![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2pwp1prmfmtno | Structured version Visualization version GIF version |
Description: Every prime number of the form ((2↑𝑘) + 1) must be a Fermat number. (Contributed by AV, 7-Aug-2021.) |
Ref | Expression |
---|---|
2pwp1prmfmtno | ⊢ ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝑃 = (FermatNo‘𝑛)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . . 3 ⊢ ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → 𝐾 ∈ ℕ) | |
2 | eleq1 2825 | . . . . 5 ⊢ (𝑃 = ((2↑𝐾) + 1) → (𝑃 ∈ ℙ ↔ ((2↑𝐾) + 1) ∈ ℙ)) | |
3 | 2 | biimpa 477 | . . . 4 ⊢ ((𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → ((2↑𝐾) + 1) ∈ ℙ) |
4 | 3 | 3adant1 1130 | . . 3 ⊢ ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → ((2↑𝐾) + 1) ∈ ℙ) |
5 | 2pwp1prm 45675 | . . 3 ⊢ ((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) | |
6 | 1, 4, 5 | syl2anc 584 | . 2 ⊢ ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) |
7 | simpl 483 | . . . . . . . . 9 ⊢ ((𝑃 = ((2↑𝐾) + 1) ∧ 𝐾 = (2↑𝑛)) → 𝑃 = ((2↑𝐾) + 1)) | |
8 | oveq2 7359 | . . . . . . . . . . 11 ⊢ (𝐾 = (2↑𝑛) → (2↑𝐾) = (2↑(2↑𝑛))) | |
9 | 8 | oveq1d 7366 | . . . . . . . . . 10 ⊢ (𝐾 = (2↑𝑛) → ((2↑𝐾) + 1) = ((2↑(2↑𝑛)) + 1)) |
10 | 9 | adantl 482 | . . . . . . . . 9 ⊢ ((𝑃 = ((2↑𝐾) + 1) ∧ 𝐾 = (2↑𝑛)) → ((2↑𝐾) + 1) = ((2↑(2↑𝑛)) + 1)) |
11 | 7, 10 | eqtrd 2777 | . . . . . . . 8 ⊢ ((𝑃 = ((2↑𝐾) + 1) ∧ 𝐾 = (2↑𝑛)) → 𝑃 = ((2↑(2↑𝑛)) + 1)) |
12 | fmtno 45615 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) = ((2↑(2↑𝑛)) + 1)) | |
13 | 12 | eqcomd 2743 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ0 → ((2↑(2↑𝑛)) + 1) = (FermatNo‘𝑛)) |
14 | 11, 13 | sylan9eqr 2799 | . . . . . . 7 ⊢ ((𝑛 ∈ ℕ0 ∧ (𝑃 = ((2↑𝐾) + 1) ∧ 𝐾 = (2↑𝑛))) → 𝑃 = (FermatNo‘𝑛)) |
15 | 14 | exp32 421 | . . . . . 6 ⊢ (𝑛 ∈ ℕ0 → (𝑃 = ((2↑𝐾) + 1) → (𝐾 = (2↑𝑛) → 𝑃 = (FermatNo‘𝑛)))) |
16 | 15 | com12 32 | . . . . 5 ⊢ (𝑃 = ((2↑𝐾) + 1) → (𝑛 ∈ ℕ0 → (𝐾 = (2↑𝑛) → 𝑃 = (FermatNo‘𝑛)))) |
17 | 16 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → (𝑛 ∈ ℕ0 → (𝐾 = (2↑𝑛) → 𝑃 = (FermatNo‘𝑛)))) |
18 | 17 | imp 407 | . . 3 ⊢ (((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) ∧ 𝑛 ∈ ℕ0) → (𝐾 = (2↑𝑛) → 𝑃 = (FermatNo‘𝑛))) |
19 | 18 | reximdva 3163 | . 2 ⊢ ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → (∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑛 ∈ ℕ0 𝑃 = (FermatNo‘𝑛))) |
20 | 6, 19 | mpd 15 | 1 ⊢ ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝑃 = (FermatNo‘𝑛)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∃wrex 3071 ‘cfv 6493 (class class class)co 7351 1c1 11010 + caddc 11012 ℕcn 12111 2c2 12166 ℕ0cn0 12371 ↑cexp 13921 ℙcprime 16506 FermatNocfmtno 45613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5240 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7664 ax-inf2 9535 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-int 4906 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5529 df-eprel 5535 df-po 5543 df-so 5544 df-fr 5586 df-se 5587 df-we 5588 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6251 df-ord 6318 df-on 6319 df-lim 6320 df-suc 6321 df-iota 6445 df-fun 6495 df-fn 6496 df-f 6497 df-f1 6498 df-fo 6499 df-f1o 6500 df-fv 6501 df-isom 6502 df-riota 7307 df-ov 7354 df-oprab 7355 df-mpo 7356 df-om 7795 df-1st 7913 df-2nd 7914 df-frecs 8204 df-wrecs 8235 df-recs 8309 df-rdg 8348 df-1o 8404 df-2o 8405 df-er 8606 df-en 8842 df-dom 8843 df-sdom 8844 df-fin 8845 df-sup 9336 df-inf 9337 df-oi 9404 df-card 9833 df-pnf 11149 df-mnf 11150 df-xr 11151 df-ltxr 11152 df-le 11153 df-sub 11345 df-neg 11346 df-div 11771 df-nn 12112 df-2 12174 df-3 12175 df-n0 12372 df-z 12458 df-uz 12722 df-q 12828 df-rp 12870 df-fz 13379 df-fzo 13522 df-fl 13651 df-mod 13729 df-seq 13861 df-exp 13922 df-hash 14184 df-cj 14943 df-re 14944 df-im 14945 df-sqrt 15079 df-abs 15080 df-clim 15329 df-sum 15530 df-dvds 16096 df-gcd 16334 df-prm 16507 df-pc 16668 df-fmtno 45614 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |