Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno | Structured version Visualization version GIF version |
Description: The 𝑁 th Fermat number. (Contributed by AV, 13-Jun-2021.) |
Ref | Expression |
---|---|
fmtno | ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fmtno 44980 | . 2 ⊢ FermatNo = (𝑛 ∈ ℕ0 ↦ ((2↑(2↑𝑛)) + 1)) | |
2 | oveq2 7283 | . . . 4 ⊢ (𝑛 = 𝑁 → (2↑𝑛) = (2↑𝑁)) | |
3 | 2 | oveq2d 7291 | . . 3 ⊢ (𝑛 = 𝑁 → (2↑(2↑𝑛)) = (2↑(2↑𝑁))) |
4 | 3 | oveq1d 7290 | . 2 ⊢ (𝑛 = 𝑁 → ((2↑(2↑𝑛)) + 1) = ((2↑(2↑𝑁)) + 1)) |
5 | id 22 | . 2 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0) | |
6 | ovexd 7310 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ V) | |
7 | 1, 4, 5, 6 | fvmptd3 6898 | 1 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ‘cfv 6433 (class class class)co 7275 1c1 10872 + caddc 10874 2c2 12028 ℕ0cn0 12233 ↑cexp 13782 FermatNocfmtno 44979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-fmtno 44980 |
This theorem is referenced by: fmtnoge3 44982 fmtnom1nn 44984 fmtnoodd 44985 fmtnof1 44987 fmtnorec1 44989 fmtnosqrt 44991 fmtno0 44992 fmtno1 44993 fmtnorec2lem 44994 fmtnorec3 45000 fmtnorec4 45001 fmtno2 45002 fmtno3 45003 fmtno4 45004 fmtnoprmfac1lem 45016 fmtno4prm 45027 2pwp1prmfmtno 45042 |
Copyright terms: Public domain | W3C validator |