Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtno Structured version   Visualization version   GIF version

Theorem fmtno 44869
Description: The 𝑁 th Fermat number. (Contributed by AV, 13-Jun-2021.)
Assertion
Ref Expression
fmtno (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))

Proof of Theorem fmtno
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 df-fmtno 44868 . 2 FermatNo = (𝑛 ∈ ℕ0 ↦ ((2↑(2↑𝑛)) + 1))
2 oveq2 7263 . . . 4 (𝑛 = 𝑁 → (2↑𝑛) = (2↑𝑁))
32oveq2d 7271 . . 3 (𝑛 = 𝑁 → (2↑(2↑𝑛)) = (2↑(2↑𝑁)))
43oveq1d 7270 . 2 (𝑛 = 𝑁 → ((2↑(2↑𝑛)) + 1) = ((2↑(2↑𝑁)) + 1))
5 id 22 . 2 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
6 ovexd 7290 . 2 (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ V)
71, 4, 5, 6fvmptd3 6880 1 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  cfv 6418  (class class class)co 7255  1c1 10803   + caddc 10805  2c2 11958  0cn0 12163  cexp 13710  FermatNocfmtno 44867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-fmtno 44868
This theorem is referenced by:  fmtnoge3  44870  fmtnom1nn  44872  fmtnoodd  44873  fmtnof1  44875  fmtnorec1  44877  fmtnosqrt  44879  fmtno0  44880  fmtno1  44881  fmtnorec2lem  44882  fmtnorec3  44888  fmtnorec4  44889  fmtno2  44890  fmtno3  44891  fmtno4  44892  fmtnoprmfac1lem  44904  fmtno4prm  44915  2pwp1prmfmtno  44930
  Copyright terms: Public domain W3C validator