Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iscau | Structured version Visualization version GIF version |
Description: Express the property "𝐹 is a Cauchy sequence of metric 𝐷". Part of Definition 1.4-3 of [Kreyszig] p. 28. The condition 𝐹 ⊆ (ℂ × 𝑋) allows us to use objects more general than sequences when convenient; see the comment in df-lm 22288. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 14-Nov-2013.) |
Ref | Expression |
---|---|
iscau | ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑘 ∈ ℤ (𝐹 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝐹‘𝑘)(ball‘𝐷)𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caufval 24344 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (Cau‘𝐷) = {𝑓 ∈ (𝑋 ↑pm ℂ) ∣ ∀𝑥 ∈ ℝ+ ∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝑓‘𝑘)(ball‘𝐷)𝑥)}) | |
2 | 1 | eleq2d 2824 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ {𝑓 ∈ (𝑋 ↑pm ℂ) ∣ ∀𝑥 ∈ ℝ+ ∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝑓‘𝑘)(ball‘𝐷)𝑥)})) |
3 | reseq1 5874 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓 ↾ (ℤ≥‘𝑘)) = (𝐹 ↾ (ℤ≥‘𝑘))) | |
4 | eqidd 2739 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (ℤ≥‘𝑘) = (ℤ≥‘𝑘)) | |
5 | fveq1 6755 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑘) = (𝐹‘𝑘)) | |
6 | 5 | oveq1d 7270 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((𝑓‘𝑘)(ball‘𝐷)𝑥) = ((𝐹‘𝑘)(ball‘𝐷)𝑥)) |
7 | 3, 4, 6 | feq123d 6573 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑓 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝑓‘𝑘)(ball‘𝐷)𝑥) ↔ (𝐹 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝐹‘𝑘)(ball‘𝐷)𝑥))) |
8 | 7 | rexbidv 3225 | . . . 4 ⊢ (𝑓 = 𝐹 → (∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝑓‘𝑘)(ball‘𝐷)𝑥) ↔ ∃𝑘 ∈ ℤ (𝐹 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝐹‘𝑘)(ball‘𝐷)𝑥))) |
9 | 8 | ralbidv 3120 | . . 3 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ ℝ+ ∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝑓‘𝑘)(ball‘𝐷)𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑘 ∈ ℤ (𝐹 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝐹‘𝑘)(ball‘𝐷)𝑥))) |
10 | 9 | elrab 3617 | . 2 ⊢ (𝐹 ∈ {𝑓 ∈ (𝑋 ↑pm ℂ) ∣ ∀𝑥 ∈ ℝ+ ∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝑓‘𝑘)(ball‘𝐷)𝑥)} ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑘 ∈ ℤ (𝐹 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝐹‘𝑘)(ball‘𝐷)𝑥))) |
11 | 2, 10 | bitrdi 286 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑘 ∈ ℤ (𝐹 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝐹‘𝑘)(ball‘𝐷)𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 {crab 3067 ↾ cres 5582 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑pm cpm 8574 ℂcc 10800 ℤcz 12249 ℤ≥cuz 12511 ℝ+crp 12659 ∞Metcxmet 20495 ballcbl 20497 Cauccau 24322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-xr 10944 df-xmet 20503 df-cau 24325 |
This theorem is referenced by: iscau2 24346 caufpm 24351 lmcau 24382 |
Copyright terms: Public domain | W3C validator |