Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnorec3 Structured version   Visualization version   GIF version

Theorem fmtnorec3 45000
Description: The third recurrence relation for Fermat numbers, see Wikipedia "Fermat number", 31-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties. (Contributed by AV, 2-Aug-2021.)
Assertion
Ref Expression
fmtnorec3 (𝑁 ∈ (ℤ‘2) → (FermatNo‘𝑁) = ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · ∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛))))
Distinct variable group:   𝑛,𝑁

Proof of Theorem fmtnorec3
StepHypRef Expression
1 fzfid 13693 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (0...(𝑁 − 2)) ∈ Fin)
2 elfznn0 13349 . . . . . . . . 9 (𝑛 ∈ (0...(𝑁 − 2)) → 𝑛 ∈ ℕ0)
3 fmtnonn 44983 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ ℕ)
42, 3syl 17 . . . . . . . 8 (𝑛 ∈ (0...(𝑁 − 2)) → (FermatNo‘𝑛) ∈ ℕ)
54nncnd 11989 . . . . . . 7 (𝑛 ∈ (0...(𝑁 − 2)) → (FermatNo‘𝑛) ∈ ℂ)
65adantl 482 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ (0...(𝑁 − 2))) → (FermatNo‘𝑛) ∈ ℂ)
71, 6fprodcl 15662 . . . . 5 (𝑁 ∈ (ℤ‘2) → ∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛) ∈ ℂ)
8 2cn 12048 . . . . . 6 2 ∈ ℂ
98a1i 11 . . . . 5 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℂ)
10 uznn0sub 12617 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (𝑁 − 2) ∈ ℕ0)
11 fmtnorec2 44995 . . . . . . 7 ((𝑁 − 2) ∈ ℕ0 → (FermatNo‘((𝑁 − 2) + 1)) = (∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛) + 2))
1210, 11syl 17 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (FermatNo‘((𝑁 − 2) + 1)) = (∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛) + 2))
1312eqcomd 2744 . . . . 5 (𝑁 ∈ (ℤ‘2) → (∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛) + 2) = (FermatNo‘((𝑁 − 2) + 1)))
147, 9, 13mvlraddd 11385 . . . 4 (𝑁 ∈ (ℤ‘2) → ∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛) = ((FermatNo‘((𝑁 − 2) + 1)) − 2))
1514oveq2d 7291 . . 3 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 1))) · ∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛)) = ((2↑(2↑(𝑁 − 1))) · ((FermatNo‘((𝑁 − 2) + 1)) − 2)))
1615oveq2d 7291 . 2 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · ∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛))) = ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · ((FermatNo‘((𝑁 − 2) + 1)) − 2))))
17 2nn0 12250 . . . . . . . 8 2 ∈ ℕ0
1817a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ0)
19 eluz2nn 12624 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
20 nnm1nn0 12274 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
2119, 20syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ0)
2218, 21nn0expcld 13961 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 − 1)) ∈ ℕ0)
2318, 22nn0expcld 13961 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (2↑(2↑(𝑁 − 1))) ∈ ℕ0)
2423nn0cnd 12295 . . . . 5 (𝑁 ∈ (ℤ‘2) → (2↑(2↑(𝑁 − 1))) ∈ ℂ)
25 peano2nn0 12273 . . . . . . . 8 ((𝑁 − 2) ∈ ℕ0 → ((𝑁 − 2) + 1) ∈ ℕ0)
2610, 25syl 17 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → ((𝑁 − 2) + 1) ∈ ℕ0)
27 fmtnonn 44983 . . . . . . 7 (((𝑁 − 2) + 1) ∈ ℕ0 → (FermatNo‘((𝑁 − 2) + 1)) ∈ ℕ)
2826, 27syl 17 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (FermatNo‘((𝑁 − 2) + 1)) ∈ ℕ)
2928nncnd 11989 . . . . 5 (𝑁 ∈ (ℤ‘2) → (FermatNo‘((𝑁 − 2) + 1)) ∈ ℂ)
3024, 29, 9subdid 11431 . . . 4 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 1))) · ((FermatNo‘((𝑁 − 2) + 1)) − 2)) = (((2↑(2↑(𝑁 − 1))) · (FermatNo‘((𝑁 − 2) + 1))) − ((2↑(2↑(𝑁 − 1))) · 2)))
31 eluzelcn 12594 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℂ)
32 ax-1cn 10929 . . . . . . . . . 10 1 ∈ ℂ
3332a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 1 ∈ ℂ)
34 subsub 11251 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 − (2 − 1)) = ((𝑁 − 2) + 1))
3534eqcomd 2744 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 2) + 1) = (𝑁 − (2 − 1)))
3631, 9, 33, 35syl3anc 1370 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ((𝑁 − 2) + 1) = (𝑁 − (2 − 1)))
37 2m1e1 12099 . . . . . . . . 9 (2 − 1) = 1
3837oveq2i 7286 . . . . . . . 8 (𝑁 − (2 − 1)) = (𝑁 − 1)
3936, 38eqtrdi 2794 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → ((𝑁 − 2) + 1) = (𝑁 − 1))
4039fveq2d 6778 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (FermatNo‘((𝑁 − 2) + 1)) = (FermatNo‘(𝑁 − 1)))
4140oveq2d 7291 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 1))) · (FermatNo‘((𝑁 − 2) + 1))) = ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1))))
4241oveq1d 7290 . . . 4 (𝑁 ∈ (ℤ‘2) → (((2↑(2↑(𝑁 − 1))) · (FermatNo‘((𝑁 − 2) + 1))) − ((2↑(2↑(𝑁 − 1))) · 2)) = (((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1))) − ((2↑(2↑(𝑁 − 1))) · 2)))
4330, 42eqtrd 2778 . . 3 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 1))) · ((FermatNo‘((𝑁 − 2) + 1)) − 2)) = (((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1))) − ((2↑(2↑(𝑁 − 1))) · 2)))
4443oveq2d 7291 . 2 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · ((FermatNo‘((𝑁 − 2) + 1)) − 2))) = ((FermatNo‘(𝑁 − 1)) + (((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1))) − ((2↑(2↑(𝑁 − 1))) · 2))))
45 fmtnonn 44983 . . . . . . . . . 10 ((𝑁 − 1) ∈ ℕ0 → (FermatNo‘(𝑁 − 1)) ∈ ℕ)
4621, 45syl 17 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (FermatNo‘(𝑁 − 1)) ∈ ℕ)
4746nncnd 11989 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (FermatNo‘(𝑁 − 1)) ∈ ℂ)
4847mulid2d 10993 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (1 · (FermatNo‘(𝑁 − 1))) = (FermatNo‘(𝑁 − 1)))
4948eqcomd 2744 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (FermatNo‘(𝑁 − 1)) = (1 · (FermatNo‘(𝑁 − 1))))
5049oveq1d 7290 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1)))) = ((1 · (FermatNo‘(𝑁 − 1))) + ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1)))))
5133, 24, 47adddird 11000 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((1 + (2↑(2↑(𝑁 − 1)))) · (FermatNo‘(𝑁 − 1))) = ((1 · (FermatNo‘(𝑁 − 1))) + ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1)))))
5233, 24addcomd 11177 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (1 + (2↑(2↑(𝑁 − 1)))) = ((2↑(2↑(𝑁 − 1))) + 1))
53 fmtno 44981 . . . . . . . . 9 ((𝑁 − 1) ∈ ℕ0 → (FermatNo‘(𝑁 − 1)) = ((2↑(2↑(𝑁 − 1))) + 1))
5421, 53syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (FermatNo‘(𝑁 − 1)) = ((2↑(2↑(𝑁 − 1))) + 1))
5552, 54eqtr4d 2781 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (1 + (2↑(2↑(𝑁 − 1)))) = (FermatNo‘(𝑁 − 1)))
5655oveq1d 7290 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((1 + (2↑(2↑(𝑁 − 1)))) · (FermatNo‘(𝑁 − 1))) = ((FermatNo‘(𝑁 − 1)) · (FermatNo‘(𝑁 − 1))))
5747sqvald 13861 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1))↑2) = ((FermatNo‘(𝑁 − 1)) · (FermatNo‘(𝑁 − 1))))
5856, 57eqtr4d 2781 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((1 + (2↑(2↑(𝑁 − 1)))) · (FermatNo‘(𝑁 − 1))) = ((FermatNo‘(𝑁 − 1))↑2))
5950, 51, 583eqtr2d 2784 . . . 4 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1)))) = ((FermatNo‘(𝑁 − 1))↑2))
6059oveq1d 7290 . . 3 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1)))) − ((2↑(2↑(𝑁 − 1))) · 2)) = (((FermatNo‘(𝑁 − 1))↑2) − ((2↑(2↑(𝑁 − 1))) · 2)))
6124, 47mulcld 10995 . . . 4 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1))) ∈ ℂ)
6224, 9mulcld 10995 . . . 4 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 1))) · 2) ∈ ℂ)
6347, 61, 62addsubassd 11352 . . 3 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1)))) − ((2↑(2↑(𝑁 − 1))) · 2)) = ((FermatNo‘(𝑁 − 1)) + (((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1))) − ((2↑(2↑(𝑁 − 1))) · 2))))
64 npcan1 11400 . . . . . . 7 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
6531, 64syl 17 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((𝑁 − 1) + 1) = 𝑁)
6665eqcomd 2744 . . . . 5 (𝑁 ∈ (ℤ‘2) → 𝑁 = ((𝑁 − 1) + 1))
6766fveq2d 6778 . . . 4 (𝑁 ∈ (ℤ‘2) → (FermatNo‘𝑁) = (FermatNo‘((𝑁 − 1) + 1)))
68 fmtnorec1 44989 . . . . 5 ((𝑁 − 1) ∈ ℕ0 → (FermatNo‘((𝑁 − 1) + 1)) = ((((FermatNo‘(𝑁 − 1)) − 1)↑2) + 1))
6921, 68syl 17 . . . 4 (𝑁 ∈ (ℤ‘2) → (FermatNo‘((𝑁 − 1) + 1)) = ((((FermatNo‘(𝑁 − 1)) − 1)↑2) + 1))
70 binom2sub1 13936 . . . . . . 7 ((FermatNo‘(𝑁 − 1)) ∈ ℂ → (((FermatNo‘(𝑁 − 1)) − 1)↑2) = ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + 1))
7147, 70syl 17 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1)) − 1)↑2) = ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + 1))
7271oveq1d 7290 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((((FermatNo‘(𝑁 − 1)) − 1)↑2) + 1) = (((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + 1) + 1))
7346nnsqcld 13959 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1))↑2) ∈ ℕ)
7473nncnd 11989 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1))↑2) ∈ ℂ)
759, 47mulcld 10995 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (2 · (FermatNo‘(𝑁 − 1))) ∈ ℂ)
7674, 75subcld 11332 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) ∈ ℂ)
7776, 33, 33addassd 10997 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + 1) + 1) = ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + (1 + 1)))
78322timesi 12111 . . . . . . . . 9 (2 · 1) = (1 + 1)
7978eqcomi 2747 . . . . . . . 8 (1 + 1) = (2 · 1)
8079a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (1 + 1) = (2 · 1))
8180oveq2d 7291 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + (1 + 1)) = ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + (2 · 1)))
8277, 81eqtrd 2778 . . . . 5 (𝑁 ∈ (ℤ‘2) → (((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + 1) + 1) = ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + (2 · 1)))
838, 32mulcli 10982 . . . . . . . 8 (2 · 1) ∈ ℂ
8483a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (2 · 1) ∈ ℂ)
8574, 75, 84subadd23d 11354 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + (2 · 1)) = (((FermatNo‘(𝑁 − 1))↑2) + ((2 · 1) − (2 · (FermatNo‘(𝑁 − 1))))))
869, 33, 47subdid 11431 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (2 · (1 − (FermatNo‘(𝑁 − 1)))) = ((2 · 1) − (2 · (FermatNo‘(𝑁 − 1)))))
8786eqcomd 2744 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → ((2 · 1) − (2 · (FermatNo‘(𝑁 − 1)))) = (2 · (1 − (FermatNo‘(𝑁 − 1)))))
8887oveq2d 7291 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1))↑2) + ((2 · 1) − (2 · (FermatNo‘(𝑁 − 1))))) = (((FermatNo‘(𝑁 − 1))↑2) + (2 · (1 − (FermatNo‘(𝑁 − 1))))))
8933, 47subcld 11332 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (1 − (FermatNo‘(𝑁 − 1))) ∈ ℂ)
909, 89mulneg2d 11429 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (2 · -(1 − (FermatNo‘(𝑁 − 1)))) = -(2 · (1 − (FermatNo‘(𝑁 − 1)))))
9133, 47negsubdi2d 11348 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → -(1 − (FermatNo‘(𝑁 − 1))) = ((FermatNo‘(𝑁 − 1)) − 1))
92 fmtnom1nn 44984 . . . . . . . . . . . 12 ((𝑁 − 1) ∈ ℕ0 → ((FermatNo‘(𝑁 − 1)) − 1) = (2↑(2↑(𝑁 − 1))))
9321, 92syl 17 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1)) − 1) = (2↑(2↑(𝑁 − 1))))
9491, 93eqtrd 2778 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → -(1 − (FermatNo‘(𝑁 − 1))) = (2↑(2↑(𝑁 − 1))))
9594oveq2d 7291 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (2 · -(1 − (FermatNo‘(𝑁 − 1)))) = (2 · (2↑(2↑(𝑁 − 1)))))
9690, 95eqtr3d 2780 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → -(2 · (1 − (FermatNo‘(𝑁 − 1)))) = (2 · (2↑(2↑(𝑁 − 1)))))
9796oveq2d 7291 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1))↑2) − -(2 · (1 − (FermatNo‘(𝑁 − 1))))) = (((FermatNo‘(𝑁 − 1))↑2) − (2 · (2↑(2↑(𝑁 − 1))))))
989, 89mulcld 10995 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (2 · (1 − (FermatNo‘(𝑁 − 1)))) ∈ ℂ)
9974, 98subnegd 11339 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1))↑2) − -(2 · (1 − (FermatNo‘(𝑁 − 1))))) = (((FermatNo‘(𝑁 − 1))↑2) + (2 · (1 − (FermatNo‘(𝑁 − 1))))))
1009, 24mulcomd 10996 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (2 · (2↑(2↑(𝑁 − 1)))) = ((2↑(2↑(𝑁 − 1))) · 2))
101100oveq2d 7291 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1))↑2) − (2 · (2↑(2↑(𝑁 − 1))))) = (((FermatNo‘(𝑁 − 1))↑2) − ((2↑(2↑(𝑁 − 1))) · 2)))
10297, 99, 1013eqtr3d 2786 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1))↑2) + (2 · (1 − (FermatNo‘(𝑁 − 1))))) = (((FermatNo‘(𝑁 − 1))↑2) − ((2↑(2↑(𝑁 − 1))) · 2)))
10385, 88, 1023eqtrd 2782 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + (2 · 1)) = (((FermatNo‘(𝑁 − 1))↑2) − ((2↑(2↑(𝑁 − 1))) · 2)))
10472, 82, 1033eqtrd 2782 . . . 4 (𝑁 ∈ (ℤ‘2) → ((((FermatNo‘(𝑁 − 1)) − 1)↑2) + 1) = (((FermatNo‘(𝑁 − 1))↑2) − ((2↑(2↑(𝑁 − 1))) · 2)))
10567, 69, 1043eqtrrd 2783 . . 3 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1))↑2) − ((2↑(2↑(𝑁 − 1))) · 2)) = (FermatNo‘𝑁))
10660, 63, 1053eqtr3d 2786 . 2 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1)) + (((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1))) − ((2↑(2↑(𝑁 − 1))) · 2))) = (FermatNo‘𝑁))
10716, 44, 1063eqtrrd 2783 1 (𝑁 ∈ (ℤ‘2) → (FermatNo‘𝑁) = ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · ∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205  -cneg 11206  cn 11973  2c2 12028  0cn0 12233  cuz 12582  ...cfz 13239  cexp 13782  cprod 15615  FermatNocfmtno 44979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-prod 15616  df-fmtno 44980
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator