Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtno Structured version   Visualization version   GIF version

Theorem fmtno 44981
Description: The 𝑁 th Fermat number. (Contributed by AV, 13-Jun-2021.)
Assertion
Ref Expression
fmtno (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))

Proof of Theorem fmtno
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 df-fmtno 44980 . 2 FermatNo = (𝑛 ∈ ℕ0 ↦ ((2↑(2↑𝑛)) + 1))
2 oveq2 7283 . . . 4 (𝑛 = 𝑁 → (2↑𝑛) = (2↑𝑁))
32oveq2d 7291 . . 3 (𝑛 = 𝑁 → (2↑(2↑𝑛)) = (2↑(2↑𝑁)))
43oveq1d 7290 . 2 (𝑛 = 𝑁 → ((2↑(2↑𝑛)) + 1) = ((2↑(2↑𝑁)) + 1))
5 id 22 . 2 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
6 ovexd 7310 . 2 (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ V)
71, 4, 5, 6fvmptd3 6898 1 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  cfv 6433  (class class class)co 7275  1c1 10872   + caddc 10874  2c2 12028  0cn0 12233  cexp 13782  FermatNocfmtno 44979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-fmtno 44980
This theorem is referenced by:  fmtnoge3  44982  fmtnom1nn  44984  fmtnoodd  44985  fmtnof1  44987  fmtnorec1  44989  fmtnosqrt  44991  fmtno0  44992  fmtno1  44993  fmtnorec2lem  44994  fmtnorec3  45000  fmtnorec4  45001  fmtno2  45002  fmtno3  45003  fmtno4  45004  fmtnoprmfac1lem  45016  fmtno4prm  45027  2pwp1prmfmtno  45042
  Copyright terms: Public domain W3C validator