Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtnosqrt | Structured version Visualization version GIF version |
Description: The floor of the square root of a Fermat number. (Contributed by AV, 28-Jul-2021.) |
Ref | Expression |
---|---|
fmtnosqrt | ⊢ (𝑁 ∈ ℕ → (⌊‘(√‘(FermatNo‘𝑁))) = (2↑(2↑(𝑁 − 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnnn0 12170 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
2 | fmtno 44869 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1)) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1)) |
4 | 3 | fveq2d 6760 | . . 3 ⊢ (𝑁 ∈ ℕ → (√‘(FermatNo‘𝑁)) = (√‘((2↑(2↑𝑁)) + 1))) |
5 | 4 | fveq2d 6760 | . 2 ⊢ (𝑁 ∈ ℕ → (⌊‘(√‘(FermatNo‘𝑁))) = (⌊‘(√‘((2↑(2↑𝑁)) + 1)))) |
6 | id 22 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ) | |
7 | 1nn0 12179 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
8 | 7 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℕ → 1 ∈ ℕ0) |
9 | 2nn 11976 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
10 | 9 | a1i 11 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℕ) |
11 | 2nn0 12180 | . . . . . . . . . 10 ⊢ 2 ∈ ℕ0 | |
12 | 11 | a1i 11 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℕ0) |
13 | nnm1nn0 12204 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
14 | 12, 13 | nn0expcld 13889 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (2↑(𝑁 − 1)) ∈ ℕ0) |
15 | peano2nn0 12203 | . . . . . . . 8 ⊢ ((2↑(𝑁 − 1)) ∈ ℕ0 → ((2↑(𝑁 − 1)) + 1) ∈ ℕ0) | |
16 | 14, 15 | syl 17 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ((2↑(𝑁 − 1)) + 1) ∈ ℕ0) |
17 | 10, 16 | nnexpcld 13888 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (2↑((2↑(𝑁 − 1)) + 1)) ∈ ℕ) |
18 | nngt0 11934 | . . . . . 6 ⊢ ((2↑((2↑(𝑁 − 1)) + 1)) ∈ ℕ → 0 < (2↑((2↑(𝑁 − 1)) + 1))) | |
19 | 17, 18 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 0 < (2↑((2↑(𝑁 − 1)) + 1))) |
20 | 12, 16 | nn0expcld 13889 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (2↑((2↑(𝑁 − 1)) + 1)) ∈ ℕ0) |
21 | 20 | nn0red 12224 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (2↑((2↑(𝑁 − 1)) + 1)) ∈ ℝ) |
22 | 1re 10906 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
23 | 22 | a1i 11 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 1 ∈ ℝ) |
24 | 21, 23 | jca 511 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ((2↑((2↑(𝑁 − 1)) + 1)) ∈ ℝ ∧ 1 ∈ ℝ)) |
25 | ltaddpos2 11396 | . . . . . 6 ⊢ (((2↑((2↑(𝑁 − 1)) + 1)) ∈ ℝ ∧ 1 ∈ ℝ) → (0 < (2↑((2↑(𝑁 − 1)) + 1)) ↔ 1 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1))) | |
26 | 24, 25 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (0 < (2↑((2↑(𝑁 − 1)) + 1)) ↔ 1 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1))) |
27 | 19, 26 | mpbid 231 | . . . 4 ⊢ (𝑁 ∈ ℕ → 1 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) |
28 | 6, 8, 27 | 3jca 1126 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑁 ∈ ℕ ∧ 1 ∈ ℕ0 ∧ 1 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1))) |
29 | sqrtpwpw2p 44878 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 1 ∈ ℕ0 ∧ 1 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → (⌊‘(√‘((2↑(2↑𝑁)) + 1))) = (2↑(2↑(𝑁 − 1)))) | |
30 | 28, 29 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ → (⌊‘(√‘((2↑(2↑𝑁)) + 1))) = (2↑(2↑(𝑁 − 1)))) |
31 | 5, 30 | eqtrd 2778 | 1 ⊢ (𝑁 ∈ ℕ → (⌊‘(√‘(FermatNo‘𝑁))) = (2↑(2↑(𝑁 − 1)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 < clt 10940 − cmin 11135 ℕcn 11903 2c2 11958 ℕ0cn0 12163 ⌊cfl 13438 ↑cexp 13710 √csqrt 14872 FermatNocfmtno 44867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fl 13440 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-fmtno 44868 |
This theorem is referenced by: fmtno4sqrt 44911 |
Copyright terms: Public domain | W3C validator |