Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnorec3 Structured version   Visualization version   GIF version

Theorem fmtnorec3 47422
Description: The third recurrence relation for Fermat numbers, see Wikipedia "Fermat number", 31-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties. (Contributed by AV, 2-Aug-2021.)
Assertion
Ref Expression
fmtnorec3 (𝑁 ∈ (ℤ‘2) → (FermatNo‘𝑁) = ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · ∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛))))
Distinct variable group:   𝑛,𝑁

Proof of Theorem fmtnorec3
StepHypRef Expression
1 fzfid 14024 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (0...(𝑁 − 2)) ∈ Fin)
2 elfznn0 13677 . . . . . . . . 9 (𝑛 ∈ (0...(𝑁 − 2)) → 𝑛 ∈ ℕ0)
3 fmtnonn 47405 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ ℕ)
42, 3syl 17 . . . . . . . 8 (𝑛 ∈ (0...(𝑁 − 2)) → (FermatNo‘𝑛) ∈ ℕ)
54nncnd 12309 . . . . . . 7 (𝑛 ∈ (0...(𝑁 − 2)) → (FermatNo‘𝑛) ∈ ℂ)
65adantl 481 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ (0...(𝑁 − 2))) → (FermatNo‘𝑛) ∈ ℂ)
71, 6fprodcl 16000 . . . . 5 (𝑁 ∈ (ℤ‘2) → ∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛) ∈ ℂ)
8 2cn 12368 . . . . . 6 2 ∈ ℂ
98a1i 11 . . . . 5 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℂ)
10 uznn0sub 12942 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (𝑁 − 2) ∈ ℕ0)
11 fmtnorec2 47417 . . . . . . 7 ((𝑁 − 2) ∈ ℕ0 → (FermatNo‘((𝑁 − 2) + 1)) = (∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛) + 2))
1210, 11syl 17 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (FermatNo‘((𝑁 − 2) + 1)) = (∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛) + 2))
1312eqcomd 2746 . . . . 5 (𝑁 ∈ (ℤ‘2) → (∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛) + 2) = (FermatNo‘((𝑁 − 2) + 1)))
147, 9, 13mvlraddd 11700 . . . 4 (𝑁 ∈ (ℤ‘2) → ∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛) = ((FermatNo‘((𝑁 − 2) + 1)) − 2))
1514oveq2d 7464 . . 3 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 1))) · ∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛)) = ((2↑(2↑(𝑁 − 1))) · ((FermatNo‘((𝑁 − 2) + 1)) − 2)))
1615oveq2d 7464 . 2 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · ∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛))) = ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · ((FermatNo‘((𝑁 − 2) + 1)) − 2))))
17 2nn0 12570 . . . . . . . 8 2 ∈ ℕ0
1817a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ0)
19 eluz2nn 12949 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
20 nnm1nn0 12594 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
2119, 20syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ0)
2218, 21nn0expcld 14295 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 − 1)) ∈ ℕ0)
2318, 22nn0expcld 14295 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (2↑(2↑(𝑁 − 1))) ∈ ℕ0)
2423nn0cnd 12615 . . . . 5 (𝑁 ∈ (ℤ‘2) → (2↑(2↑(𝑁 − 1))) ∈ ℂ)
25 peano2nn0 12593 . . . . . . . 8 ((𝑁 − 2) ∈ ℕ0 → ((𝑁 − 2) + 1) ∈ ℕ0)
2610, 25syl 17 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → ((𝑁 − 2) + 1) ∈ ℕ0)
27 fmtnonn 47405 . . . . . . 7 (((𝑁 − 2) + 1) ∈ ℕ0 → (FermatNo‘((𝑁 − 2) + 1)) ∈ ℕ)
2826, 27syl 17 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (FermatNo‘((𝑁 − 2) + 1)) ∈ ℕ)
2928nncnd 12309 . . . . 5 (𝑁 ∈ (ℤ‘2) → (FermatNo‘((𝑁 − 2) + 1)) ∈ ℂ)
