![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscau | Structured version Visualization version GIF version |
Description: Express the property "πΉ is a Cauchy sequence of metric π·". Part of Definition 1.4-3 of [Kreyszig] p. 28. The condition πΉ β (β Γ π) allows to use objects more general than sequences when convenient; see the comment in df-lm 22732. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 14-Nov-2013.) |
Ref | Expression |
---|---|
iscau | β’ (π· β (βMetβπ) β (πΉ β (Cauβπ·) β (πΉ β (π βpm β) β§ βπ₯ β β+ βπ β β€ (πΉ βΎ (β€β₯βπ)):(β€β₯βπ)βΆ((πΉβπ)(ballβπ·)π₯)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caufval 24791 | . . 3 β’ (π· β (βMetβπ) β (Cauβπ·) = {π β (π βpm β) β£ βπ₯ β β+ βπ β β€ (π βΎ (β€β₯βπ)):(β€β₯βπ)βΆ((πβπ)(ballβπ·)π₯)}) | |
2 | 1 | eleq2d 2819 | . 2 β’ (π· β (βMetβπ) β (πΉ β (Cauβπ·) β πΉ β {π β (π βpm β) β£ βπ₯ β β+ βπ β β€ (π βΎ (β€β₯βπ)):(β€β₯βπ)βΆ((πβπ)(ballβπ·)π₯)})) |
3 | reseq1 5975 | . . . . . 6 β’ (π = πΉ β (π βΎ (β€β₯βπ)) = (πΉ βΎ (β€β₯βπ))) | |
4 | eqidd 2733 | . . . . . 6 β’ (π = πΉ β (β€β₯βπ) = (β€β₯βπ)) | |
5 | fveq1 6890 | . . . . . . 7 β’ (π = πΉ β (πβπ) = (πΉβπ)) | |
6 | 5 | oveq1d 7423 | . . . . . 6 β’ (π = πΉ β ((πβπ)(ballβπ·)π₯) = ((πΉβπ)(ballβπ·)π₯)) |
7 | 3, 4, 6 | feq123d 6706 | . . . . 5 β’ (π = πΉ β ((π βΎ (β€β₯βπ)):(β€β₯βπ)βΆ((πβπ)(ballβπ·)π₯) β (πΉ βΎ (β€β₯βπ)):(β€β₯βπ)βΆ((πΉβπ)(ballβπ·)π₯))) |
8 | 7 | rexbidv 3178 | . . . 4 β’ (π = πΉ β (βπ β β€ (π βΎ (β€β₯βπ)):(β€β₯βπ)βΆ((πβπ)(ballβπ·)π₯) β βπ β β€ (πΉ βΎ (β€β₯βπ)):(β€β₯βπ)βΆ((πΉβπ)(ballβπ·)π₯))) |
9 | 8 | ralbidv 3177 | . . 3 β’ (π = πΉ β (βπ₯ β β+ βπ β β€ (π βΎ (β€β₯βπ)):(β€β₯βπ)βΆ((πβπ)(ballβπ·)π₯) β βπ₯ β β+ βπ β β€ (πΉ βΎ (β€β₯βπ)):(β€β₯βπ)βΆ((πΉβπ)(ballβπ·)π₯))) |
10 | 9 | elrab 3683 | . 2 β’ (πΉ β {π β (π βpm β) β£ βπ₯ β β+ βπ β β€ (π βΎ (β€β₯βπ)):(β€β₯βπ)βΆ((πβπ)(ballβπ·)π₯)} β (πΉ β (π βpm β) β§ βπ₯ β β+ βπ β β€ (πΉ βΎ (β€β₯βπ)):(β€β₯βπ)βΆ((πΉβπ)(ballβπ·)π₯))) |
11 | 2, 10 | bitrdi 286 | 1 β’ (π· β (βMetβπ) β (πΉ β (Cauβπ·) β (πΉ β (π βpm β) β§ βπ₯ β β+ βπ β β€ (πΉ βΎ (β€β₯βπ)):(β€β₯βπ)βΆ((πΉβπ)(ballβπ·)π₯)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 βwrex 3070 {crab 3432 βΎ cres 5678 βΆwf 6539 βcfv 6543 (class class class)co 7408 βpm cpm 8820 βcc 11107 β€cz 12557 β€β₯cuz 12821 β+crp 12973 βMetcxmet 20928 ballcbl 20930 Cauccau 24769 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-map 8821 df-xr 11251 df-xmet 20936 df-cau 24772 |
This theorem is referenced by: iscau2 24793 caufpm 24798 lmcau 24829 |
Copyright terms: Public domain | W3C validator |