![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fieq0 | Structured version Visualization version GIF version |
Description: If 𝐴 is not empty, the class of all the finite intersections of 𝐴 is not empty either. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.) |
Ref | Expression |
---|---|
fieq0 | ⊢ (𝐴 ∈ 𝑉 → (𝐴 = ∅ ↔ (fi‘𝐴) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6446 | . . 3 ⊢ (𝐴 = ∅ → (fi‘𝐴) = (fi‘∅)) | |
2 | fi0 8614 | . . 3 ⊢ (fi‘∅) = ∅ | |
3 | 1, 2 | syl6eq 2830 | . 2 ⊢ (𝐴 = ∅ → (fi‘𝐴) = ∅) |
4 | ssfii 8613 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (fi‘𝐴)) | |
5 | sseq0 4201 | . . . 4 ⊢ ((𝐴 ⊆ (fi‘𝐴) ∧ (fi‘𝐴) = ∅) → 𝐴 = ∅) | |
6 | 4, 5 | sylan 575 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (fi‘𝐴) = ∅) → 𝐴 = ∅) |
7 | 6 | ex 403 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((fi‘𝐴) = ∅ → 𝐴 = ∅)) |
8 | 3, 7 | impbid2 218 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 = ∅ ↔ (fi‘𝐴) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1601 ∈ wcel 2107 ⊆ wss 3792 ∅c0 4141 ‘cfv 6135 ficfi 8604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-om 7344 df-1o 7843 df-en 8242 df-fin 8245 df-fi 8605 |
This theorem is referenced by: fsubbas 22079 |
Copyright terms: Public domain | W3C validator |