Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnoprmfac1lem Structured version   Visualization version   GIF version

Theorem fmtnoprmfac1lem 47551
Description: Lemma for fmtnoprmfac1 47552: The order of 2 modulo a prime that divides the n-th Fermat number is 2^(n+1). (Contributed by AV, 25-Jul-2021.) (Proof shortened by AV, 18-Mar-2022.)
Assertion
Ref Expression
fmtnoprmfac1lem ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))

Proof of Theorem fmtnoprmfac1lem
StepHypRef Expression
1 eldifi 4131 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
2 prmnn 16711 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
31, 2syl 17 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℕ)
43ad2antlr 727 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → 𝑃 ∈ ℕ)
5 nnnn0 12533 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
6 fmtno 47516 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))
75, 6syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))
87breq2d 5155 . . . . . . 7 (𝑁 ∈ ℕ → (𝑃 ∥ (FermatNo‘𝑁) ↔ 𝑃 ∥ ((2↑(2↑𝑁)) + 1)))
98adantr 480 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∥ (FermatNo‘𝑁) ↔ 𝑃 ∥ ((2↑(2↑𝑁)) + 1)))
109biimpa 476 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → 𝑃 ∥ ((2↑(2↑𝑁)) + 1))
11 dvdsmod0 16296 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑃 ∥ ((2↑(2↑𝑁)) + 1)) → (((2↑(2↑𝑁)) + 1) mod 𝑃) = 0)
124, 10, 11syl2anc 584 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → (((2↑(2↑𝑁)) + 1) mod 𝑃) = 0)
1312ex 412 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∥ (FermatNo‘𝑁) → (((2↑(2↑𝑁)) + 1) mod 𝑃) = 0))
14 2nn 12339 . . . . . . . . . 10 2 ∈ ℕ
1514a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → 2 ∈ ℕ)
16 2nn0 12543 . . . . . . . . . . 11 2 ∈ ℕ0
1716a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → 2 ∈ ℕ0)
1817, 5nn0expcld 14285 . . . . . . . . 9 (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℕ0)
1915, 18nnexpcld 14284 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑(2↑𝑁)) ∈ ℕ)
2019nnzd 12640 . . . . . . 7 (𝑁 ∈ ℕ → (2↑(2↑𝑁)) ∈ ℤ)
2120adantr 480 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2↑(2↑𝑁)) ∈ ℤ)
22 1zzd 12648 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 1 ∈ ℤ)
233adantl 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℕ)
24 summodnegmod 16324 . . . . . 6 (((2↑(2↑𝑁)) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 ↔ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)))
2521, 22, 23, 24syl3anc 1373 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 ↔ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)))
26 neg1z 12653 . . . . . . . . . 10 -1 ∈ ℤ
2721, 26jctir 520 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((2↑(2↑𝑁)) ∈ ℤ ∧ -1 ∈ ℤ))
2827adantr 480 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → ((2↑(2↑𝑁)) ∈ ℤ ∧ -1 ∈ ℤ))
292nnrpd 13075 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
301, 29syl 17 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℝ+)
3117, 30anim12i 613 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2 ∈ ℕ0𝑃 ∈ ℝ+))
3231adantr 480 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → (2 ∈ ℕ0𝑃 ∈ ℝ+))
33 simpr 484 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃))
34 modexp 14277 . . . . . . . 8 ((((2↑(2↑𝑁)) ∈ ℤ ∧ -1 ∈ ℤ) ∧ (2 ∈ ℕ0𝑃 ∈ ℝ+) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → (((2↑(2↑𝑁))↑2) mod 𝑃) = ((-1↑2) mod 𝑃))
3528, 32, 33, 34syl3anc 1373 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → (((2↑(2↑𝑁))↑2) mod 𝑃) = ((-1↑2) mod 𝑃))
3635ex 412 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃) → (((2↑(2↑𝑁))↑2) mod 𝑃) = ((-1↑2) mod 𝑃)))
37 2cnd 12344 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 2 ∈ ℂ)
3837, 18, 173jca 1129 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2 ∈ ℂ ∧ (2↑𝑁) ∈ ℕ0 ∧ 2 ∈ ℕ0))
3938adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2 ∈ ℂ ∧ (2↑𝑁) ∈ ℕ0 ∧ 2 ∈ ℕ0))
40 expmul 14148 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ (2↑𝑁) ∈ ℕ0 ∧ 2 ∈ ℕ0) → (2↑((2↑𝑁) · 2)) = ((2↑(2↑𝑁))↑2))
4139, 40syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2↑((2↑𝑁) · 2)) = ((2↑(2↑𝑁))↑2))
42 2cnd 12344 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 2 ∈ ℂ)
435adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑁 ∈ ℕ0)
4442, 43expp1d 14187 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2))
4544eqcomd 2743 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((2↑𝑁) · 2) = (2↑(𝑁 + 1)))
4645oveq2d 7447 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2↑((2↑𝑁) · 2)) = (2↑(2↑(𝑁 + 1))))
4741, 46eqtr3d 2779 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((2↑(2↑𝑁))↑2) = (2↑(2↑(𝑁 + 1))))
4847oveq1d 7446 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁))↑2) mod 𝑃) = ((2↑(2↑(𝑁 + 1))) mod 𝑃))
49 neg1sqe1 14235 . . . . . . . . . . 11 (-1↑2) = 1
5049a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (-1↑2) = 1)
5150oveq1d 7446 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((-1↑2) mod 𝑃) = (1 mod 𝑃))
523nnred 12281 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℝ)
53 prmgt1 16734 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 1 < 𝑃)
541, 53syl 17 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 1 < 𝑃)
55 1mod 13943 . . . . . . . . . . 11 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
5652, 54, 55syl2anc 584 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → (1 mod 𝑃) = 1)
5756adantl 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (1 mod 𝑃) = 1)
5851, 57eqtrd 2777 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((-1↑2) mod 𝑃) = 1)
5948, 58eqeq12d 2753 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((2↑(2↑𝑁))↑2) mod 𝑃) = ((-1↑2) mod 𝑃) ↔ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1))
60 simpll 767 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ (((2↑(2↑𝑁)) + 1) mod 𝑃) = 0) → (𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})))
6120adantr 480 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2↑(2↑𝑁)) ∈ ℤ)
62 1zzd 12648 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 1 ∈ ℤ)
632adantl 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℕ)
6461, 62, 633jca 1129 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((2↑(2↑𝑁)) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑃 ∈ ℕ))
651, 64sylan2 593 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((2↑(2↑𝑁)) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑃 ∈ ℕ))
6665adantr 480 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) → ((2↑(2↑𝑁)) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑃 ∈ ℕ))
6766, 24syl 17 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 ↔ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)))
68 m1modnnsub1 13958 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℕ → (-1 mod 𝑃) = (𝑃 − 1))
6923, 68syl 17 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (-1 mod 𝑃) = (𝑃 − 1))
70 eldifsni 4790 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ≠ 2)
7170adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ≠ 2)
7271necomd 2996 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 2 ≠ 𝑃)
733nncnd 12282 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℂ)
7473adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℂ)
75 1cnd 11256 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 1 ∈ ℂ)
7674, 75, 75subadd2d 11639 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝑃 − 1) = 1 ↔ (1 + 1) = 𝑃))
77 1p1e2 12391 . . . . . . . . . . . . . . . . . . . . 21 (1 + 1) = 2
7877eqeq1i 2742 . . . . . . . . . . . . . . . . . . . 20 ((1 + 1) = 𝑃 ↔ 2 = 𝑃)
7976, 78bitrdi 287 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝑃 − 1) = 1 ↔ 2 = 𝑃))
8079necon3bid 2985 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝑃 − 1) ≠ 1 ↔ 2 ≠ 𝑃))
8172, 80mpbird 257 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 − 1) ≠ 1)
8269, 81eqnetrd 3008 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (-1 mod 𝑃) ≠ 1)
8382adantr 480 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) → (-1 mod 𝑃) ≠ 1)
8483adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → (-1 mod 𝑃) ≠ 1)
85 eqeq1 2741 . . . . . . . . . . . . . . . 16 (((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃) → (((2↑(2↑𝑁)) mod 𝑃) = 1 ↔ (-1 mod 𝑃) = 1))
8685adantl 481 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → (((2↑(2↑𝑁)) mod 𝑃) = 1 ↔ (-1 mod 𝑃) = 1))
8786necon3bid 2985 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 ↔ (-1 mod 𝑃) ≠ 1))
8884, 87mpbird 257 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → ((2↑(2↑𝑁)) mod 𝑃) ≠ 1)
8988ex 412 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) → (((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃) → ((2↑(2↑𝑁)) mod 𝑃) ≠ 1))
9067, 89sylbid 240 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((2↑(2↑𝑁)) mod 𝑃) ≠ 1))
9190imp 406 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ (((2↑(2↑𝑁)) + 1) mod 𝑃) = 0) → ((2↑(2↑𝑁)) mod 𝑃) ≠ 1)
92 simplr 769 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ (((2↑(2↑𝑁)) + 1) mod 𝑃) = 0) → ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1)
93 odz2prm2pw 47550 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
9460, 91, 92, 93syl12anc 837 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ (((2↑(2↑𝑁)) + 1) mod 𝑃) = 0) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
9594ex 412 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((od𝑃)‘2) = (2↑(𝑁 + 1))))
9695ex 412 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1 → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9759, 96sylbid 240 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((2↑(2↑𝑁))↑2) mod 𝑃) = ((-1↑2) mod 𝑃) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9836, 97syld 47 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9925, 98sylbid 240 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
10099pm2.43d 53 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((od𝑃)‘2) = (2↑(𝑁 + 1))))
10113, 100syld 47 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∥ (FermatNo‘𝑁) → ((od𝑃)‘2) = (2↑(𝑁 + 1))))
1021013impia 1118 1 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  cdif 3948  {csn 4626   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cmin 11492  -cneg 11493  cn 12266  2c2 12321  0cn0 12526  cz 12613  +crp 13034   mod cmo 13909  cexp 14102  cdvds 16290  cprime 16708  odcodz 16800  FermatNocfmtno 47514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-gcd 16532  df-prm 16709  df-odz 16802  df-phi 16803  df-pc 16875  df-fmtno 47515
This theorem is referenced by:  fmtnoprmfac1  47552  fmtnoprmfac2  47554
  Copyright terms: Public domain W3C validator