| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno | Structured version Visualization version GIF version | ||
| Description: The 𝑁 th Fermat number. (Contributed by AV, 13-Jun-2021.) |
| Ref | Expression |
|---|---|
| fmtno | ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fmtno 47542 | . 2 ⊢ FermatNo = (𝑛 ∈ ℕ0 ↦ ((2↑(2↑𝑛)) + 1)) | |
| 2 | oveq2 7413 | . . . 4 ⊢ (𝑛 = 𝑁 → (2↑𝑛) = (2↑𝑁)) | |
| 3 | 2 | oveq2d 7421 | . . 3 ⊢ (𝑛 = 𝑁 → (2↑(2↑𝑛)) = (2↑(2↑𝑁))) |
| 4 | 3 | oveq1d 7420 | . 2 ⊢ (𝑛 = 𝑁 → ((2↑(2↑𝑛)) + 1) = ((2↑(2↑𝑁)) + 1)) |
| 5 | id 22 | . 2 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0) | |
| 6 | ovexd 7440 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ V) | |
| 7 | 1, 4, 5, 6 | fvmptd3 7009 | 1 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ‘cfv 6531 (class class class)co 7405 1c1 11130 + caddc 11132 2c2 12295 ℕ0cn0 12501 ↑cexp 14079 FermatNocfmtno 47541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-fmtno 47542 |
| This theorem is referenced by: fmtnoge3 47544 fmtnom1nn 47546 fmtnoodd 47547 fmtnof1 47549 fmtnorec1 47551 fmtnosqrt 47553 fmtno0 47554 fmtno1 47555 fmtnorec2lem 47556 fmtnorec3 47562 fmtnorec4 47563 fmtno2 47564 fmtno3 47565 fmtno4 47566 fmtnoprmfac1lem 47578 fmtno4prm 47589 2pwp1prmfmtno 47604 |
| Copyright terms: Public domain | W3C validator |