Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnosqrt Structured version   Visualization version   GIF version

Theorem fmtnosqrt 45703
Description: The floor of the square root of a Fermat number. (Contributed by AV, 28-Jul-2021.)
Assertion
Ref Expression
fmtnosqrt (𝑁 ∈ ℕ → (⌊‘(√‘(FermatNo‘𝑁))) = (2↑(2↑(𝑁 − 1))))

Proof of Theorem fmtnosqrt
StepHypRef Expression
1 nnnn0 12419 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 fmtno 45693 . . . . 5 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))
31, 2syl 17 . . . 4 (𝑁 ∈ ℕ → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))
43fveq2d 6846 . . 3 (𝑁 ∈ ℕ → (√‘(FermatNo‘𝑁)) = (√‘((2↑(2↑𝑁)) + 1)))
54fveq2d 6846 . 2 (𝑁 ∈ ℕ → (⌊‘(√‘(FermatNo‘𝑁))) = (⌊‘(√‘((2↑(2↑𝑁)) + 1))))
6 id 22 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
7 1nn0 12428 . . . . 5 1 ∈ ℕ0
87a1i 11 . . . 4 (𝑁 ∈ ℕ → 1 ∈ ℕ0)
9 2nn 12225 . . . . . . . 8 2 ∈ ℕ
109a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 2 ∈ ℕ)
11 2nn0 12429 . . . . . . . . . 10 2 ∈ ℕ0
1211a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → 2 ∈ ℕ0)
13 nnm1nn0 12453 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
1412, 13nn0expcld 14148 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑(𝑁 − 1)) ∈ ℕ0)
15 peano2nn0 12452 . . . . . . . 8 ((2↑(𝑁 − 1)) ∈ ℕ0 → ((2↑(𝑁 − 1)) + 1) ∈ ℕ0)
1614, 15syl 17 . . . . . . 7 (𝑁 ∈ ℕ → ((2↑(𝑁 − 1)) + 1) ∈ ℕ0)
1710, 16nnexpcld 14147 . . . . . 6 (𝑁 ∈ ℕ → (2↑((2↑(𝑁 − 1)) + 1)) ∈ ℕ)
18 nngt0 12183 . . . . . 6 ((2↑((2↑(𝑁 − 1)) + 1)) ∈ ℕ → 0 < (2↑((2↑(𝑁 − 1)) + 1)))
1917, 18syl 17 . . . . 5 (𝑁 ∈ ℕ → 0 < (2↑((2↑(𝑁 − 1)) + 1)))
2012, 16nn0expcld 14148 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑((2↑(𝑁 − 1)) + 1)) ∈ ℕ0)
2120nn0red 12473 . . . . . . 7 (𝑁 ∈ ℕ → (2↑((2↑(𝑁 − 1)) + 1)) ∈ ℝ)
22 1re 11154 . . . . . . . 8 1 ∈ ℝ
2322a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 1 ∈ ℝ)
2421, 23jca 512 . . . . . 6 (𝑁 ∈ ℕ → ((2↑((2↑(𝑁 − 1)) + 1)) ∈ ℝ ∧ 1 ∈ ℝ))
25 ltaddpos2 11645 . . . . . 6 (((2↑((2↑(𝑁 − 1)) + 1)) ∈ ℝ ∧ 1 ∈ ℝ) → (0 < (2↑((2↑(𝑁 − 1)) + 1)) ↔ 1 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)))
2624, 25syl 17 . . . . 5 (𝑁 ∈ ℕ → (0 < (2↑((2↑(𝑁 − 1)) + 1)) ↔ 1 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)))
2719, 26mpbid 231 . . . 4 (𝑁 ∈ ℕ → 1 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1))
286, 8, 273jca 1128 . . 3 (𝑁 ∈ ℕ → (𝑁 ∈ ℕ ∧ 1 ∈ ℕ0 ∧ 1 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)))
29 sqrtpwpw2p 45702 . . 3 ((𝑁 ∈ ℕ ∧ 1 ∈ ℕ0 ∧ 1 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → (⌊‘(√‘((2↑(2↑𝑁)) + 1))) = (2↑(2↑(𝑁 − 1))))
3028, 29syl 17 . 2 (𝑁 ∈ ℕ → (⌊‘(√‘((2↑(2↑𝑁)) + 1))) = (2↑(2↑(𝑁 − 1))))
315, 30eqtrd 2776 1 (𝑁 ∈ ℕ → (⌊‘(√‘(FermatNo‘𝑁))) = (2↑(2↑(𝑁 − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106   class class class wbr 5105  cfv 6496  (class class class)co 7356  cr 11049  0cc0 11050  1c1 11051   + caddc 11053   < clt 11188  cmin 11384  cn 12152  2c2 12207  0cn0 12412  cfl 13694  cexp 13966  csqrt 15117  FermatNocfmtno 45691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7671  ax-cnex 11106  ax-resscn 11107  ax-1cn 11108  ax-icn 11109  ax-addcl 11110  ax-addrcl 11111  ax-mulcl 11112  ax-mulrcl 11113  ax-mulcom 11114  ax-addass 11115  ax-mulass 11116  ax-distr 11117  ax-i2m1 11118  ax-1ne0 11119  ax-1rid 11120  ax-rnegex 11121  ax-rrecex 11122  ax-cnre 11123  ax-pre-lttri 11124  ax-pre-lttrn 11125  ax-pre-ltadd 11126  ax-pre-mulgt0 11127  ax-pre-sup 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7312  df-ov 7359  df-oprab 7360  df-mpo 7361  df-om 7802  df-2nd 7921  df-frecs 8211  df-wrecs 8242  df-recs 8316  df-rdg 8355  df-er 8647  df-en 8883  df-dom 8884  df-sdom 8885  df-sup 9377  df-inf 9378  df-pnf 11190  df-mnf 11191  df-xr 11192  df-ltxr 11193  df-le 11194  df-sub 11386  df-neg 11387  df-div 11812  df-nn 12153  df-2 12215  df-3 12216  df-n0 12413  df-z 12499  df-uz 12763  df-rp 12915  df-fl 13696  df-seq 13906  df-exp 13967  df-cj 14983  df-re 14984  df-im 14985  df-sqrt 15119  df-fmtno 45692
This theorem is referenced by:  fmtno4sqrt  45735
  Copyright terms: Public domain W3C validator