3024, 29, 9subdid 11746 . . . 4 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 1))) · ((FermatNo‘((𝑁 − 2) + 1)) − 2)) = (((2↑(2↑(𝑁 − 1))) · (FermatNo‘((𝑁 − 2) + 1))) − ((2↑(2↑(𝑁 − 1))) · 2)))
31 eluzelcn 12915 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℂ)
32 ax-1cn 11242 . . . . . . . . . 10 1 ∈ ℂ
3332a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 1 ∈ ℂ)
34 subsub 11566 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 − (2 − 1)) = ((𝑁 − 2) + 1))
3534eqcomd 2746 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 2) + 1) = (𝑁 − (2 − 1)))
3631, 9, 33, 35syl3anc 1371 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ((𝑁 − 2) + 1) = (𝑁 − (2 − 1)))
37 2m1e1 12419 . . . . . . . . 9 (2 − 1) = 1
3837oveq2i 7459 . . . . . . . 8 (𝑁 − (2 − 1)) = (𝑁 − 1)
3936, 38eqtrdi 2796 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → ((𝑁 − 2) + 1) = (𝑁 − 1))
4039fveq2d 6924 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (FermatNo‘((𝑁 − 2) + 1)) = (FermatNo‘(𝑁 − 1)))
4140oveq2d 7464 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 1))) · (FermatNo‘((𝑁 − 2) + 1))) = ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1))))
4241oveq1d 7463 . . . 4 (𝑁 ∈ (ℤ‘2) → (((2↑(2↑(𝑁 − 1))) · (FermatNo‘((𝑁 − 2) + 1))) − ((2↑(2↑(𝑁 − 1))) · 2)) = (((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1))) − ((2↑(2↑(𝑁 − 1))) · 2)))
4330, 42eqtrd 2780 . . 3 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 1))) · ((FermatNo‘((𝑁 − 2) + 1)) − 2)) = (((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1))) − ((2↑(2↑(𝑁 − 1))) · 2)))
4443oveq2d 7464 . 2 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · ((FermatNo‘((𝑁 − 2) + 1)) − 2))) = ((FermatNo‘(𝑁 − 1)) + (((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1))) − ((2↑(2↑(𝑁 − 1))) · 2))))
45 fmtnonn 47405 . . . . . . . . . 10 ((𝑁 − 1) ∈ ℕ0 → (FermatNo‘(𝑁 − 1)) ∈ ℕ)
4621, 45syl 17 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (FermatNo‘(𝑁 − 1)) ∈ ℕ)
4746nncnd 12309 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (FermatNo‘(𝑁 − 1)) ∈ ℂ)
4847mullidd 11308 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (1 · (FermatNo‘(𝑁 − 1))) = (FermatNo‘(𝑁 − 1)))
4948eqcomd 2746 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (FermatNo‘(𝑁 − 1)) = (1 · (FermatNo‘(𝑁 − 1))))
5049oveq1d 7463 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1)))) = ((1 · (FermatNo‘(𝑁 − 1))) + ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1)))))
5133, 24, 47adddird 11315 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((1 + (2↑(2↑(𝑁 − 1)))) · (FermatNo‘(𝑁 − 1))) = ((1 · (FermatNo‘(𝑁 − 1))) + ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1)))))
5233, 24addcomd 11492 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (1 + (2↑(2↑(𝑁 − 1)))) = ((2↑(2↑(𝑁 − 1))) + 1))
53 fmtno 47403 . . . . . . . . 9 ((𝑁 − 1) ∈ ℕ0 → (FermatNo‘(𝑁 − 1)) = ((2↑(2↑(𝑁 − 1))) + 1))
5421, 53syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (FermatNo‘(𝑁 − 1)) = ((2↑(2↑(𝑁 − 1))) + 1))
5552, 54eqtr4d 2783 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (1 + (2↑(2↑(𝑁 − 1)))) = (FermatNo‘(𝑁 − 1)))
5655oveq1d 7463 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((1 + (2↑(2↑(𝑁 − 1)))) · (FermatNo‘(𝑁 − 1))) = ((FermatNo‘(𝑁 − 1)) · (FermatNo‘(𝑁 − 1))))
