Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtnoge3 | Structured version Visualization version GIF version |
Description: Each Fermat number is greater than or equal to 3. (Contributed by AV, 4-Aug-2021.) |
Ref | Expression |
---|---|
fmtnoge3 | ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ (ℤ≥‘3)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmtno 44950 | . 2 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1)) | |
2 | 3z 12353 | . . . 4 ⊢ 3 ∈ ℤ | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 3 ∈ ℤ) |
4 | 2nn0 12250 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℕ0) |
6 | id 22 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0) | |
7 | 5, 6 | nn0expcld 13959 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℕ0) |
8 | 5, 7 | nn0expcld 13959 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (2↑(2↑𝑁)) ∈ ℕ0) |
9 | peano2nn0 12273 | . . . . 5 ⊢ ((2↑(2↑𝑁)) ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ ℕ0) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ ℕ0) |
11 | 10 | nn0zd 12423 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ ℤ) |
12 | 3m1e2 12101 | . . . . 5 ⊢ (3 − 1) = 2 | |
13 | 2cn 12048 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
14 | exp1 13786 | . . . . . . 7 ⊢ (2 ∈ ℂ → (2↑1) = 2) | |
15 | 13, 14 | ax-mp 5 | . . . . . 6 ⊢ (2↑1) = 2 |
16 | 2re 12047 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
17 | 16 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℝ) |
18 | 1le2 12182 | . . . . . . . . 9 ⊢ 1 ≤ 2 | |
19 | 18 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 1 ≤ 2) |
20 | 17, 6, 19 | expge1d 13881 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 1 ≤ (2↑𝑁)) |
21 | 1zzd 12351 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℤ) | |
22 | 7 | nn0zd 12423 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℤ) |
23 | 1lt2 12144 | . . . . . . . . 9 ⊢ 1 < 2 | |
24 | 23 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 1 < 2) |
25 | 17, 21, 22, 24 | leexp2d 13967 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (1 ≤ (2↑𝑁) ↔ (2↑1) ≤ (2↑(2↑𝑁)))) |
26 | 20, 25 | mpbid 231 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (2↑1) ≤ (2↑(2↑𝑁))) |
27 | 15, 26 | eqbrtrrid 5115 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 2 ≤ (2↑(2↑𝑁))) |
28 | 12, 27 | eqbrtrid 5114 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (3 − 1) ≤ (2↑(2↑𝑁))) |
29 | 3re 12053 | . . . . . 6 ⊢ 3 ∈ ℝ | |
30 | 29 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 3 ∈ ℝ) |
31 | 1red 10977 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℝ) | |
32 | 8 | nn0red 12294 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (2↑(2↑𝑁)) ∈ ℝ) |
33 | 30, 31, 32 | lesubaddd 11572 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((3 − 1) ≤ (2↑(2↑𝑁)) ↔ 3 ≤ ((2↑(2↑𝑁)) + 1))) |
34 | 28, 33 | mpbid 231 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 3 ≤ ((2↑(2↑𝑁)) + 1)) |
35 | eluz2 12587 | . . 3 ⊢ (((2↑(2↑𝑁)) + 1) ∈ (ℤ≥‘3) ↔ (3 ∈ ℤ ∧ ((2↑(2↑𝑁)) + 1) ∈ ℤ ∧ 3 ≤ ((2↑(2↑𝑁)) + 1))) | |
36 | 3, 11, 34, 35 | syl3anbrc 1342 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ (ℤ≥‘3)) |
37 | 1, 36 | eqeltrd 2841 | 1 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ (ℤ≥‘3)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 class class class wbr 5079 ‘cfv 6432 (class class class)co 7271 ℂcc 10870 ℝcr 10871 1c1 10873 + caddc 10875 < clt 11010 ≤ cle 11011 − cmin 11205 2c2 12028 3c3 12029 ℕ0cn0 12233 ℤcz 12319 ℤ≥cuz 12581 ↑cexp 13780 FermatNocfmtno 44948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12582 df-rp 12730 df-seq 13720 df-exp 13781 df-fmtno 44949 |
This theorem is referenced by: fmtnonn 44952 prmdvdsfmtnof 45007 prmdvdsfmtnof1 45008 |
Copyright terms: Public domain | W3C validator |