Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnoprmfac1lem Structured version   Visualization version   GIF version

Theorem fmtnoprmfac1lem 44985
Description: Lemma for fmtnoprmfac1 44986: The order of 2 modulo a prime that divides the n-th Fermat number is 2^(n+1). (Contributed by AV, 25-Jul-2021.) (Proof shortened by AV, 18-Mar-2022.)
Assertion
Ref Expression
fmtnoprmfac1lem ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))

Proof of Theorem fmtnoprmfac1lem
StepHypRef Expression
1 eldifi 4066 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
2 prmnn 16377 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
31, 2syl 17 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℕ)
43ad2antlr 724 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → 𝑃 ∈ ℕ)
5 nnnn0 12240 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
6 fmtno 44950 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))
75, 6syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))
87breq2d 5091 . . . . . . 7 (𝑁 ∈ ℕ → (𝑃 ∥ (FermatNo‘𝑁) ↔ 𝑃 ∥ ((2↑(2↑𝑁)) + 1)))
98adantr 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∥ (FermatNo‘𝑁) ↔ 𝑃 ∥ ((2↑(2↑𝑁)) + 1)))
109biimpa 477 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → 𝑃 ∥ ((2↑(2↑𝑁)) + 1))
11 dvdsmod0 15967 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑃 ∥ ((2↑(2↑𝑁)) + 1)) → (((2↑(2↑𝑁)) + 1) mod 𝑃) = 0)
124, 10, 11syl2anc 584 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → (((2↑(2↑𝑁)) + 1) mod 𝑃) = 0)
1312ex 413 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∥ (FermatNo‘𝑁) → (((2↑(2↑𝑁)) + 1) mod 𝑃) = 0))
14 2nn 12046 . . . . . . . . . 10 2 ∈ ℕ
1514a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → 2 ∈ ℕ)
16 2nn0 12250 . . . . . . . . . . 11 2 ∈ ℕ0
1716a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → 2 ∈ ℕ0)
1817, 5nn0expcld 13959 . . . . . . . . 9 (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℕ0)
1915, 18nnexpcld 13958 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑(2↑𝑁)) ∈ ℕ)
2019nnzd 12424 . . . . . . 7 (𝑁 ∈ ℕ → (2↑(2↑𝑁)) ∈ ℤ)
2120adantr 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2↑(2↑𝑁)) ∈ ℤ)
22 1zzd 12351 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 1 ∈ ℤ)
233adantl 482 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℕ)
24 summodnegmod 15994 . . . . . 6 (((2↑(2↑𝑁)) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 ↔ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)))
2521, 22, 23, 24syl3anc 1370 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 ↔ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)))
26 neg1z 12356 . . . . . . . . . 10 -1 ∈ ℤ
2721, 26jctir 521 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((2↑(2↑𝑁)) ∈ ℤ ∧ -1 ∈ ℤ))
2827adantr 481 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → ((2↑(2↑𝑁)) ∈ ℤ ∧ -1 ∈ ℤ))
292nnrpd 12769 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
301, 29syl 17 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℝ+)
3117, 30anim12i 613 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2 ∈ ℕ0𝑃 ∈ ℝ+))
3231adantr 481 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → (2 ∈ ℕ0𝑃 ∈ ℝ+))
33 simpr 485 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃))
34 modexp 13951 . . . . . . . 8 ((((2↑(2↑𝑁)) ∈ ℤ ∧ -1 ∈ ℤ) ∧ (2 ∈ ℕ0𝑃 ∈ ℝ+) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → (((2↑(2↑𝑁))↑2) mod 𝑃) = ((-1↑2) mod 𝑃))
3528, 32, 33, 34syl3anc 1370 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → (((2↑(2↑𝑁))↑2) mod 𝑃) = ((-1↑2) mod 𝑃))
3635ex 413 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃) → (((2↑(2↑𝑁))↑2) mod 𝑃) = ((-1↑2) mod 𝑃)))
37 2cnd 12051 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 2 ∈ ℂ)
3837, 18, 173jca 1127 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2 ∈ ℂ ∧ (2↑𝑁) ∈ ℕ0 ∧ 2 ∈ ℕ0))
3938adantr 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2 ∈ ℂ ∧ (2↑𝑁) ∈ ℕ0 ∧ 2 ∈ ℕ0))
40 expmul 13826 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ (2↑𝑁) ∈ ℕ0 ∧ 2 ∈ ℕ0) → (2↑((2↑𝑁) · 2)) = ((2↑(2↑𝑁))↑2))
4139, 40syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2↑((2↑𝑁) · 2)) = ((2↑(2↑𝑁))↑2))
42 2cnd 12051 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 2 ∈ ℂ)
435adantr 481 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑁 ∈ ℕ0)
4442, 43expp1d 13863 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2))
4544eqcomd 2746 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((2↑𝑁) · 2) = (2↑(𝑁 + 1)))
4645oveq2d 7287 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2↑((2↑𝑁) · 2)) = (2↑(2↑(𝑁 + 1))))
4741, 46eqtr3d 2782 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((2↑(2↑𝑁))↑2) = (2↑(2↑(𝑁 + 1))))
4847oveq1d 7286 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁))↑2) mod 𝑃) = ((2↑(2↑(𝑁 + 1))) mod 𝑃))
49 neg1sqe1 13911 . . . . . . . . . . 11 (-1↑2) = 1
5049a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (-1↑2) = 1)
5150oveq1d 7286 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((-1↑2) mod 𝑃) = (1 mod 𝑃))
523nnred 11988 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℝ)
53 prmgt1 16400 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 1 < 𝑃)
541, 53syl 17 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 1 < 𝑃)
55 1mod 13621 . . . . . . . . . . 11 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
5652, 54, 55syl2anc 584 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → (1 mod 𝑃) = 1)
5756adantl 482 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (1 mod 𝑃) = 1)
5851, 57eqtrd 2780 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((-1↑2) mod 𝑃) = 1)
