![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2pwp1prmfmtno | Structured version Visualization version GIF version |
Description: Every prime number of the form ((2βπ) + 1) must be a Fermat number. (Contributed by AV, 7-Aug-2021.) |
Ref | Expression |
---|---|
2pwp1prmfmtno | β’ ((πΎ β β β§ π = ((2βπΎ) + 1) β§ π β β) β βπ β β0 π = (FermatNoβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . 3 β’ ((πΎ β β β§ π = ((2βπΎ) + 1) β§ π β β) β πΎ β β) | |
2 | eleq1 2820 | . . . . 5 β’ (π = ((2βπΎ) + 1) β (π β β β ((2βπΎ) + 1) β β)) | |
3 | 2 | biimpa 476 | . . . 4 β’ ((π = ((2βπΎ) + 1) β§ π β β) β ((2βπΎ) + 1) β β) |
4 | 3 | 3adant1 1129 | . . 3 β’ ((πΎ β β β§ π = ((2βπΎ) + 1) β§ π β β) β ((2βπΎ) + 1) β β) |
5 | 2pwp1prm 46556 | . . 3 β’ ((πΎ β β β§ ((2βπΎ) + 1) β β) β βπ β β0 πΎ = (2βπ)) | |
6 | 1, 4, 5 | syl2anc 583 | . 2 β’ ((πΎ β β β§ π = ((2βπΎ) + 1) β§ π β β) β βπ β β0 πΎ = (2βπ)) |
7 | simpl 482 | . . . . . . . . 9 β’ ((π = ((2βπΎ) + 1) β§ πΎ = (2βπ)) β π = ((2βπΎ) + 1)) | |
8 | oveq2 7420 | . . . . . . . . . . 11 β’ (πΎ = (2βπ) β (2βπΎ) = (2β(2βπ))) | |
9 | 8 | oveq1d 7427 | . . . . . . . . . 10 β’ (πΎ = (2βπ) β ((2βπΎ) + 1) = ((2β(2βπ)) + 1)) |
10 | 9 | adantl 481 | . . . . . . . . 9 β’ ((π = ((2βπΎ) + 1) β§ πΎ = (2βπ)) β ((2βπΎ) + 1) = ((2β(2βπ)) + 1)) |
11 | 7, 10 | eqtrd 2771 | . . . . . . . 8 β’ ((π = ((2βπΎ) + 1) β§ πΎ = (2βπ)) β π = ((2β(2βπ)) + 1)) |
12 | fmtno 46496 | . . . . . . . . 9 β’ (π β β0 β (FermatNoβπ) = ((2β(2βπ)) + 1)) | |
13 | 12 | eqcomd 2737 | . . . . . . . 8 β’ (π β β0 β ((2β(2βπ)) + 1) = (FermatNoβπ)) |
14 | 11, 13 | sylan9eqr 2793 | . . . . . . 7 β’ ((π β β0 β§ (π = ((2βπΎ) + 1) β§ πΎ = (2βπ))) β π = (FermatNoβπ)) |
15 | 14 | exp32 420 | . . . . . 6 β’ (π β β0 β (π = ((2βπΎ) + 1) β (πΎ = (2βπ) β π = (FermatNoβπ)))) |
16 | 15 | com12 32 | . . . . 5 β’ (π = ((2βπΎ) + 1) β (π β β0 β (πΎ = (2βπ) β π = (FermatNoβπ)))) |
17 | 16 | 3ad2ant2 1133 | . . . 4 β’ ((πΎ β β β§ π = ((2βπΎ) + 1) β§ π β β) β (π β β0 β (πΎ = (2βπ) β π = (FermatNoβπ)))) |
18 | 17 | imp 406 | . . 3 β’ (((πΎ β β β§ π = ((2βπΎ) + 1) β§ π β β) β§ π β β0) β (πΎ = (2βπ) β π = (FermatNoβπ))) |
19 | 18 | reximdva 3167 | . 2 β’ ((πΎ β β β§ π = ((2βπΎ) + 1) β§ π β β) β (βπ β β0 πΎ = (2βπ) β βπ β β0 π = (FermatNoβπ))) |
20 | 6, 19 | mpd 15 | 1 β’ ((πΎ β β β§ π = ((2βπΎ) + 1) β§ π β β) β βπ β β0 π = (FermatNoβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 βwrex 3069 βcfv 6543 (class class class)co 7412 1c1 11115 + caddc 11117 βcn 12217 2c2 12272 β0cn0 12477 βcexp 14032 βcprime 16613 FermatNocfmtno 46494 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9640 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-2o 8471 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-sup 9441 df-inf 9442 df-oi 9509 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-n0 12478 df-z 12564 df-uz 12828 df-q 12938 df-rp 12980 df-fz 13490 df-fzo 13633 df-fl 13762 df-mod 13840 df-seq 13972 df-exp 14033 df-hash 14296 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-clim 15437 df-sum 15638 df-dvds 16203 df-gcd 16441 df-prm 16614 df-pc 16775 df-fmtno 46495 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |