| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtnoge3 | Structured version Visualization version GIF version | ||
| Description: Each Fermat number is greater than or equal to 3. (Contributed by AV, 4-Aug-2021.) |
| Ref | Expression |
|---|---|
| fmtnoge3 | ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ (ℤ≥‘3)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmtno 47516 | . 2 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1)) | |
| 2 | 3z 12650 | . . . 4 ⊢ 3 ∈ ℤ | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 3 ∈ ℤ) |
| 4 | 2nn0 12543 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
| 5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℕ0) |
| 6 | id 22 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0) | |
| 7 | 5, 6 | nn0expcld 14285 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℕ0) |
| 8 | 5, 7 | nn0expcld 14285 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (2↑(2↑𝑁)) ∈ ℕ0) |
| 9 | peano2nn0 12566 | . . . . 5 ⊢ ((2↑(2↑𝑁)) ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ ℕ0) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ ℕ0) |
| 11 | 10 | nn0zd 12639 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ ℤ) |
| 12 | 3m1e2 12394 | . . . . 5 ⊢ (3 − 1) = 2 | |
| 13 | 2cn 12341 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
| 14 | exp1 14108 | . . . . . . 7 ⊢ (2 ∈ ℂ → (2↑1) = 2) | |
| 15 | 13, 14 | ax-mp 5 | . . . . . 6 ⊢ (2↑1) = 2 |
| 16 | 2re 12340 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
| 17 | 16 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℝ) |
| 18 | 1le2 12475 | . . . . . . . . 9 ⊢ 1 ≤ 2 | |
| 19 | 18 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 1 ≤ 2) |
| 20 | 17, 6, 19 | expge1d 14205 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 1 ≤ (2↑𝑁)) |
| 21 | 1zzd 12648 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℤ) | |
| 22 | 7 | nn0zd 12639 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℤ) |
| 23 | 1lt2 12437 | . . . . . . . . 9 ⊢ 1 < 2 | |
| 24 | 23 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 1 < 2) |
| 25 | 17, 21, 22, 24 | leexp2d 14291 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (1 ≤ (2↑𝑁) ↔ (2↑1) ≤ (2↑(2↑𝑁)))) |
| 26 | 20, 25 | mpbid 232 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (2↑1) ≤ (2↑(2↑𝑁))) |
| 27 | 15, 26 | eqbrtrrid 5179 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 2 ≤ (2↑(2↑𝑁))) |
| 28 | 12, 27 | eqbrtrid 5178 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (3 − 1) ≤ (2↑(2↑𝑁))) |
| 29 | 3re 12346 | . . . . . 6 ⊢ 3 ∈ ℝ | |
| 30 | 29 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 3 ∈ ℝ) |
| 31 | 1red 11262 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℝ) | |
| 32 | 8 | nn0red 12588 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (2↑(2↑𝑁)) ∈ ℝ) |
| 33 | 30, 31, 32 | lesubaddd 11860 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((3 − 1) ≤ (2↑(2↑𝑁)) ↔ 3 ≤ ((2↑(2↑𝑁)) + 1))) |
| 34 | 28, 33 | mpbid 232 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 3 ≤ ((2↑(2↑𝑁)) + 1)) |
| 35 | eluz2 12884 | . . 3 ⊢ (((2↑(2↑𝑁)) + 1) ∈ (ℤ≥‘3) ↔ (3 ∈ ℤ ∧ ((2↑(2↑𝑁)) + 1) ∈ ℤ ∧ 3 ≤ ((2↑(2↑𝑁)) + 1))) | |
| 36 | 3, 11, 34, 35 | syl3anbrc 1344 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ (ℤ≥‘3)) |
| 37 | 1, 36 | eqeltrd 2841 | 1 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ (ℤ≥‘3)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 ℝcr 11154 1c1 11156 + caddc 11158 < clt 11295 ≤ cle 11296 − cmin 11492 2c2 12321 3c3 12322 ℕ0cn0 12526 ℤcz 12613 ℤ≥cuz 12878 ↑cexp 14102 FermatNocfmtno 47514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-seq 14043 df-exp 14103 df-fmtno 47515 |
| This theorem is referenced by: fmtnonn 47518 prmdvdsfmtnof 47573 prmdvdsfmtnof1 47574 |
| Copyright terms: Public domain | W3C validator |