Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnosqrt Structured version   Visualization version   GIF version

Theorem fmtnosqrt 47524
Description: The floor of the square root of a Fermat number. (Contributed by AV, 28-Jul-2021.)
Assertion
Ref Expression
fmtnosqrt (𝑁 ∈ ℕ → (⌊‘(√‘(FermatNo‘𝑁))) = (2↑(2↑(𝑁 − 1))))

Proof of Theorem fmtnosqrt
StepHypRef Expression
1 nnnn0 12409 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 fmtno 47514 . . . . 5 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))
31, 2syl 17 . . . 4 (𝑁 ∈ ℕ → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))
43fveq2d 6830 . . 3 (𝑁 ∈ ℕ → (√‘(FermatNo‘𝑁)) = (√‘((2↑(2↑𝑁)) + 1)))
54fveq2d 6830 . 2 (𝑁 ∈ ℕ → (⌊‘(√‘(FermatNo‘𝑁))) = (⌊‘(√‘((2↑(2↑𝑁)) + 1))))
6 id 22 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
7 1nn0 12418 . . . . 5 1 ∈ ℕ0
87a1i 11 . . . 4 (𝑁 ∈ ℕ → 1 ∈ ℕ0)
9 2nn 12219 . . . . . . . 8 2 ∈ ℕ
109a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 2 ∈ ℕ)
11 2nn0 12419 . . . . . . . . . 10 2 ∈ ℕ0
1211a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → 2 ∈ ℕ0)
13 nnm1nn0 12443 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
1412, 13nn0expcld 14171 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑(𝑁 − 1)) ∈ ℕ0)
15 peano2nn0 12442 . . . . . . . 8 ((2↑(𝑁 − 1)) ∈ ℕ0 → ((2↑(𝑁 − 1)) + 1) ∈ ℕ0)
1614, 15syl 17 . . . . . . 7 (𝑁 ∈ ℕ → ((2↑(𝑁 − 1)) + 1) ∈ ℕ0)
1710, 16nnexpcld 14170 . . . . . 6 (𝑁 ∈ ℕ → (2↑((2↑(𝑁 − 1)) + 1)) ∈ ℕ)
18 nngt0 12177 . . . . . 6 ((2↑((2↑(𝑁 − 1)) + 1)) ∈ ℕ → 0 < (2↑((2↑(𝑁 − 1)) + 1)))
1917, 18syl 17 . . . . 5 (𝑁 ∈ ℕ → 0 < (2↑((2↑(𝑁 − 1)) + 1)))
2012, 16nn0expcld 14171 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑((2↑(𝑁 − 1)) + 1)) ∈ ℕ0)
2120nn0red 12464 . . . . . . 7 (𝑁 ∈ ℕ → (2↑((2↑(𝑁 − 1)) + 1)) ∈ ℝ)
22 1re 11134 . . . . . . . 8 1 ∈ ℝ
2322a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 1 ∈ ℝ)
2421, 23jca 511 . . . . . 6 (𝑁 ∈ ℕ → ((2↑((2↑(𝑁 − 1)) + 1)) ∈ ℝ ∧ 1 ∈ ℝ))
25 ltaddpos2 11629 . . . . . 6 (((2↑((2↑(𝑁 − 1)) + 1)) ∈ ℝ ∧ 1 ∈ ℝ) → (0 < (2↑((2↑(𝑁 − 1)) + 1)) ↔ 1 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)))
2624, 25syl 17 . . . . 5 (𝑁 ∈ ℕ → (0 < (2↑((2↑(𝑁 − 1)) + 1)) ↔ 1 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)))
2719, 26mpbid 232 . . . 4 (𝑁 ∈ ℕ → 1 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1))
286, 8, 273jca 1128 . . 3 (𝑁 ∈ ℕ → (𝑁 ∈ ℕ ∧ 1 ∈ ℕ0 ∧ 1 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)))
29 sqrtpwpw2p 47523 . . 3 ((𝑁 ∈ ℕ ∧ 1 ∈ ℕ0 ∧ 1 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → (⌊‘(√‘((2↑(2↑𝑁)) + 1))) = (2↑(2↑(𝑁 − 1))))
3028, 29syl 17 . 2 (𝑁 ∈ ℕ → (⌊‘(√‘((2↑(2↑𝑁)) + 1))) = (2↑(2↑(𝑁 − 1))))
315, 30eqtrd 2764 1 (𝑁 ∈ ℕ → (⌊‘(√‘(FermatNo‘𝑁))) = (2↑(2↑(𝑁 − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5095  cfv 6486  (class class class)co 7353  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   < clt 11168  cmin 11365  cn 12146  2c2 12201  0cn0 12402  cfl 13712  cexp 13986  csqrt 15158  FermatNocfmtno 47512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fl 13714  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-fmtno 47513
This theorem is referenced by:  fmtno4sqrt  47556
  Copyright terms: Public domain W3C validator