Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2pwp1prmfmtno Structured version   Visualization version   GIF version

Theorem 2pwp1prmfmtno 47577
Description: Every prime number of the form ((2↑𝑘) + 1) must be a Fermat number. (Contributed by AV, 7-Aug-2021.)
Assertion
Ref Expression
2pwp1prmfmtno ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝑃 = (FermatNo‘𝑛))
Distinct variable groups:   𝑛,𝐾   𝑃,𝑛

Proof of Theorem 2pwp1prmfmtno
StepHypRef Expression
1 simp1 1137 . . 3 ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → 𝐾 ∈ ℕ)
2 eleq1 2829 . . . . 5 (𝑃 = ((2↑𝐾) + 1) → (𝑃 ∈ ℙ ↔ ((2↑𝐾) + 1) ∈ ℙ))
32biimpa 476 . . . 4 ((𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → ((2↑𝐾) + 1) ∈ ℙ)
433adant1 1131 . . 3 ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → ((2↑𝐾) + 1) ∈ ℙ)
5 2pwp1prm 47576 . . 3 ((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))
61, 4, 5syl2anc 584 . 2 ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))
7 simpl 482 . . . . . . . . 9 ((𝑃 = ((2↑𝐾) + 1) ∧ 𝐾 = (2↑𝑛)) → 𝑃 = ((2↑𝐾) + 1))
8 oveq2 7439 . . . . . . . . . . 11 (𝐾 = (2↑𝑛) → (2↑𝐾) = (2↑(2↑𝑛)))
98oveq1d 7446 . . . . . . . . . 10 (𝐾 = (2↑𝑛) → ((2↑𝐾) + 1) = ((2↑(2↑𝑛)) + 1))
109adantl 481 . . . . . . . . 9 ((𝑃 = ((2↑𝐾) + 1) ∧ 𝐾 = (2↑𝑛)) → ((2↑𝐾) + 1) = ((2↑(2↑𝑛)) + 1))
117, 10eqtrd 2777 . . . . . . . 8 ((𝑃 = ((2↑𝐾) + 1) ∧ 𝐾 = (2↑𝑛)) → 𝑃 = ((2↑(2↑𝑛)) + 1))
12 fmtno 47516 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) = ((2↑(2↑𝑛)) + 1))
1312eqcomd 2743 . . . . . . . 8 (𝑛 ∈ ℕ0 → ((2↑(2↑𝑛)) + 1) = (FermatNo‘𝑛))
1411, 13sylan9eqr 2799 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ (𝑃 = ((2↑𝐾) + 1) ∧ 𝐾 = (2↑𝑛))) → 𝑃 = (FermatNo‘𝑛))
1514exp32 420 . . . . . 6 (𝑛 ∈ ℕ0 → (𝑃 = ((2↑𝐾) + 1) → (𝐾 = (2↑𝑛) → 𝑃 = (FermatNo‘𝑛))))
1615com12 32 . . . . 5 (𝑃 = ((2↑𝐾) + 1) → (𝑛 ∈ ℕ0 → (𝐾 = (2↑𝑛) → 𝑃 = (FermatNo‘𝑛))))
17163ad2ant2 1135 . . . 4 ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → (𝑛 ∈ ℕ0 → (𝐾 = (2↑𝑛) → 𝑃 = (FermatNo‘𝑛))))
1817imp 406 . . 3 (((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) ∧ 𝑛 ∈ ℕ0) → (𝐾 = (2↑𝑛) → 𝑃 = (FermatNo‘𝑛)))
1918reximdva 3168 . 2 ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → (∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑛 ∈ ℕ0 𝑃 = (FermatNo‘𝑛)))
206, 19mpd 15 1 ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝑃 = (FermatNo‘𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wrex 3070  cfv 6561  (class class class)co 7431  1c1 11156   + caddc 11158  cn 12266  2c2 12321  0cn0 12526  cexp 14102  cprime 16708  FermatNocfmtno 47514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-dvds 16291  df-gcd 16532  df-prm 16709  df-pc 16875  df-fmtno 47515
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator