Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2pwp1prmfmtno Structured version   Visualization version   GIF version

Theorem 2pwp1prmfmtno 47571
Description: Every prime number of the form ((2↑𝑘) + 1) must be a Fermat number. (Contributed by AV, 7-Aug-2021.)
Assertion
Ref Expression
2pwp1prmfmtno ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝑃 = (FermatNo‘𝑛))
Distinct variable groups:   𝑛,𝐾   𝑃,𝑛

Proof of Theorem 2pwp1prmfmtno
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → 𝐾 ∈ ℕ)
2 eleq1 2823 . . . . 5 (𝑃 = ((2↑𝐾) + 1) → (𝑃 ∈ ℙ ↔ ((2↑𝐾) + 1) ∈ ℙ))
32biimpa 476 . . . 4 ((𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → ((2↑𝐾) + 1) ∈ ℙ)
433adant1 1130 . . 3 ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → ((2↑𝐾) + 1) ∈ ℙ)
5 2pwp1prm 47570 . . 3 ((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))
61, 4, 5syl2anc 584 . 2 ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))
7 simpl 482 . . . . . . . . 9 ((𝑃 = ((2↑𝐾) + 1) ∧ 𝐾 = (2↑𝑛)) → 𝑃 = ((2↑𝐾) + 1))
8 oveq2 7418 . . . . . . . . . . 11 (𝐾 = (2↑𝑛) → (2↑𝐾) = (2↑(2↑𝑛)))
98oveq1d 7425 . . . . . . . . . 10 (𝐾 = (2↑𝑛) → ((2↑𝐾) + 1) = ((2↑(2↑𝑛)) + 1))
109adantl 481 . . . . . . . . 9 ((𝑃 = ((2↑𝐾) + 1) ∧ 𝐾 = (2↑𝑛)) → ((2↑𝐾) + 1) = ((2↑(2↑𝑛)) + 1))
117, 10eqtrd 2771 . . . . . . . 8 ((𝑃 = ((2↑𝐾) + 1) ∧ 𝐾 = (2↑𝑛)) → 𝑃 = ((2↑(2↑𝑛)) + 1))
12 fmtno 47510 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) = ((2↑(2↑𝑛)) + 1))
1312eqcomd 2742 . . . . . . . 8 (𝑛 ∈ ℕ0 → ((2↑(2↑𝑛)) + 1) = (FermatNo‘𝑛))
1411, 13sylan9eqr 2793 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ (𝑃 = ((2↑𝐾) + 1) ∧ 𝐾 = (2↑𝑛))) → 𝑃 = (FermatNo‘𝑛))
1514exp32 420 . . . . . 6 (𝑛 ∈ ℕ0 → (𝑃 = ((2↑𝐾) + 1) → (𝐾 = (2↑𝑛) → 𝑃 = (FermatNo‘𝑛))))
1615com12 32 . . . . 5 (𝑃 = ((2↑𝐾) + 1) → (𝑛 ∈ ℕ0 → (𝐾 = (2↑𝑛) → 𝑃 = (FermatNo‘𝑛))))
17163ad2ant2 1134 . . . 4 ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → (𝑛 ∈ ℕ0 → (𝐾 = (2↑𝑛) → 𝑃 = (FermatNo‘𝑛))))
1817imp 406 . . 3 (((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) ∧ 𝑛 ∈ ℕ0) → (𝐾 = (2↑𝑛) → 𝑃 = (FermatNo‘𝑛)))
1918reximdva 3154 . 2 ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → (∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑛 ∈ ℕ0 𝑃 = (FermatNo‘𝑛)))
206, 19mpd 15 1 ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝑃 = (FermatNo‘𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3061  cfv 6536  (class class class)co 7410  1c1 11135   + caddc 11137  cn 12245  2c2 12300  0cn0 12506  cexp 14084  cprime 16695  FermatNocfmtno 47508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708  df-dvds 16278  df-gcd 16519  df-prm 16696  df-pc 16862  df-fmtno 47509
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator