Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnorec3 Structured version   Visualization version   GIF version

Theorem fmtnorec3 47522
Description: The third recurrence relation for Fermat numbers, see Wikipedia "Fermat number", 31-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties. (Contributed by AV, 2-Aug-2021.)
Assertion
Ref Expression
fmtnorec3 (𝑁 ∈ (ℤ‘2) → (FermatNo‘𝑁) = ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · ∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛))))
Distinct variable group:   𝑛,𝑁

Proof of Theorem fmtnorec3
StepHypRef Expression
1 fzfid 13914 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (0...(𝑁 − 2)) ∈ Fin)
2 elfznn0 13557 . . . . . . . . 9 (𝑛 ∈ (0...(𝑁 − 2)) → 𝑛 ∈ ℕ0)
3 fmtnonn 47505 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ ℕ)
42, 3syl 17 . . . . . . . 8 (𝑛 ∈ (0...(𝑁 − 2)) → (FermatNo‘𝑛) ∈ ℕ)
54nncnd 12178 . . . . . . 7 (𝑛 ∈ (0...(𝑁 − 2)) → (FermatNo‘𝑛) ∈ ℂ)
65adantl 481 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ (0...(𝑁 − 2))) → (FermatNo‘𝑛) ∈ ℂ)
71, 6fprodcl 15894 . . . . 5 (𝑁 ∈ (ℤ‘2) → ∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛) ∈ ℂ)
8 2cn 12237 . . . . . 6 2 ∈ ℂ
98a1i 11 . . . . 5 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℂ)
10 uznn0sub 12808 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (𝑁 − 2) ∈ ℕ0)
11 fmtnorec2 47517 . . . . . . 7 ((𝑁 − 2) ∈ ℕ0 → (FermatNo‘((𝑁 − 2) + 1)) = (∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛) + 2))
1210, 11syl 17 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (FermatNo‘((𝑁 − 2) + 1)) = (∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛) + 2))
1312eqcomd 2735 . . . . 5 (𝑁 ∈ (ℤ‘2) → (∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛) + 2) = (FermatNo‘((𝑁 − 2) + 1)))
147, 9, 13mvlraddd 11564 . . . 4 (𝑁 ∈ (ℤ‘2) → ∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛) = ((FermatNo‘((𝑁 − 2) + 1)) − 2))
1514oveq2d 7385 . . 3 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 1))) · ∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛)) = ((2↑(2↑(𝑁 − 1))) · ((FermatNo‘((𝑁 − 2) + 1)) − 2)))
1615oveq2d 7385 . 2 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · ∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛))) = ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · ((FermatNo‘((𝑁 − 2) + 1)) − 2))))
17 2nn0 12435 . . . . . . . 8 2 ∈ ℕ0
1817a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ0)
19 eluz2nn 12823 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
20 nnm1nn0 12459 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
2119, 20syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ0)
2218, 21nn0expcld 14187 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 − 1)) ∈ ℕ0)
2318, 22nn0expcld 14187 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (2↑(2↑(𝑁 − 1))) ∈ ℕ0)
2423nn0cnd 12481 . . . . 5 (𝑁 ∈ (ℤ‘2) → (2↑(2↑(𝑁 − 1))) ∈ ℂ)
25 peano2nn0 12458 . . . . . . . 8 ((𝑁 − 2) ∈ ℕ0 → ((𝑁 − 2) + 1) ∈ ℕ0)
2610, 25syl 17 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → ((𝑁 − 2) + 1) ∈ ℕ0)
27 fmtnonn 47505 . . . . . . 7 (((𝑁 − 2) + 1) ∈ ℕ0 → (FermatNo‘((𝑁 − 2) + 1)) ∈ ℕ)
2826, 27syl 17 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (FermatNo‘((𝑁 − 2) + 1)) ∈ ℕ)
2928nncnd 12178 . . . . 5 (𝑁 ∈ (ℤ‘2) → (FermatNo‘((𝑁 − 2) + 1)) ∈ ℂ)
