MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fieq0 Structured version   Visualization version   GIF version

Theorem fieq0 9141
Description: A set is empty iff the class of all the finite intersections of that set is empty. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fieq0 (𝐴𝑉 → (𝐴 = ∅ ↔ (fi‘𝐴) = ∅))

Proof of Theorem fieq0
StepHypRef Expression
1 fveq2 6768 . . 3 (𝐴 = ∅ → (fi‘𝐴) = (fi‘∅))
2 fi0 9140 . . 3 (fi‘∅) = ∅
31, 2eqtrdi 2795 . 2 (𝐴 = ∅ → (fi‘𝐴) = ∅)
4 ssfii 9139 . . . 4 (𝐴𝑉𝐴 ⊆ (fi‘𝐴))
5 sseq0 4338 . . . 4 ((𝐴 ⊆ (fi‘𝐴) ∧ (fi‘𝐴) = ∅) → 𝐴 = ∅)
64, 5sylan 579 . . 3 ((𝐴𝑉 ∧ (fi‘𝐴) = ∅) → 𝐴 = ∅)
76ex 412 . 2 (𝐴𝑉 → ((fi‘𝐴) = ∅ → 𝐴 = ∅))
83, 7impbid2 225 1 (𝐴𝑉 → (𝐴 = ∅ ↔ (fi‘𝐴) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wcel 2109  wss 3891  c0 4261  cfv 6430  ficfi 9130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-om 7701  df-1o 8281  df-en 8708  df-fin 8711  df-fi 9131
This theorem is referenced by:  fsubbas  22999
  Copyright terms: Public domain W3C validator