Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnosqrt Structured version   Visualization version   GIF version

Theorem fmtnosqrt 47537
Description: The floor of the square root of a Fermat number. (Contributed by AV, 28-Jul-2021.)
Assertion
Ref Expression
fmtnosqrt (𝑁 ∈ ℕ → (⌊‘(√‘(FermatNo‘𝑁))) = (2↑(2↑(𝑁 − 1))))

Proof of Theorem fmtnosqrt
StepHypRef Expression
1 nnnn0 12449 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 fmtno 47527 . . . . 5 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))
31, 2syl 17 . . . 4 (𝑁 ∈ ℕ → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))
43fveq2d 6862 . . 3 (𝑁 ∈ ℕ → (√‘(FermatNo‘𝑁)) = (√‘((2↑(2↑𝑁)) + 1)))
54fveq2d 6862 . 2 (𝑁 ∈ ℕ → (⌊‘(√‘(FermatNo‘𝑁))) = (⌊‘(√‘((2↑(2↑𝑁)) + 1))))
6 id 22 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
7 1nn0 12458 . . . . 5 1 ∈ ℕ0
87a1i 11 . . . 4 (𝑁 ∈ ℕ → 1 ∈ ℕ0)
9 2nn 12259 . . . . . . . 8 2 ∈ ℕ
109a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 2 ∈ ℕ)
11 2nn0 12459 . . . . . . . . . 10 2 ∈ ℕ0
1211a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → 2 ∈ ℕ0)
13 nnm1nn0 12483 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
1412, 13nn0expcld 14211 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑(𝑁 − 1)) ∈ ℕ0)
15 peano2nn0 12482 . . . . . . . 8 ((2↑(𝑁 − 1)) ∈ ℕ0 → ((2↑(𝑁 − 1)) + 1) ∈ ℕ0)
1614, 15syl 17 . . . . . . 7 (𝑁 ∈ ℕ → ((2↑(𝑁 − 1)) + 1) ∈ ℕ0)
1710, 16nnexpcld 14210 . . . . . 6 (𝑁 ∈ ℕ → (2↑((2↑(𝑁 − 1)) + 1)) ∈ ℕ)
18 nngt0 12217 . . . . . 6 ((2↑((2↑(𝑁 − 1)) + 1)) ∈ ℕ → 0 < (2↑((2↑(𝑁 − 1)) + 1)))
1917, 18syl 17 . . . . 5 (𝑁 ∈ ℕ → 0 < (2↑((2↑(𝑁 − 1)) + 1)))
2012, 16nn0expcld 14211 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑((2↑(𝑁 − 1)) + 1)) ∈ ℕ0)
2120nn0red 12504 . . . . . . 7 (𝑁 ∈ ℕ → (2↑((2↑(𝑁 − 1)) + 1)) ∈ ℝ)
22 1re 11174 . . . . . . . 8 1 ∈ ℝ
2322a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 1 ∈ ℝ)
2421, 23jca 511 . . . . . 6 (𝑁 ∈ ℕ → ((2↑((2↑(𝑁 − 1)) + 1)) ∈ ℝ ∧ 1 ∈ ℝ))
25 ltaddpos2 11669 . . . . . 6 (((2↑((2↑(𝑁 − 1)) + 1)) ∈ ℝ ∧ 1 ∈ ℝ) → (0 < (2↑((2↑(𝑁 − 1)) + 1)) ↔ 1 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)))
2624, 25syl 17 . . . . 5 (𝑁 ∈ ℕ → (0 < (2↑((2↑(𝑁 − 1)) + 1)) ↔ 1 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)))
2719, 26mpbid 232 . . . 4 (𝑁 ∈ ℕ → 1 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1))
286, 8, 273jca 1128 . . 3 (𝑁 ∈ ℕ → (𝑁 ∈ ℕ ∧ 1 ∈ ℕ0 ∧ 1 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)))
29 sqrtpwpw2p 47536 . . 3 ((𝑁 ∈ ℕ ∧ 1 ∈ ℕ0 ∧ 1 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → (⌊‘(√‘((2↑(2↑𝑁)) + 1))) = (2↑(2↑(𝑁 − 1))))
3028, 29syl 17 . 2 (𝑁 ∈ ℕ → (⌊‘(√‘((2↑(2↑𝑁)) + 1))) = (2↑(2↑(𝑁 − 1))))
315, 30eqtrd 2764 1 (𝑁 ∈ ℕ → (⌊‘(√‘(FermatNo‘𝑁))) = (2↑(2↑(𝑁 − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  cmin 11405  cn 12186  2c2 12241  0cn0 12442  cfl 13752  cexp 14026  csqrt 15199  FermatNocfmtno 47525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fl 13754  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-fmtno 47526
This theorem is referenced by:  fmtno4sqrt  47569
  Copyright terms: Public domain W3C validator