5747sqvald 14193 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1))↑2) = ((FermatNo‘(𝑁 − 1)) · (FermatNo‘(𝑁 − 1))))
5856, 57eqtr4d 2783 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((1 + (2↑(2↑(𝑁 − 1)))) · (FermatNo‘(𝑁 − 1))) = ((FermatNo‘(𝑁 − 1))↑2))
5950, 51, 583eqtr2d 2786 . . . 4 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1)))) = ((FermatNo‘(𝑁 − 1))↑2))
6059oveq1d 7463 . . 3 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1)))) − ((2↑(2↑(𝑁 − 1))) · 2)) = (((FermatNo‘(𝑁 − 1))↑2) − ((2↑(2↑(𝑁 − 1))) · 2)))
6124, 47mulcld 11310 . . . 4 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1))) ∈ ℂ)
6224, 9mulcld 11310 . . . 4 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 1))) · 2) ∈ ℂ)
6347, 61, 62addsubassd 11667 . . 3 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1)))) − ((2↑(2↑(𝑁 − 1))) · 2)) = ((FermatNo‘(𝑁 − 1)) + (((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1))) − ((2↑(2↑(𝑁 − 1))) · 2))))
64 npcan1 11715 . . . . . . 7 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
6531, 64syl 17 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((𝑁 − 1) + 1) = 𝑁)
6665eqcomd 2746 . . . . 5 (𝑁 ∈ (ℤ‘2) → 𝑁 = ((𝑁 − 1) + 1))
6766fveq2d 6924 . . . 4 (𝑁 ∈ (ℤ‘2) → (FermatNo‘𝑁) = (FermatNo‘((𝑁 − 1) + 1)))
68 fmtnorec1 47411 . . . . 5 ((𝑁 − 1) ∈ ℕ0 → (FermatNo‘((𝑁 − 1) + 1)) = ((((FermatNo‘(𝑁 − 1)) − 1)↑2) + 1))
6921, 68syl 17 . . . 4 (𝑁 ∈ (ℤ‘2) → (FermatNo‘((𝑁 − 1) + 1)) = ((((FermatNo‘(𝑁 − 1)) − 1)↑2) + 1))
70 binom2sub1 14270 . . . . . . 7 ((FermatNo‘(𝑁 − 1)) ∈ ℂ → (((FermatNo‘(𝑁 − 1)) − 1)↑2) = ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + 1))
7147, 70syl 17 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1)) − 1)↑2) = ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + 1))
7271oveq1d 7463 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((((FermatNo‘(𝑁 − 1)) − 1)↑2) + 1) = (((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + 1) + 1))
7346nnsqcld 14293 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1))↑2) ∈ ℕ)
7473nncnd 12309 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1))↑2) ∈ ℂ)
759, 47mulcld 11310 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (2 · (FermatNo‘(𝑁 − 1))) ∈ ℂ)
7674, 75subcld 11647 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) ∈ ℂ)
7776, 33, 33addassd 11312 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + 1) + 1) = ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + (1 + 1)))
78322timesi 12431 . . . . . . . . 9 (2 · 1) = (1 + 1)
7978eqcomi 2749 . . . . . . . 8 (1 + 1) = (2 · 1)
8079a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (1 + 1) = (2 · 1))
8180oveq2d 7464 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + (1 + 1)) = ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + (2 · 1)))
8277, 81eqtrd 2780 . . . . 5 (𝑁 ∈ (ℤ‘2) → (((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + 1) + 1) = ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + (2 · 1)))
838, 32mulcli 11297 . . . . . . . 8 (2 · 1) ∈ ℂ
8483a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (2 · 1) ∈ ℂ)
8574, 75, 84subadd23d 11669 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + (2 · 1)) = (((FermatNo‘(𝑁 − 1))↑2) + ((2 · 1) − (2 · (FermatNo‘(𝑁 − 1))))))
