))‘𝑤)⟩(comp‘𝑆)((1st𝐹)‘𝑤))((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)) = (((𝑧(2nd𝐹)𝑤)‘)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑧), ((1st𝐹)‘𝑧)⟩(comp‘𝑆)((1st𝐹)‘𝑤))(((𝐹𝑁𝑋)‘𝐴)‘𝑧)))))
18180, 178, 180mpbir2and 713 1 (𝜑 → ((𝐹𝑁𝑋)‘𝐴) ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cun 3895  wss 3897  cop 4579   class class class wbr 5089  cmpt 5170  ran crn 5615  ccom 5618  Rel wrel 5619  wf 6477  cfv 6481  (class class class)co 7346  cmpo 7348  1st c1st 7919  2nd c2nd 7920  tpos ctpos 8155  Xcixp 8821  Basecbs 17120  Hom chom 17172  compcco 17173  Catccat 17570  Idccid 17571  Homf chomf 17572  oppCatcoppc 17617   Func cfunc 17761  func ccofu 17763   Nat cnat 17851   FuncCat cfuc 17852  SetCatcsetc 17982   ×c cxpc 18074   1stF c1stf 18075   2ndF c2ndf 18076   ⟨,⟩F cprf 18077   evalF cevlf 18115  HomFchof 18154  Yoncyon 18155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-hom 17185  df-cco 17186  df-cat 17574  df-cid 17575  df-homf 17576  df-comf 17577  df-oppc 17618  df-func 17765  df-nat 17853  df-fuc 17854  df-setc 17983  df-xpc 18078  df-curf 18120  df-hof 18156  df-yon 18157
This theorem is referenced by:  yonedainv  18187
  Copyright terms: Public domain W3C validator