![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtnoge3 | Structured version Visualization version GIF version |
Description: Each Fermat number is greater than or equal to 3. (Contributed by AV, 4-Aug-2021.) |
Ref | Expression |
---|---|
fmtnoge3 | ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ (ℤ≥‘3)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmtno 46869 | . 2 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1)) | |
2 | 3z 12626 | . . . 4 ⊢ 3 ∈ ℤ | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 3 ∈ ℤ) |
4 | 2nn0 12520 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℕ0) |
6 | id 22 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0) | |
7 | 5, 6 | nn0expcld 14241 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℕ0) |
8 | 5, 7 | nn0expcld 14241 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (2↑(2↑𝑁)) ∈ ℕ0) |
9 | peano2nn0 12543 | . . . . 5 ⊢ ((2↑(2↑𝑁)) ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ ℕ0) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ ℕ0) |
11 | 10 | nn0zd 12615 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ ℤ) |
12 | 3m1e2 12371 | . . . . 5 ⊢ (3 − 1) = 2 | |
13 | 2cn 12318 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
14 | exp1 14065 | . . . . . . 7 ⊢ (2 ∈ ℂ → (2↑1) = 2) | |
15 | 13, 14 | ax-mp 5 | . . . . . 6 ⊢ (2↑1) = 2 |
16 | 2re 12317 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
17 | 16 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℝ) |
18 | 1le2 12452 | . . . . . . . . 9 ⊢ 1 ≤ 2 | |
19 | 18 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 1 ≤ 2) |
20 | 17, 6, 19 | expge1d 14162 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 1 ≤ (2↑𝑁)) |
21 | 1zzd 12624 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℤ) | |
22 | 7 | nn0zd 12615 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℤ) |
23 | 1lt2 12414 | . . . . . . . . 9 ⊢ 1 < 2 | |
24 | 23 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 1 < 2) |
25 | 17, 21, 22, 24 | leexp2d 14247 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (1 ≤ (2↑𝑁) ↔ (2↑1) ≤ (2↑(2↑𝑁)))) |
26 | 20, 25 | mpbid 231 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (2↑1) ≤ (2↑(2↑𝑁))) |
27 | 15, 26 | eqbrtrrid 5184 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 2 ≤ (2↑(2↑𝑁))) |
28 | 12, 27 | eqbrtrid 5183 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (3 − 1) ≤ (2↑(2↑𝑁))) |
29 | 3re 12323 | . . . . . 6 ⊢ 3 ∈ ℝ | |
30 | 29 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 3 ∈ ℝ) |
31 | 1red 11246 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℝ) | |
32 | 8 | nn0red 12564 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (2↑(2↑𝑁)) ∈ ℝ) |
33 | 30, 31, 32 | lesubaddd 11842 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((3 − 1) ≤ (2↑(2↑𝑁)) ↔ 3 ≤ ((2↑(2↑𝑁)) + 1))) |
34 | 28, 33 | mpbid 231 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 3 ≤ ((2↑(2↑𝑁)) + 1)) |
35 | eluz2 12859 | . . 3 ⊢ (((2↑(2↑𝑁)) + 1) ∈ (ℤ≥‘3) ↔ (3 ∈ ℤ ∧ ((2↑(2↑𝑁)) + 1) ∈ ℤ ∧ 3 ≤ ((2↑(2↑𝑁)) + 1))) | |
36 | 3, 11, 34, 35 | syl3anbrc 1341 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ (ℤ≥‘3)) |
37 | 1, 36 | eqeltrd 2829 | 1 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ (ℤ≥‘3)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 class class class wbr 5148 ‘cfv 6548 (class class class)co 7420 ℂcc 11137 ℝcr 11138 1c1 11140 + caddc 11142 < clt 11279 ≤ cle 11280 − cmin 11475 2c2 12298 3c3 12299 ℕ0cn0 12503 ℤcz 12589 ℤ≥cuz 12853 ↑cexp 14059 FermatNocfmtno 46867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-2 12306 df-3 12307 df-n0 12504 df-z 12590 df-uz 12854 df-rp 13008 df-seq 14000 df-exp 14060 df-fmtno 46868 |
This theorem is referenced by: fmtnonn 46871 prmdvdsfmtnof 46926 prmdvdsfmtnof1 46927 |
Copyright terms: Public domain | W3C validator |