Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnoge3 Structured version   Visualization version   GIF version

Theorem fmtnoge3 43699
Description: Each Fermat number is greater than or equal to 3. (Contributed by AV, 4-Aug-2021.)
Assertion
Ref Expression
fmtnoge3 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ (ℤ‘3))

Proof of Theorem fmtnoge3
StepHypRef Expression
1 fmtno 43698 . 2 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))
2 3z 12018 . . . 4 3 ∈ ℤ
32a1i 11 . . 3 (𝑁 ∈ ℕ0 → 3 ∈ ℤ)
4 2nn0 11917 . . . . . . 7 2 ∈ ℕ0
54a1i 11 . . . . . 6 (𝑁 ∈ ℕ0 → 2 ∈ ℕ0)
6 id 22 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
75, 6nn0expcld 13610 . . . . . 6 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℕ0)
85, 7nn0expcld 13610 . . . . 5 (𝑁 ∈ ℕ0 → (2↑(2↑𝑁)) ∈ ℕ0)
9 peano2nn0 11940 . . . . 5 ((2↑(2↑𝑁)) ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ ℕ0)
108, 9syl 17 . . . 4 (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ ℕ0)
1110nn0zd 12088 . . 3 (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ ℤ)
12 3m1e2 11768 . . . . 5 (3 − 1) = 2
13 2cn 11715 . . . . . . 7 2 ∈ ℂ
14 exp1 13438 . . . . . . 7 (2 ∈ ℂ → (2↑1) = 2)
1513, 14ax-mp 5 . . . . . 6 (2↑1) = 2
16 2re 11714 . . . . . . . . 9 2 ∈ ℝ
1716a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
18 1le2 11849 . . . . . . . . 9 1 ≤ 2
1918a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ0 → 1 ≤ 2)
2017, 6, 19expge1d 13532 . . . . . . 7 (𝑁 ∈ ℕ0 → 1 ≤ (2↑𝑁))
21 1zzd 12016 . . . . . . . 8 (𝑁 ∈ ℕ0 → 1 ∈ ℤ)
227nn0zd 12088 . . . . . . . 8 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℤ)
23 1lt2 11811 . . . . . . . . 9 1 < 2
2423a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ0 → 1 < 2)
2517, 21, 22, 24leexp2d 13618 . . . . . . 7 (𝑁 ∈ ℕ0 → (1 ≤ (2↑𝑁) ↔ (2↑1) ≤ (2↑(2↑𝑁))))
2620, 25mpbid 234 . . . . . 6 (𝑁 ∈ ℕ0 → (2↑1) ≤ (2↑(2↑𝑁)))
2715, 26eqbrtrrid 5105 . . . . 5 (𝑁 ∈ ℕ0 → 2 ≤ (2↑(2↑𝑁)))
2812, 27eqbrtrid 5104 . . . 4 (𝑁 ∈ ℕ0 → (3 − 1) ≤ (2↑(2↑𝑁)))
29 3re 11720 . . . . . 6 3 ∈ ℝ
3029a1i 11 . . . . 5 (𝑁 ∈ ℕ0 → 3 ∈ ℝ)
31 1red 10645 . . . . 5 (𝑁 ∈ ℕ0 → 1 ∈ ℝ)
328nn0red 11959 . . . . 5 (𝑁 ∈ ℕ0 → (2↑(2↑𝑁)) ∈ ℝ)
3330, 31, 32lesubaddd 11240 . . . 4 (𝑁 ∈ ℕ0 → ((3 − 1) ≤ (2↑(2↑𝑁)) ↔ 3 ≤ ((2↑(2↑𝑁)) + 1)))
3428, 33mpbid 234 . . 3 (𝑁 ∈ ℕ0 → 3 ≤ ((2↑(2↑𝑁)) + 1))
35 eluz2 12252 . . 3 (((2↑(2↑𝑁)) + 1) ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ ((2↑(2↑𝑁)) + 1) ∈ ℤ ∧ 3 ≤ ((2↑(2↑𝑁)) + 1)))
363, 11, 34, 35syl3anbrc 1339 . 2 (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ (ℤ‘3))
371, 36eqeltrd 2916 1 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ (ℤ‘3))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2113   class class class wbr 5069  cfv 6358  (class class class)co 7159  cc 10538  cr 10539  1c1 10541   + caddc 10543   < clt 10678  cle 10679  cmin 10873  2c2 11695  3c3 11696  0cn0 11900  cz 11984  cuz 12246  cexp 13432  FermatNocfmtno 43696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-seq 13373  df-exp 13433  df-fmtno 43697
This theorem is referenced by:  fmtnonn  43700  prmdvdsfmtnof  43755  prmdvdsfmtnof1  43756
  Copyright terms: Public domain W3C validator