869, 33, 47subdid 11746 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (2 · (1 − (FermatNo‘(𝑁 − 1)))) = ((2 · 1) − (2 · (FermatNo‘(𝑁 − 1)))))
8786eqcomd 2746 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → ((2 · 1) − (2 · (FermatNo‘(𝑁 − 1)))) = (2 · (1 − (FermatNo‘(𝑁 − 1)))))
8887oveq2d 7464 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1))↑2) + ((2 · 1) − (2 · (FermatNo‘(𝑁 − 1))))) = (((FermatNo‘(𝑁 − 1))↑2) + (2 · (1 − (FermatNo‘(𝑁 − 1))))))
8933, 47subcld 11647 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (1 − (FermatNo‘(𝑁 − 1))) ∈ ℂ)
909, 89mulneg2d 11744 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (2 · -(1 − (FermatNo‘(𝑁 − 1)))) = -(2 · (1 − (FermatNo‘(𝑁 − 1)))))
9133, 47negsubdi2d 11663 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → -(1 − (FermatNo‘(𝑁 − 1))) = ((FermatNo‘(𝑁 − 1)) − 1))
92 fmtnom1nn 47406 . . . . . . . . . . . 12 ((𝑁 − 1) ∈ ℕ0 → ((FermatNo‘(𝑁 − 1)) − 1) = (2↑(2↑(𝑁 − 1))))
9321, 92syl 17 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1)) − 1) = (2↑(2↑(𝑁 − 1))))
9491, 93eqtrd 2780 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → -(1 − (FermatNo‘(𝑁 − 1))) = (2↑(2↑(𝑁 − 1))))
9594oveq2d 7464 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (2 · -(1 − (FermatNo‘(𝑁 − 1)))) = (2 · (2↑(2↑(𝑁 − 1)))))
9690, 95eqtr3d 2782 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → -(2 · (1 − (FermatNo‘(𝑁 − 1)))) = (2 · (2↑(2↑(𝑁 − 1)))))
9796oveq2d 7464 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1))↑2) − -(2 · (1 − (FermatNo‘(𝑁 − 1))))) = (((FermatNo‘(𝑁 − 1))↑2) − (2 · (2↑(2↑(𝑁 − 1))))))
989, 89mulcld 11310 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (2 · (1 − (FermatNo‘(𝑁 − 1)))) ∈ ℂ)
9974, 98subnegd 11654 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1))↑2) − -(2 · (1 − (FermatNo‘(𝑁 − 1))))) = (((FermatNo‘(𝑁 − 1))↑2) + (2 · (1 − (FermatNo‘(𝑁 − 1))))))
1009, 24mulcomd 11311 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (2 · (2↑(2↑(𝑁 − 1)))) = ((2↑(2↑(𝑁 − 1))) · 2))
101100oveq2d 7464 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1))↑2) − (2 · (2↑(2↑(𝑁 − 1))))) = (((FermatNo‘(𝑁 − 1))↑2) − ((2↑(2↑(𝑁 − 1))) · 2)))
10297, 99, 1013eqtr3d 2788 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1))↑2) + (2 · (1 − (FermatNo‘(𝑁 − 1))))) = (((FermatNo‘(𝑁 − 1))↑2) − ((2↑(2↑(𝑁 − 1))) · 2)))
10385, 88, 1023eqtrd 2784 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + (2 · 1)) = (((FermatNo‘(𝑁 − 1))↑2) − ((2↑(2↑(𝑁 − 1))) · 2)))
10472, 82, 1033eqtrd 2784 . . . 4 (𝑁 ∈ (ℤ‘2) → ((((FermatNo‘(𝑁 − 1)) − 1)↑2) + 1) = (((FermatNo‘(𝑁 − 1))↑2) − ((2↑(2↑(𝑁 − 1))) · 2)))
10567, 69, 1043eqtrrd 2785 . . 3 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1))↑2) − ((2↑(2↑(𝑁 − 1))) · 2)) = (FermatNo‘𝑁))
10660, 63, 1053eqtr3d 2788 . 2 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1)) + (((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1))) − ((2↑(2↑(𝑁 − 1))) · 2))) = (FermatNo‘𝑁))
10716, 44, 1063eqtrrd 2785 1 (𝑁 ∈ (ℤ‘2) → (FermatNo‘𝑁) = ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · ∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cmin 11520  -cneg 11521  cn 12293  2c2 12348  0cn0 12553  cuz 12903  ...cfz 13567  cexp 14112  cprod 15951  FermatNocfmtno 47401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-prod 15952  df-fmtno 47402
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator