Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2pwp1prmfmtno Structured version   Visualization version   GIF version

Theorem 2pwp1prmfmtno 45676
Description: Every prime number of the form ((2↑𝑘) + 1) must be a Fermat number. (Contributed by AV, 7-Aug-2021.)
Assertion
Ref Expression
2pwp1prmfmtno ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝑃 = (FermatNo‘𝑛))
Distinct variable groups:   𝑛,𝐾   𝑃,𝑛

Proof of Theorem 2pwp1prmfmtno
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → 𝐾 ∈ ℕ)
2 eleq1 2825 . . . . 5 (𝑃 = ((2↑𝐾) + 1) → (𝑃 ∈ ℙ ↔ ((2↑𝐾) + 1) ∈ ℙ))
32biimpa 477 . . . 4 ((𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → ((2↑𝐾) + 1) ∈ ℙ)
433adant1 1130 . . 3 ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → ((2↑𝐾) + 1) ∈ ℙ)
5 2pwp1prm 45675 . . 3 ((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))
61, 4, 5syl2anc 584 . 2 ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))
7 simpl 483 . . . . . . . . 9 ((𝑃 = ((2↑𝐾) + 1) ∧ 𝐾 = (2↑𝑛)) → 𝑃 = ((2↑𝐾) + 1))
8 oveq2 7359 . . . . . . . . . . 11 (𝐾 = (2↑𝑛) → (2↑𝐾) = (2↑(2↑𝑛)))
98oveq1d 7366 . . . . . . . . . 10 (𝐾 = (2↑𝑛) → ((2↑𝐾) + 1) = ((2↑(2↑𝑛)) + 1))
109adantl 482 . . . . . . . . 9 ((𝑃 = ((2↑𝐾) + 1) ∧ 𝐾 = (2↑𝑛)) → ((2↑𝐾) + 1) = ((2↑(2↑𝑛)) + 1))
117, 10eqtrd 2777 . . . . . . . 8 ((𝑃 = ((2↑𝐾) + 1) ∧ 𝐾 = (2↑𝑛)) → 𝑃 = ((2↑(2↑𝑛)) + 1))
12 fmtno 45615 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) = ((2↑(2↑𝑛)) + 1))
1312eqcomd 2743 . . . . . . . 8 (𝑛 ∈ ℕ0 → ((2↑(2↑𝑛)) + 1) = (FermatNo‘𝑛))
1411, 13sylan9eqr 2799 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ (𝑃 = ((2↑𝐾) + 1) ∧ 𝐾 = (2↑𝑛))) → 𝑃 = (FermatNo‘𝑛))
1514exp32 421 . . . . . 6 (𝑛 ∈ ℕ0 → (𝑃 = ((2↑𝐾) + 1) → (𝐾 = (2↑𝑛) → 𝑃 = (FermatNo‘𝑛))))
1615com12 32 . . . . 5 (𝑃 = ((2↑𝐾) + 1) → (𝑛 ∈ ℕ0 → (𝐾 = (2↑𝑛) → 𝑃 = (FermatNo‘𝑛))))
17163ad2ant2 1134 . . . 4 ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → (𝑛 ∈ ℕ0 → (𝐾 = (2↑𝑛) → 𝑃 = (FermatNo‘𝑛))))
1817imp 407 . . 3 (((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) ∧ 𝑛 ∈ ℕ0) → (𝐾 = (2↑𝑛) → 𝑃 = (FermatNo‘𝑛)))
1918reximdva 3163 . 2 ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → (∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑛 ∈ ℕ0 𝑃 = (FermatNo‘𝑛)))
206, 19mpd 15 1 ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝑃 = (FermatNo‘𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3071  cfv 6493  (class class class)co 7351  1c1 11010   + caddc 11012  cn 12111  2c2 12166  0cn0 12371  cexp 13921  cprime 16506  FermatNocfmtno 45613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664  ax-inf2 9535  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-int 4906  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-se 5587  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-isom 6502  df-riota 7307  df-ov 7354  df-oprab 7355  df-mpo 7356  df-om 7795  df-1st 7913  df-2nd 7914  df-frecs 8204  df-wrecs 8235  df-recs 8309  df-rdg 8348  df-1o 8404  df-2o 8405  df-er 8606  df-en 8842  df-dom 8843  df-sdom 8844  df-fin 8845  df-sup 9336  df-inf 9337  df-oi 9404  df-card 9833  df-pnf 11149  df-mnf 11150  df-xr 11151  df-ltxr 11152  df-le 11153  df-sub 11345  df-neg 11346  df-div 11771  df-nn 12112  df-2 12174  df-3 12175  df-n0 12372  df-z 12458  df-uz 12722  df-q 12828  df-rp 12870  df-fz 13379  df-fzo 13522  df-fl 13651  df-mod 13729  df-seq 13861  df-exp 13922  df-hash 14184  df-cj 14943  df-re 14944  df-im 14945  df-sqrt 15079  df-abs 15080  df-clim 15329  df-sum 15530  df-dvds 16096  df-gcd 16334  df-prm 16507  df-pc 16668  df-fmtno 45614
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator