| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtnosqrt | Structured version Visualization version GIF version | ||
| Description: The floor of the square root of a Fermat number. (Contributed by AV, 28-Jul-2021.) |
| Ref | Expression |
|---|---|
| fmtnosqrt | ⊢ (𝑁 ∈ ℕ → (⌊‘(√‘(FermatNo‘𝑁))) = (2↑(2↑(𝑁 − 1)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnnn0 12409 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 2 | fmtno 47514 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1)) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1)) |
| 4 | 3 | fveq2d 6830 | . . 3 ⊢ (𝑁 ∈ ℕ → (√‘(FermatNo‘𝑁)) = (√‘((2↑(2↑𝑁)) + 1))) |
| 5 | 4 | fveq2d 6830 | . 2 ⊢ (𝑁 ∈ ℕ → (⌊‘(√‘(FermatNo‘𝑁))) = (⌊‘(√‘((2↑(2↑𝑁)) + 1)))) |
| 6 | id 22 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ) | |
| 7 | 1nn0 12418 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℕ → 1 ∈ ℕ0) |
| 9 | 2nn 12219 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
| 10 | 9 | a1i 11 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℕ) |
| 11 | 2nn0 12419 | . . . . . . . . . 10 ⊢ 2 ∈ ℕ0 | |
| 12 | 11 | a1i 11 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℕ0) |
| 13 | nnm1nn0 12443 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
| 14 | 12, 13 | nn0expcld 14171 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (2↑(𝑁 − 1)) ∈ ℕ0) |
| 15 | peano2nn0 12442 | . . . . . . . 8 ⊢ ((2↑(𝑁 − 1)) ∈ ℕ0 → ((2↑(𝑁 − 1)) + 1) ∈ ℕ0) | |
| 16 | 14, 15 | syl 17 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ((2↑(𝑁 − 1)) + 1) ∈ ℕ0) |
| 17 | 10, 16 | nnexpcld 14170 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (2↑((2↑(𝑁 − 1)) + 1)) ∈ ℕ) |
| 18 | nngt0 12177 | . . . . . 6 ⊢ ((2↑((2↑(𝑁 − 1)) + 1)) ∈ ℕ → 0 < (2↑((2↑(𝑁 − 1)) + 1))) | |
| 19 | 17, 18 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 0 < (2↑((2↑(𝑁 − 1)) + 1))) |
| 20 | 12, 16 | nn0expcld 14171 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (2↑((2↑(𝑁 − 1)) + 1)) ∈ ℕ0) |
| 21 | 20 | nn0red 12464 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (2↑((2↑(𝑁 − 1)) + 1)) ∈ ℝ) |
| 22 | 1re 11134 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
| 23 | 22 | a1i 11 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 1 ∈ ℝ) |
| 24 | 21, 23 | jca 511 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ((2↑((2↑(𝑁 − 1)) + 1)) ∈ ℝ ∧ 1 ∈ ℝ)) |
| 25 | ltaddpos2 11629 | . . . . . 6 ⊢ (((2↑((2↑(𝑁 − 1)) + 1)) ∈ ℝ ∧ 1 ∈ ℝ) → (0 < (2↑((2↑(𝑁 − 1)) + 1)) ↔ 1 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1))) | |
| 26 | 24, 25 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (0 < (2↑((2↑(𝑁 − 1)) + 1)) ↔ 1 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1))) |
| 27 | 19, 26 | mpbid 232 | . . . 4 ⊢ (𝑁 ∈ ℕ → 1 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) |
| 28 | 6, 8, 27 | 3jca 1128 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑁 ∈ ℕ ∧ 1 ∈ ℕ0 ∧ 1 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1))) |
| 29 | sqrtpwpw2p 47523 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 1 ∈ ℕ0 ∧ 1 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → (⌊‘(√‘((2↑(2↑𝑁)) + 1))) = (2↑(2↑(𝑁 − 1)))) | |
| 30 | 28, 29 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ → (⌊‘(√‘((2↑(2↑𝑁)) + 1))) = (2↑(2↑(𝑁 − 1)))) |
| 31 | 5, 30 | eqtrd 2764 | 1 ⊢ (𝑁 ∈ ℕ → (⌊‘(√‘(FermatNo‘𝑁))) = (2↑(2↑(𝑁 − 1)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 ℝcr 11027 0cc0 11028 1c1 11029 + caddc 11031 < clt 11168 − cmin 11365 ℕcn 12146 2c2 12201 ℕ0cn0 12402 ⌊cfl 13712 ↑cexp 13986 √csqrt 15158 FermatNocfmtno 47512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-fl 13714 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-fmtno 47513 |
| This theorem is referenced by: fmtno4sqrt 47556 |
| Copyright terms: Public domain | W3C validator |