|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > fieq0 | Structured version Visualization version GIF version | ||
| Description: A set is empty iff the class of all the finite intersections of that set is empty. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.) | 
| Ref | Expression | 
|---|---|
| fieq0 | ⊢ (𝐴 ∈ 𝑉 → (𝐴 = ∅ ↔ (fi‘𝐴) = ∅)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fveq2 6905 | . . 3 ⊢ (𝐴 = ∅ → (fi‘𝐴) = (fi‘∅)) | |
| 2 | fi0 9461 | . . 3 ⊢ (fi‘∅) = ∅ | |
| 3 | 1, 2 | eqtrdi 2792 | . 2 ⊢ (𝐴 = ∅ → (fi‘𝐴) = ∅) | 
| 4 | ssfii 9460 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (fi‘𝐴)) | |
| 5 | sseq0 4402 | . . . 4 ⊢ ((𝐴 ⊆ (fi‘𝐴) ∧ (fi‘𝐴) = ∅) → 𝐴 = ∅) | |
| 6 | 4, 5 | sylan 580 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (fi‘𝐴) = ∅) → 𝐴 = ∅) | 
| 7 | 6 | ex 412 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((fi‘𝐴) = ∅ → 𝐴 = ∅)) | 
| 8 | 3, 7 | impbid2 226 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 = ∅ ↔ (fi‘𝐴) = ∅)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ⊆ wss 3950 ∅c0 4332 ‘cfv 6560 ficfi 9451 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-om 7889 df-1o 8507 df-en 8987 df-fin 8990 df-fi 9452 | 
| This theorem is referenced by: fsubbas 23876 | 
| Copyright terms: Public domain | W3C validator |