3024, 29, 9subdid 11610 . . . 4 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 1))) · ((FermatNo‘((𝑁 − 2) + 1)) − 2)) = (((2↑(2↑(𝑁 − 1))) · (FermatNo‘((𝑁 − 2) + 1))) − ((2↑(2↑(𝑁 − 1))) · 2)))
31 eluzelcn 12781 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℂ)
32 ax-1cn 11102 . . . . . . . . . 10 1 ∈ ℂ
3332a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 1 ∈ ℂ)
34 subsub 11428 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 − (2 − 1)) = ((𝑁 − 2) + 1))
3534eqcomd 2735 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 2) + 1) = (𝑁 − (2 − 1)))
3631, 9, 33, 35syl3anc 1373 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ((𝑁 − 2) + 1) = (𝑁 − (2 − 1)))
37 2m1e1 12283 . . . . . . . . 9 (2 − 1) = 1
3837oveq2i 7380 . . . . . . . 8 (𝑁 − (2 − 1)) = (𝑁 − 1)
3936, 38eqtrdi 2780 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → ((𝑁 − 2) + 1) = (𝑁 − 1))
4039fveq2d 6844 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (FermatNo‘((𝑁 − 2) + 1)) = (FermatNo‘(𝑁 − 1)))
4140oveq2d 7385 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 1))) · (FermatNo‘((𝑁 − 2) + 1))) = ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1))))
4241oveq1d 7384 . . . 4 (𝑁 ∈ (ℤ‘2) → (((2↑(2↑(𝑁 − 1))) · (FermatNo‘((𝑁 − 2) + 1))) − ((2↑(2↑(𝑁 − 1))) · 2)) = (((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1))) − ((2↑(2↑(𝑁 − 1))) · 2)))
4330, 42eqtrd 2764 . . 3 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 1))) · ((FermatNo‘((𝑁 − 2) + 1)) − 2)) = (((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1))) − ((2↑(2↑(𝑁 − 1))) · 2)))
4443oveq2d 7385 . 2 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · ((FermatNo‘((𝑁 − 2) + 1)) − 2))) = ((FermatNo‘(𝑁 − 1)) + (((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1))) − ((2↑(2↑(𝑁 − 1))) · 2))))
45 fmtnonn 47505 . . . . . . . . . 10 ((𝑁 − 1) ∈ ℕ0 → (FermatNo‘(𝑁 − 1)) ∈ ℕ)
4621, 45syl 17 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (FermatNo‘(𝑁 − 1)) ∈ ℕ)
4746nncnd 12178 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (FermatNo‘(𝑁 − 1)) ∈ ℂ)
4847mullidd 11168 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (1 · (FermatNo‘(𝑁 − 1))) = (FermatNo‘(𝑁 − 1)))
4948eqcomd 2735 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (FermatNo‘(𝑁 − 1)) = (1 · (FermatNo‘(𝑁 − 1))))
5049oveq1d 7384 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1)))) = ((1 · (FermatNo‘(𝑁 − 1))) + ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1)))))
5133, 24, 47adddird 11175 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((1 + (2↑(2↑(𝑁 − 1)))) · (FermatNo‘(𝑁 − 1))) = ((1 · (FermatNo‘(𝑁 − 1))) + ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1)))))
5233, 24addcomd 11352 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (1 + (2↑(2↑(𝑁 − 1)))) = ((2↑(2↑(𝑁 − 1))) + 1))
53 fmtno 47503 . . . . . . . . 9 ((𝑁 − 1) ∈ ℕ0 → (FermatNo‘(𝑁 − 1)) = ((2↑(2↑(𝑁 − 1))) + 1))
5421, 53syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (FermatNo‘(𝑁 − 1)) = ((2↑(2↑(𝑁 − 1))) + 1))
5552, 54eqtr4d 2767 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (1 + (2↑(2↑(𝑁 − 1)))) = (FermatNo‘(𝑁 − 1)))
5655oveq1d 7384 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((1 + (2↑(2↑(𝑁 − 1)))) · (FermatNo‘(𝑁 − 1))) = ((FermatNo‘(𝑁 − 1)) · (FermatNo‘(𝑁 − 1))))
5747sqvald 14084 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1))↑2) = ((FermatNo‘(𝑁 − 1)) · (FermatNo‘(𝑁 − 1))))
5856, 57eqtr4d 2767 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((1 + (2↑(2↑(𝑁 − 1)))) · (FermatNo‘(𝑁 − 1))) = ((FermatNo‘(𝑁 − 1))↑2))
5950, 51, 583eqtr2d 2770 . . . 4 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1)))) = ((FermatNo‘(𝑁 − 1))↑2))
6059oveq1d 7384 . . 3 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1)))) − ((2↑(2↑(𝑁 − 1))) · 2)) = (((FermatNo‘(𝑁 − 1))↑2) − ((2↑(2↑(𝑁 − 1))) · 2)))
6124, 47mulcld 11170 . . . 4 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1))) ∈ ℂ)
6224, 9mulcld 11170 . . . 4 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 1))) · 2) ∈ ℂ)
6347, 61, 62addsubassd 11529 . . 3 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1)))) − ((2↑(2↑(𝑁 − 1))) · 2)) = ((FermatNo‘(𝑁 − 1)) + (((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1))) − ((2↑(2↑(𝑁 − 1))) · 2))))
64 npcan1 11579 . . . . . . 7 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
6531, 64syl 17 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((𝑁 − 1) + 1) = 𝑁)
6665eqcomd 2735 . . . . 5 (𝑁 ∈ (ℤ‘2) → 𝑁 = ((𝑁 − 1) + 1))
6766fveq2d 6844 . . . 4 (𝑁 ∈ (ℤ‘2) → (FermatNo‘𝑁) = (FermatNo‘((𝑁 − 1) + 1)))
68 fmtnorec1 47511 . . . . 5 ((𝑁 − 1) ∈ ℕ0 → (FermatNo‘((𝑁 − 1) + 1)) = ((((FermatNo‘(𝑁 − 1)) − 1)↑2) + 1))
6921, 68syl 17 . . . 4 (𝑁 ∈ (ℤ‘2) → (FermatNo‘((𝑁 − 1) + 1)) = ((((FermatNo‘(𝑁 − 1)) − 1)↑2) + 1))
70 binom2sub1 14162 . . . . . . 7 ((FermatNo‘(𝑁 − 1)) ∈ ℂ → (((FermatNo‘(𝑁 − 1)) − 1)↑2) = ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + 1))
7147, 70syl 17 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1)) − 1)↑2) = ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + 1))
7271oveq1d 7384 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((((FermatNo‘(𝑁 − 1)) − 1)↑2) + 1) = (((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + 1) + 1))
7346nnsqcld 14185 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1))↑2) ∈ ℕ)
7473nncnd 12178 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1))↑2) ∈ ℂ)
759, 47mulcld 11170 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (2 · (FermatNo‘(𝑁 − 1))) ∈ ℂ)
7674, 75subcld 11509 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) ∈ ℂ)
7776, 33, 33addassd 11172 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + 1) + 1) = ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + (1 + 1)))
78322timesi 12295 . . . . . . . . 9 (2 · 1) = (1 + 1)
7978eqcomi 2738 . . . . . . . 8 (1 + 1) = (2 · 1)
8079a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (1 + 1) = (2 · 1))
8180oveq2d 7385 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + (1 + 1)) = ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + (2 · 1)))
8277, 81eqtrd 2764 . . . . 5 (𝑁 ∈ (ℤ‘2) → (((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + 1) + 1) = ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + (2 · 1)))
838, 32mulcli 11157 . . . . . . . 8 (2 · 1) ∈ ℂ
8483a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (2 · 1) ∈ ℂ)
8574, 75, 84subadd23d 11531 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + (2 · 1)) = (((FermatNo‘(𝑁 − 1))↑2) + ((2 · 1) − (2 · (FermatNo‘(𝑁 − 1))))))
