MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscau Structured version   Visualization version   GIF version

Theorem iscau 23871
Description: Express the property "𝐹 is a Cauchy sequence of metric 𝐷". Part of Definition 1.4-3 of [Kreyszig] p. 28. The condition 𝐹 ⊆ (ℂ × 𝑋) allows us to use objects more general than sequences when convenient; see the comment in df-lm 21829. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 14-Nov-2013.)
Assertion
Ref Expression
iscau (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝐹𝑘)(ball‘𝐷)𝑥))))
Distinct variable groups:   𝑥,𝑘,𝐷   𝑘,𝐹,𝑥   𝑘,𝑋,𝑥

Proof of Theorem iscau
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 caufval 23870 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (Cau‘𝐷) = {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑥)})
21eleq2d 2896 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑥)}))
3 reseq1 5840 . . . . . 6 (𝑓 = 𝐹 → (𝑓 ↾ (ℤ𝑘)) = (𝐹 ↾ (ℤ𝑘)))
4 eqidd 2820 . . . . . 6 (𝑓 = 𝐹 → (ℤ𝑘) = (ℤ𝑘))
5 fveq1 6662 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝑘) = (𝐹𝑘))
65oveq1d 7163 . . . . . 6 (𝑓 = 𝐹 → ((𝑓𝑘)(ball‘𝐷)𝑥) = ((𝐹𝑘)(ball‘𝐷)𝑥))
73, 4, 6feq123d 6496 . . . . 5 (𝑓 = 𝐹 → ((𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑥) ↔ (𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝐹𝑘)(ball‘𝐷)𝑥)))
87rexbidv 3295 . . . 4 (𝑓 = 𝐹 → (∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑥) ↔ ∃𝑘 ∈ ℤ (𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝐹𝑘)(ball‘𝐷)𝑥)))
98ralbidv 3195 . . 3 (𝑓 = 𝐹 → (∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑥) ↔ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝐹𝑘)(ball‘𝐷)𝑥)))
109elrab 3678 . 2 (𝐹 ∈ {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑥)} ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝐹𝑘)(ball‘𝐷)𝑥)))
112, 10syl6bb 289 1 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝐹𝑘)(ball‘𝐷)𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wcel 2108  wral 3136  wrex 3137  {crab 3140  cres 5550  wf 6344  cfv 6348  (class class class)co 7148  pm cpm 8399  cc 10527  cz 11973  cuz 12235  +crp 12381  ∞Metcxmet 20522  ballcbl 20524  Cauccau 23848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-map 8400  df-xr 10671  df-xmet 20530  df-cau 23851
This theorem is referenced by:  iscau2  23872  caufpm  23877  lmcau  23908
  Copyright terms: Public domain W3C validator