MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscau Structured version   Visualization version   GIF version

Theorem iscau 24792
Description: Express the property "𝐹 is a Cauchy sequence of metric 𝐷". Part of Definition 1.4-3 of [Kreyszig] p. 28. The condition 𝐹 βŠ† (β„‚ Γ— 𝑋) allows to use objects more general than sequences when convenient; see the comment in df-lm 22732. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 14-Nov-2013.)
Assertion
Ref Expression
iscau (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (𝐹 ∈ (Cauβ€˜π·) ↔ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘˜ ∈ β„€ (𝐹 β†Ύ (β„€β‰₯β€˜π‘˜)):(β„€β‰₯β€˜π‘˜)⟢((πΉβ€˜π‘˜)(ballβ€˜π·)π‘₯))))
Distinct variable groups:   π‘₯,π‘˜,𝐷   π‘˜,𝐹,π‘₯   π‘˜,𝑋,π‘₯

Proof of Theorem iscau
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 caufval 24791 . . 3 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (Cauβ€˜π·) = {𝑓 ∈ (𝑋 ↑pm β„‚) ∣ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘˜ ∈ β„€ (𝑓 β†Ύ (β„€β‰₯β€˜π‘˜)):(β„€β‰₯β€˜π‘˜)⟢((π‘“β€˜π‘˜)(ballβ€˜π·)π‘₯)})
21eleq2d 2819 . 2 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (𝐹 ∈ (Cauβ€˜π·) ↔ 𝐹 ∈ {𝑓 ∈ (𝑋 ↑pm β„‚) ∣ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘˜ ∈ β„€ (𝑓 β†Ύ (β„€β‰₯β€˜π‘˜)):(β„€β‰₯β€˜π‘˜)⟢((π‘“β€˜π‘˜)(ballβ€˜π·)π‘₯)}))
3 reseq1 5975 . . . . . 6 (𝑓 = 𝐹 β†’ (𝑓 β†Ύ (β„€β‰₯β€˜π‘˜)) = (𝐹 β†Ύ (β„€β‰₯β€˜π‘˜)))
4 eqidd 2733 . . . . . 6 (𝑓 = 𝐹 β†’ (β„€β‰₯β€˜π‘˜) = (β„€β‰₯β€˜π‘˜))
5 fveq1 6890 . . . . . . 7 (𝑓 = 𝐹 β†’ (π‘“β€˜π‘˜) = (πΉβ€˜π‘˜))
65oveq1d 7423 . . . . . 6 (𝑓 = 𝐹 β†’ ((π‘“β€˜π‘˜)(ballβ€˜π·)π‘₯) = ((πΉβ€˜π‘˜)(ballβ€˜π·)π‘₯))
73, 4, 6feq123d 6706 . . . . 5 (𝑓 = 𝐹 β†’ ((𝑓 β†Ύ (β„€β‰₯β€˜π‘˜)):(β„€β‰₯β€˜π‘˜)⟢((π‘“β€˜π‘˜)(ballβ€˜π·)π‘₯) ↔ (𝐹 β†Ύ (β„€β‰₯β€˜π‘˜)):(β„€β‰₯β€˜π‘˜)⟢((πΉβ€˜π‘˜)(ballβ€˜π·)π‘₯)))
87rexbidv 3178 . . . 4 (𝑓 = 𝐹 β†’ (βˆƒπ‘˜ ∈ β„€ (𝑓 β†Ύ (β„€β‰₯β€˜π‘˜)):(β„€β‰₯β€˜π‘˜)⟢((π‘“β€˜π‘˜)(ballβ€˜π·)π‘₯) ↔ βˆƒπ‘˜ ∈ β„€ (𝐹 β†Ύ (β„€β‰₯β€˜π‘˜)):(β„€β‰₯β€˜π‘˜)⟢((πΉβ€˜π‘˜)(ballβ€˜π·)π‘₯)))
98ralbidv 3177 . . 3 (𝑓 = 𝐹 β†’ (βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘˜ ∈ β„€ (𝑓 β†Ύ (β„€β‰₯β€˜π‘˜)):(β„€β‰₯β€˜π‘˜)⟢((π‘“β€˜π‘˜)(ballβ€˜π·)π‘₯) ↔ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘˜ ∈ β„€ (𝐹 β†Ύ (β„€β‰₯β€˜π‘˜)):(β„€β‰₯β€˜π‘˜)⟢((πΉβ€˜π‘˜)(ballβ€˜π·)π‘₯)))
109elrab 3683 . 2 (𝐹 ∈ {𝑓 ∈ (𝑋 ↑pm β„‚) ∣ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘˜ ∈ β„€ (𝑓 β†Ύ (β„€β‰₯β€˜π‘˜)):(β„€β‰₯β€˜π‘˜)⟢((π‘“β€˜π‘˜)(ballβ€˜π·)π‘₯)} ↔ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘˜ ∈ β„€ (𝐹 β†Ύ (β„€β‰₯β€˜π‘˜)):(β„€β‰₯β€˜π‘˜)⟢((πΉβ€˜π‘˜)(ballβ€˜π·)π‘₯)))
112, 10bitrdi 286 1 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (𝐹 ∈ (Cauβ€˜π·) ↔ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘˜ ∈ β„€ (𝐹 β†Ύ (β„€β‰₯β€˜π‘˜)):(β„€β‰₯β€˜π‘˜)⟢((πΉβ€˜π‘˜)(ballβ€˜π·)π‘₯))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070  {crab 3432   β†Ύ cres 5678  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7408   ↑pm cpm 8820  β„‚cc 11107  β„€cz 12557  β„€β‰₯cuz 12821  β„+crp 12973  βˆžMetcxmet 20928  ballcbl 20930  Cauccau 24769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-map 8821  df-xr 11251  df-xmet 20936  df-cau 24772
This theorem is referenced by:  iscau2  24793  caufpm  24798  lmcau  24829
  Copyright terms: Public domain W3C validator