Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnoge3 Structured version   Visualization version   GIF version

Theorem fmtnoge3 47531
Description: Each Fermat number is greater than or equal to 3. (Contributed by AV, 4-Aug-2021.)
Assertion
Ref Expression
fmtnoge3 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ (ℤ‘3))

Proof of Theorem fmtnoge3
StepHypRef Expression
1 fmtno 47530 . 2 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))
2 3z 12566 . . . 4 3 ∈ ℤ
32a1i 11 . . 3 (𝑁 ∈ ℕ0 → 3 ∈ ℤ)
4 2nn0 12459 . . . . . . 7 2 ∈ ℕ0
54a1i 11 . . . . . 6 (𝑁 ∈ ℕ0 → 2 ∈ ℕ0)
6 id 22 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
75, 6nn0expcld 14211 . . . . . 6 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℕ0)
85, 7nn0expcld 14211 . . . . 5 (𝑁 ∈ ℕ0 → (2↑(2↑𝑁)) ∈ ℕ0)
9 peano2nn0 12482 . . . . 5 ((2↑(2↑𝑁)) ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ ℕ0)
108, 9syl 17 . . . 4 (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ ℕ0)
1110nn0zd 12555 . . 3 (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ ℤ)
12 3m1e2 12309 . . . . 5 (3 − 1) = 2
13 2cn 12261 . . . . . . 7 2 ∈ ℂ
14 exp1 14032 . . . . . . 7 (2 ∈ ℂ → (2↑1) = 2)
1513, 14ax-mp 5 . . . . . 6 (2↑1) = 2
16 2re 12260 . . . . . . . . 9 2 ∈ ℝ
1716a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
18 1le2 12390 . . . . . . . . 9 1 ≤ 2
1918a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ0 → 1 ≤ 2)
2017, 6, 19expge1d 14130 . . . . . . 7 (𝑁 ∈ ℕ0 → 1 ≤ (2↑𝑁))
21 1zzd 12564 . . . . . . . 8 (𝑁 ∈ ℕ0 → 1 ∈ ℤ)
227nn0zd 12555 . . . . . . . 8 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℤ)
23 1lt2 12352 . . . . . . . . 9 1 < 2
2423a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ0 → 1 < 2)
2517, 21, 22, 24leexp2d 14217 . . . . . . 7 (𝑁 ∈ ℕ0 → (1 ≤ (2↑𝑁) ↔ (2↑1) ≤ (2↑(2↑𝑁))))
2620, 25mpbid 232 . . . . . 6 (𝑁 ∈ ℕ0 → (2↑1) ≤ (2↑(2↑𝑁)))
2715, 26eqbrtrrid 5143 . . . . 5 (𝑁 ∈ ℕ0 → 2 ≤ (2↑(2↑𝑁)))
2812, 27eqbrtrid 5142 . . . 4 (𝑁 ∈ ℕ0 → (3 − 1) ≤ (2↑(2↑𝑁)))
29 3re 12266 . . . . . 6 3 ∈ ℝ
3029a1i 11 . . . . 5 (𝑁 ∈ ℕ0 → 3 ∈ ℝ)
31 1red 11175 . . . . 5 (𝑁 ∈ ℕ0 → 1 ∈ ℝ)
328nn0red 12504 . . . . 5 (𝑁 ∈ ℕ0 → (2↑(2↑𝑁)) ∈ ℝ)
3330, 31, 32lesubaddd 11775 . . . 4 (𝑁 ∈ ℕ0 → ((3 − 1) ≤ (2↑(2↑𝑁)) ↔ 3 ≤ ((2↑(2↑𝑁)) + 1)))
3428, 33mpbid 232 . . 3 (𝑁 ∈ ℕ0 → 3 ≤ ((2↑(2↑𝑁)) + 1))
35 eluz2 12799 . . 3 (((2↑(2↑𝑁)) + 1) ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ ((2↑(2↑𝑁)) + 1) ∈ ℤ ∧ 3 ≤ ((2↑(2↑𝑁)) + 1)))
363, 11, 34, 35syl3anbrc 1344 . 2 (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ (ℤ‘3))
371, 36eqeltrd 2828 1 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ (ℤ‘3))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cmin 11405  2c2 12241  3c3 12242  0cn0 12442  cz 12529  cuz 12793  cexp 14026  FermatNocfmtno 47528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-seq 13967  df-exp 14027  df-fmtno 47529
This theorem is referenced by:  fmtnonn  47532  prmdvdsfmtnof  47587  prmdvdsfmtnof1  47588
  Copyright terms: Public domain W3C validator