| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno | Structured version Visualization version GIF version | ||
| Description: The 𝑁 th Fermat number. (Contributed by AV, 13-Jun-2021.) |
| Ref | Expression |
|---|---|
| fmtno | ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fmtno 47516 | . 2 ⊢ FermatNo = (𝑛 ∈ ℕ0 ↦ ((2↑(2↑𝑛)) + 1)) | |
| 2 | oveq2 7357 | . . . 4 ⊢ (𝑛 = 𝑁 → (2↑𝑛) = (2↑𝑁)) | |
| 3 | 2 | oveq2d 7365 | . . 3 ⊢ (𝑛 = 𝑁 → (2↑(2↑𝑛)) = (2↑(2↑𝑁))) |
| 4 | 3 | oveq1d 7364 | . 2 ⊢ (𝑛 = 𝑁 → ((2↑(2↑𝑛)) + 1) = ((2↑(2↑𝑁)) + 1)) |
| 5 | id 22 | . 2 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0) | |
| 6 | ovexd 7384 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ V) | |
| 7 | 1, 4, 5, 6 | fvmptd3 6953 | 1 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ‘cfv 6482 (class class class)co 7349 1c1 11010 + caddc 11012 2c2 12183 ℕ0cn0 12384 ↑cexp 13968 FermatNocfmtno 47515 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-fmtno 47516 |
| This theorem is referenced by: fmtnoge3 47518 fmtnom1nn 47520 fmtnoodd 47521 fmtnof1 47523 fmtnorec1 47525 fmtnosqrt 47527 fmtno0 47528 fmtno1 47529 fmtnorec2lem 47530 fmtnorec3 47536 fmtnorec4 47537 fmtno2 47538 fmtno3 47539 fmtno4 47540 fmtnoprmfac1lem 47552 fmtno4prm 47563 2pwp1prmfmtno 47578 |
| Copyright terms: Public domain | W3C validator |