| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscau | Structured version Visualization version GIF version | ||
| Description: Express the property "𝐹 is a Cauchy sequence of metric 𝐷". Part of Definition 1.4-3 of [Kreyszig] p. 28. The condition 𝐹 ⊆ (ℂ × 𝑋) allows to use objects more general than sequences when convenient; see the comment in df-lm 23139. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 14-Nov-2013.) |
| Ref | Expression |
|---|---|
| iscau | ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑘 ∈ ℤ (𝐹 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝐹‘𝑘)(ball‘𝐷)𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caufval 25197 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (Cau‘𝐷) = {𝑓 ∈ (𝑋 ↑pm ℂ) ∣ ∀𝑥 ∈ ℝ+ ∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝑓‘𝑘)(ball‘𝐷)𝑥)}) | |
| 2 | 1 | eleq2d 2817 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ {𝑓 ∈ (𝑋 ↑pm ℂ) ∣ ∀𝑥 ∈ ℝ+ ∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝑓‘𝑘)(ball‘𝐷)𝑥)})) |
| 3 | reseq1 5917 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓 ↾ (ℤ≥‘𝑘)) = (𝐹 ↾ (ℤ≥‘𝑘))) | |
| 4 | eqidd 2732 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (ℤ≥‘𝑘) = (ℤ≥‘𝑘)) | |
| 5 | fveq1 6816 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑘) = (𝐹‘𝑘)) | |
| 6 | 5 | oveq1d 7356 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((𝑓‘𝑘)(ball‘𝐷)𝑥) = ((𝐹‘𝑘)(ball‘𝐷)𝑥)) |
| 7 | 3, 4, 6 | feq123d 6635 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑓 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝑓‘𝑘)(ball‘𝐷)𝑥) ↔ (𝐹 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝐹‘𝑘)(ball‘𝐷)𝑥))) |
| 8 | 7 | rexbidv 3156 | . . . 4 ⊢ (𝑓 = 𝐹 → (∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝑓‘𝑘)(ball‘𝐷)𝑥) ↔ ∃𝑘 ∈ ℤ (𝐹 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝐹‘𝑘)(ball‘𝐷)𝑥))) |
| 9 | 8 | ralbidv 3155 | . . 3 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ ℝ+ ∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝑓‘𝑘)(ball‘𝐷)𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑘 ∈ ℤ (𝐹 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝐹‘𝑘)(ball‘𝐷)𝑥))) |
| 10 | 9 | elrab 3642 | . 2 ⊢ (𝐹 ∈ {𝑓 ∈ (𝑋 ↑pm ℂ) ∣ ∀𝑥 ∈ ℝ+ ∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝑓‘𝑘)(ball‘𝐷)𝑥)} ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑘 ∈ ℤ (𝐹 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝐹‘𝑘)(ball‘𝐷)𝑥))) |
| 11 | 2, 10 | bitrdi 287 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑘 ∈ ℤ (𝐹 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝐹‘𝑘)(ball‘𝐷)𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 {crab 3395 ↾ cres 5613 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 ↑pm cpm 8746 ℂcc 10999 ℤcz 12463 ℤ≥cuz 12727 ℝ+crp 12885 ∞Metcxmet 21271 ballcbl 21273 Cauccau 25175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-map 8747 df-xr 11145 df-xmet 21279 df-cau 25178 |
| This theorem is referenced by: iscau2 25199 caufpm 25204 lmcau 25235 |
| Copyright terms: Public domain | W3C validator |