| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno | Structured version Visualization version GIF version | ||
| Description: The 𝑁 th Fermat number. (Contributed by AV, 13-Jun-2021.) |
| Ref | Expression |
|---|---|
| fmtno | ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fmtno 47533 | . 2 ⊢ FermatNo = (𝑛 ∈ ℕ0 ↦ ((2↑(2↑𝑛)) + 1)) | |
| 2 | oveq2 7398 | . . . 4 ⊢ (𝑛 = 𝑁 → (2↑𝑛) = (2↑𝑁)) | |
| 3 | 2 | oveq2d 7406 | . . 3 ⊢ (𝑛 = 𝑁 → (2↑(2↑𝑛)) = (2↑(2↑𝑁))) |
| 4 | 3 | oveq1d 7405 | . 2 ⊢ (𝑛 = 𝑁 → ((2↑(2↑𝑛)) + 1) = ((2↑(2↑𝑁)) + 1)) |
| 5 | id 22 | . 2 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0) | |
| 6 | ovexd 7425 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ V) | |
| 7 | 1, 4, 5, 6 | fvmptd3 6994 | 1 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ‘cfv 6514 (class class class)co 7390 1c1 11076 + caddc 11078 2c2 12248 ℕ0cn0 12449 ↑cexp 14033 FermatNocfmtno 47532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-fmtno 47533 |
| This theorem is referenced by: fmtnoge3 47535 fmtnom1nn 47537 fmtnoodd 47538 fmtnof1 47540 fmtnorec1 47542 fmtnosqrt 47544 fmtno0 47545 fmtno1 47546 fmtnorec2lem 47547 fmtnorec3 47553 fmtnorec4 47554 fmtno2 47555 fmtno3 47556 fmtno4 47557 fmtnoprmfac1lem 47569 fmtno4prm 47580 2pwp1prmfmtno 47595 |
| Copyright terms: Public domain | W3C validator |