![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtnosqrt | Structured version Visualization version GIF version |
Description: The floor of the square root of a Fermat number. (Contributed by AV, 28-Jul-2021.) |
Ref | Expression |
---|---|
fmtnosqrt | ⊢ (𝑁 ∈ ℕ → (⌊‘(√‘(FermatNo‘𝑁))) = (2↑(2↑(𝑁 − 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnnn0 12531 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
2 | fmtno 47101 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1)) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1)) |
4 | 3 | fveq2d 6905 | . . 3 ⊢ (𝑁 ∈ ℕ → (√‘(FermatNo‘𝑁)) = (√‘((2↑(2↑𝑁)) + 1))) |
5 | 4 | fveq2d 6905 | . 2 ⊢ (𝑁 ∈ ℕ → (⌊‘(√‘(FermatNo‘𝑁))) = (⌊‘(√‘((2↑(2↑𝑁)) + 1)))) |
6 | id 22 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ) | |
7 | 1nn0 12540 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
8 | 7 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℕ → 1 ∈ ℕ0) |
9 | 2nn 12337 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
10 | 9 | a1i 11 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℕ) |
11 | 2nn0 12541 | . . . . . . . . . 10 ⊢ 2 ∈ ℕ0 | |
12 | 11 | a1i 11 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℕ0) |
13 | nnm1nn0 12565 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
14 | 12, 13 | nn0expcld 14263 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (2↑(𝑁 − 1)) ∈ ℕ0) |
15 | peano2nn0 12564 | . . . . . . . 8 ⊢ ((2↑(𝑁 − 1)) ∈ ℕ0 → ((2↑(𝑁 − 1)) + 1) ∈ ℕ0) | |
16 | 14, 15 | syl 17 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ((2↑(𝑁 − 1)) + 1) ∈ ℕ0) |
17 | 10, 16 | nnexpcld 14262 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (2↑((2↑(𝑁 − 1)) + 1)) ∈ ℕ) |
18 | nngt0 12295 | . . . . . 6 ⊢ ((2↑((2↑(𝑁 − 1)) + 1)) ∈ ℕ → 0 < (2↑((2↑(𝑁 − 1)) + 1))) | |
19 | 17, 18 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 0 < (2↑((2↑(𝑁 − 1)) + 1))) |
20 | 12, 16 | nn0expcld 14263 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (2↑((2↑(𝑁 − 1)) + 1)) ∈ ℕ0) |
21 | 20 | nn0red 12585 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (2↑((2↑(𝑁 − 1)) + 1)) ∈ ℝ) |
22 | 1re 11264 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
23 | 22 | a1i 11 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 1 ∈ ℝ) |
24 | 21, 23 | jca 510 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ((2↑((2↑(𝑁 − 1)) + 1)) ∈ ℝ ∧ 1 ∈ ℝ)) |
25 | ltaddpos2 11755 | . . . . . 6 ⊢ (((2↑((2↑(𝑁 − 1)) + 1)) ∈ ℝ ∧ 1 ∈ ℝ) → (0 < (2↑((2↑(𝑁 − 1)) + 1)) ↔ 1 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1))) | |
26 | 24, 25 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (0 < (2↑((2↑(𝑁 − 1)) + 1)) ↔ 1 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1))) |
27 | 19, 26 | mpbid 231 | . . . 4 ⊢ (𝑁 ∈ ℕ → 1 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) |
28 | 6, 8, 27 | 3jca 1125 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑁 ∈ ℕ ∧ 1 ∈ ℕ0 ∧ 1 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1))) |
29 | sqrtpwpw2p 47110 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 1 ∈ ℕ0 ∧ 1 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → (⌊‘(√‘((2↑(2↑𝑁)) + 1))) = (2↑(2↑(𝑁 − 1)))) | |
30 | 28, 29 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ → (⌊‘(√‘((2↑(2↑𝑁)) + 1))) = (2↑(2↑(𝑁 − 1)))) |
31 | 5, 30 | eqtrd 2766 | 1 ⊢ (𝑁 ∈ ℕ → (⌊‘(√‘(FermatNo‘𝑁))) = (2↑(2↑(𝑁 − 1)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 class class class wbr 5153 ‘cfv 6554 (class class class)co 7424 ℝcr 11157 0cc0 11158 1c1 11159 + caddc 11161 < clt 11298 − cmin 11494 ℕcn 12264 2c2 12319 ℕ0cn0 12524 ⌊cfl 13810 ↑cexp 14081 √csqrt 15238 FermatNocfmtno 47099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-sup 9485 df-inf 9486 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12611 df-uz 12875 df-rp 13029 df-fl 13812 df-seq 14022 df-exp 14082 df-cj 15104 df-re 15105 df-im 15106 df-sqrt 15240 df-fmtno 47100 |
This theorem is referenced by: fmtno4sqrt 47143 |
Copyright terms: Public domain | W3C validator |