5948, 58eqeq12d 2756 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((2↑(2↑𝑁))↑2) mod 𝑃) = ((-1↑2) mod 𝑃) ↔ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1))
60 simpll 764 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ (((2↑(2↑𝑁)) + 1) mod 𝑃) = 0) → (𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})))
6120adantr 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2↑(2↑𝑁)) ∈ ℤ)
62 1zzd 12351 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 1 ∈ ℤ)
632adantl 482 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℕ)
6461, 62, 633jca 1127 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((2↑(2↑𝑁)) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑃 ∈ ℕ))
651, 64sylan2 593 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((2↑(2↑𝑁)) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑃 ∈ ℕ))
6665adantr 481 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) → ((2↑(2↑𝑁)) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑃 ∈ ℕ))
6766, 24syl 17 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 ↔ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)))
68 m1modnnsub1 13635 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℕ → (-1 mod 𝑃) = (𝑃 − 1))
6923, 68syl 17 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (-1 mod 𝑃) = (𝑃 − 1))
70 eldifsni 4729 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ≠ 2)
7170adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ≠ 2)
7271necomd 3001 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 2 ≠ 𝑃)
733nncnd 11989 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℂ)
7473adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℂ)
75 1cnd 10971 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 1 ∈ ℂ)
7674, 75, 75subadd2d 11351 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝑃 − 1) = 1 ↔ (1 + 1) = 𝑃))
77 1p1e2 12098 . . . . . . . . . . . . . . . . . . . . 21 (1 + 1) = 2
7877eqeq1i 2745 . . . . . . . . . . . . . . . . . . . 20 ((1 + 1) = 𝑃 ↔ 2 = 𝑃)
7976, 78bitrdi 287 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝑃 − 1) = 1 ↔ 2 = 𝑃))
8079necon3bid 2990 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝑃 − 1) ≠ 1 ↔ 2 ≠ 𝑃))
8172, 80mpbird 256 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 − 1) ≠ 1)
8269, 81eqnetrd 3013 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (-1 mod 𝑃) ≠ 1)
8382adantr 481 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) → (-1 mod 𝑃) ≠ 1)
8483adantr 481 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → (-1 mod 𝑃) ≠ 1)
85 eqeq1 2744 . . . . . . . . . . . . . . . 16 (((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃) → (((2↑(2↑𝑁)) mod 𝑃) = 1 ↔ (-1 mod 𝑃) = 1))
8685adantl 482 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → (((2↑(2↑𝑁)) mod 𝑃) = 1 ↔ (-1 mod 𝑃) = 1))
8786necon3bid 2990 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 ↔ (-1 mod 𝑃) ≠ 1))
8884, 87mpbird 256 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → ((2↑(2↑𝑁)) mod 𝑃) ≠ 1)
8988ex 413 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) → (((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃) → ((2↑(2↑𝑁)) mod 𝑃) ≠ 1))
9067, 89sylbid 239 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((2↑(2↑𝑁)) mod 𝑃) ≠ 1))
9190imp 407 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ (((2↑(2↑𝑁)) + 1) mod 𝑃) = 0) → ((2↑(2↑𝑁)) mod 𝑃) ≠ 1)
92 simplr 766 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ (((2↑(2↑𝑁)) + 1) mod 𝑃) = 0) → ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1)
93 odz2prm2pw 44984 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
9460, 91, 92, 93syl12anc 834 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ (((2↑(2↑𝑁)) + 1) mod 𝑃) = 0) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
9594ex 413 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((od𝑃)‘2) = (2↑(𝑁 + 1))))
9695ex 413 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1 → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9759, 96sylbid 239 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((2↑(2↑𝑁))↑2) mod 𝑃) = ((-1↑2) mod 𝑃) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9836, 97syld 47 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9925, 98sylbid 239 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
10099pm2.43d 53 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((od𝑃)‘2) = (2↑(𝑁 + 1))))
10113, 100syld 47 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∥ (FermatNo‘𝑁) → ((od𝑃)‘2) = (2↑(𝑁 + 1))))
1021013impia 1116 1 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945  cdif 3889  {csn 4567   class class class wbr 5079  cfv 6432  (class class class)co 7271  cc 10870  cr 10871  0cc0 10872  1c1 10873   + caddc 10875   · cmul 10877   < clt 11010  cmin 11205  -cneg 11206  cn 11973  2c2 12028  0cn0 12233  cz 12319  +crp 12729   mod cmo 13587  cexp 13780  cdvds 15961  cprime 16374  odcodz 16462  FermatNocfmtno 44948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-oadd 8292  df-er 8481  df-map 8600  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-sup 9179  df-inf 9180  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12582  df-q 12688  df-rp 12730  df-fz 13239  df-fzo 13382  df-fl 13510  df-mod 13588  df-seq 13720  df-exp 13781  df-hash 14043  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-dvds 15962  df-gcd 16200  df-prm 16375  df-odz 16464  df-phi 16465  df-pc 16536  df-fmtno 44949
This theorem is referenced by:  fmtnoprmfac1  44986  fmtnoprmfac2  44988
  Copyright terms: Public domain W3C validator