869, 33, 47subdid 11610 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (2 · (1 − (FermatNo‘(𝑁 − 1)))) = ((2 · 1) − (2 · (FermatNo‘(𝑁 − 1)))))
8786eqcomd 2735 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → ((2 · 1) − (2 · (FermatNo‘(𝑁 − 1)))) = (2 · (1 − (FermatNo‘(𝑁 − 1)))))
8887oveq2d 7385 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1))↑2) + ((2 · 1) − (2 · (FermatNo‘(𝑁 − 1))))) = (((FermatNo‘(𝑁 − 1))↑2) + (2 · (1 − (FermatNo‘(𝑁 − 1))))))
8933, 47subcld 11509 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (1 − (FermatNo‘(𝑁 − 1))) ∈ ℂ)
909, 89mulneg2d 11608 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (2 · -(1 − (FermatNo‘(𝑁 − 1)))) = -(2 · (1 − (FermatNo‘(𝑁 − 1)))))
9133, 47negsubdi2d 11525 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → -(1 − (FermatNo‘(𝑁 − 1))) = ((FermatNo‘(𝑁 − 1)) − 1))
92 fmtnom1nn 47506 . . . . . . . . . . . 12 ((𝑁 − 1) ∈ ℕ0 → ((FermatNo‘(𝑁 − 1)) − 1) = (2↑(2↑(𝑁 − 1))))
9321, 92syl 17 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1)) − 1) = (2↑(2↑(𝑁 − 1))))
9491, 93eqtrd 2764 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → -(1 − (FermatNo‘(𝑁 − 1))) = (2↑(2↑(𝑁 − 1))))
9594oveq2d 7385 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (2 · -(1 − (FermatNo‘(𝑁 − 1)))) = (2 · (2↑(2↑(𝑁 − 1)))))
9690, 95eqtr3d 2766 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → -(2 · (1 − (FermatNo‘(𝑁 − 1)))) = (2 · (2↑(2↑(𝑁 − 1)))))
9796oveq2d 7385 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1))↑2) − -(2 · (1 − (FermatNo‘(𝑁 − 1))))) = (((FermatNo‘(𝑁 − 1))↑2) − (2 · (2↑(2↑(𝑁 − 1))))))
989, 89mulcld 11170 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (2 · (1 − (FermatNo‘(𝑁 − 1)))) ∈ ℂ)
9974, 98subnegd 11516 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1))↑2) − -(2 · (1 − (FermatNo‘(𝑁 − 1))))) = (((FermatNo‘(𝑁 − 1))↑2) + (2 · (1 − (FermatNo‘(𝑁 − 1))))))
1009, 24mulcomd 11171 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (2 · (2↑(2↑(𝑁 − 1)))) = ((2↑(2↑(𝑁 − 1))) · 2))
101100oveq2d 7385 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1))↑2) − (2 · (2↑(2↑(𝑁 − 1))))) = (((FermatNo‘(𝑁 − 1))↑2) − ((2↑(2↑(𝑁 − 1))) · 2)))
10297, 99, 1013eqtr3d 2772 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1))↑2) + (2 · (1 − (FermatNo‘(𝑁 − 1))))) = (((FermatNo‘(𝑁 − 1))↑2) − ((2↑(2↑(𝑁 − 1))) · 2)))
10385, 88, 1023eqtrd 2768 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + (2 · 1)) = (((FermatNo‘(𝑁 − 1))↑2) − ((2↑(2↑(𝑁 − 1))) · 2)))
10472, 82, 1033eqtrd 2768 . . . 4 (𝑁 ∈ (ℤ‘2) → ((((FermatNo‘(𝑁 − 1)) − 1)↑2) + 1) = (((FermatNo‘(𝑁 − 1))↑2) − ((2↑(2↑(𝑁 − 1))) · 2)))
10567, 69, 1043eqtrrd 2769 . . 3 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1))↑2) − ((2↑(2↑(𝑁 − 1))) · 2)) = (FermatNo‘𝑁))
10660, 63, 1053eqtr3d 2772 . 2 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1)) + (((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1))) − ((2↑(2↑(𝑁 − 1))) · 2))) = (FermatNo‘𝑁))
10716, 44, 1063eqtrrd 2769 1 (𝑁 ∈ (ℤ‘2) → (FermatNo‘𝑁) = ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · ∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  cmin 11381  -cneg 11382  cn 12162  2c2 12217  0cn0 12418  cuz 12769  ...cfz 13444  cexp 14002  cprod 15845  FermatNocfmtno 47501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-prod 15846  df-fmtno 47502
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator