Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnoge3 Structured version   Visualization version   GIF version

Theorem fmtnoge3 47404
Description: Each Fermat number is greater than or equal to 3. (Contributed by AV, 4-Aug-2021.)
Assertion
Ref Expression
fmtnoge3 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ (ℤ‘3))

Proof of Theorem fmtnoge3
StepHypRef Expression
1 fmtno 47403 . 2 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))
2 3z 12676 . . . 4 3 ∈ ℤ
32a1i 11 . . 3 (𝑁 ∈ ℕ0 → 3 ∈ ℤ)
4 2nn0 12570 . . . . . . 7 2 ∈ ℕ0
54a1i 11 . . . . . 6 (𝑁 ∈ ℕ0 → 2 ∈ ℕ0)
6 id 22 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
75, 6nn0expcld 14295 . . . . . 6 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℕ0)
85, 7nn0expcld 14295 . . . . 5 (𝑁 ∈ ℕ0 → (2↑(2↑𝑁)) ∈ ℕ0)
9 peano2nn0 12593 . . . . 5 ((2↑(2↑𝑁)) ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ ℕ0)
108, 9syl 17 . . . 4 (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ ℕ0)
1110nn0zd 12665 . . 3 (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ ℤ)
12 3m1e2 12421 . . . . 5 (3 − 1) = 2
13 2cn 12368 . . . . . . 7 2 ∈ ℂ
14 exp1 14118 . . . . . . 7 (2 ∈ ℂ → (2↑1) = 2)
1513, 14ax-mp 5 . . . . . 6 (2↑1) = 2
16 2re 12367 . . . . . . . . 9 2 ∈ ℝ
1716a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
18 1le2 12502 . . . . . . . . 9 1 ≤ 2
1918a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ0 → 1 ≤ 2)
2017, 6, 19expge1d 14215 . . . . . . 7 (𝑁 ∈ ℕ0 → 1 ≤ (2↑𝑁))
21 1zzd 12674 . . . . . . . 8 (𝑁 ∈ ℕ0 → 1 ∈ ℤ)
227nn0zd 12665 . . . . . . . 8 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℤ)
23 1lt2 12464 . . . . . . . . 9 1 < 2
2423a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ0 → 1 < 2)
2517, 21, 22, 24leexp2d 14301 . . . . . . 7 (𝑁 ∈ ℕ0 → (1 ≤ (2↑𝑁) ↔ (2↑1) ≤ (2↑(2↑𝑁))))
2620, 25mpbid 232 . . . . . 6 (𝑁 ∈ ℕ0 → (2↑1) ≤ (2↑(2↑𝑁)))
2715, 26eqbrtrrid 5202 . . . . 5 (𝑁 ∈ ℕ0 → 2 ≤ (2↑(2↑𝑁)))
2812, 27eqbrtrid 5201 . . . 4 (𝑁 ∈ ℕ0 → (3 − 1) ≤ (2↑(2↑𝑁)))
29 3re 12373 . . . . . 6 3 ∈ ℝ
3029a1i 11 . . . . 5 (𝑁 ∈ ℕ0 → 3 ∈ ℝ)
31 1red 11291 . . . . 5 (𝑁 ∈ ℕ0 → 1 ∈ ℝ)
328nn0red 12614 . . . . 5 (𝑁 ∈ ℕ0 → (2↑(2↑𝑁)) ∈ ℝ)
3330, 31, 32lesubaddd 11887 . . . 4 (𝑁 ∈ ℕ0 → ((3 − 1) ≤ (2↑(2↑𝑁)) ↔ 3 ≤ ((2↑(2↑𝑁)) + 1)))
3428, 33mpbid 232 . . 3 (𝑁 ∈ ℕ0 → 3 ≤ ((2↑(2↑𝑁)) + 1))
35 eluz2 12909 . . 3 (((2↑(2↑𝑁)) + 1) ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ ((2↑(2↑𝑁)) + 1) ∈ ℤ ∧ 3 ≤ ((2↑(2↑𝑁)) + 1)))
363, 11, 34, 35syl3anbrc 1343 . 2 (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ (ℤ‘3))
371, 36eqeltrd 2844 1 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ (ℤ‘3))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cmin 11520  2c2 12348  3c3 12349  0cn0 12553  cz 12639  cuz 12903  cexp 14112  FermatNocfmtno 47401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113  df-fmtno 47402
This theorem is referenced by:  fmtnonn  47405  prmdvdsfmtnof  47460  prmdvdsfmtnof1  47461
  Copyright terms: Public domain W3C validator