Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno | Structured version Visualization version GIF version |
Description: The 𝑁 th Fermat number. (Contributed by AV, 13-Jun-2021.) |
Ref | Expression |
---|---|
fmtno | ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fmtno 44868 | . 2 ⊢ FermatNo = (𝑛 ∈ ℕ0 ↦ ((2↑(2↑𝑛)) + 1)) | |
2 | oveq2 7263 | . . . 4 ⊢ (𝑛 = 𝑁 → (2↑𝑛) = (2↑𝑁)) | |
3 | 2 | oveq2d 7271 | . . 3 ⊢ (𝑛 = 𝑁 → (2↑(2↑𝑛)) = (2↑(2↑𝑁))) |
4 | 3 | oveq1d 7270 | . 2 ⊢ (𝑛 = 𝑁 → ((2↑(2↑𝑛)) + 1) = ((2↑(2↑𝑁)) + 1)) |
5 | id 22 | . 2 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0) | |
6 | ovexd 7290 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ V) | |
7 | 1, 4, 5, 6 | fvmptd3 6880 | 1 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ‘cfv 6418 (class class class)co 7255 1c1 10803 + caddc 10805 2c2 11958 ℕ0cn0 12163 ↑cexp 13710 FermatNocfmtno 44867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-fmtno 44868 |
This theorem is referenced by: fmtnoge3 44870 fmtnom1nn 44872 fmtnoodd 44873 fmtnof1 44875 fmtnorec1 44877 fmtnosqrt 44879 fmtno0 44880 fmtno1 44881 fmtnorec2lem 44882 fmtnorec3 44888 fmtnorec4 44889 fmtno2 44890 fmtno3 44891 fmtno4 44892 fmtnoprmfac1lem 44904 fmtno4prm 44915 2pwp1prmfmtno 44930 |
Copyright terms: Public domain | W3C validator |