Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnorec4 Structured version   Visualization version   GIF version

Theorem fmtnorec4 45731
Description: The fourth recurrence relation for Fermat numbers, see Wikipedia "Fermat number", 31-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties. (Contributed by AV, 31-Jul-2021.)
Assertion
Ref Expression
fmtnorec4 (𝑁 ∈ (ℤ‘2) → (FermatNo‘𝑁) = (((FermatNo‘(𝑁 − 1))↑2) − (2 · (((FermatNo‘(𝑁 − 2)) − 1)↑2))))

Proof of Theorem fmtnorec4
StepHypRef Expression
1 eluz2nn 12809 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
2 nnm1nn0 12454 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
31, 2syl 17 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ0)
4 fmtno 45711 . . . . . 6 ((𝑁 − 1) ∈ ℕ0 → (FermatNo‘(𝑁 − 1)) = ((2↑(2↑(𝑁 − 1))) + 1))
53, 4syl 17 . . . . 5 (𝑁 ∈ (ℤ‘2) → (FermatNo‘(𝑁 − 1)) = ((2↑(2↑(𝑁 − 1))) + 1))
65oveq1d 7372 . . . 4 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1))↑2) = (((2↑(2↑(𝑁 − 1))) + 1)↑2))
7 2nn 12226 . . . . . . . 8 2 ∈ ℕ
87a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ)
9 2nn0 12430 . . . . . . . . 9 2 ∈ ℕ0
109a1i 11 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ0)
1110, 3nn0expcld 14149 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 − 1)) ∈ ℕ0)
128, 11nnexpcld 14148 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (2↑(2↑(𝑁 − 1))) ∈ ℕ)
1312nncnd 12169 . . . . 5 (𝑁 ∈ (ℤ‘2) → (2↑(2↑(𝑁 − 1))) ∈ ℂ)
14 binom21 14122 . . . . 5 ((2↑(2↑(𝑁 − 1))) ∈ ℂ → (((2↑(2↑(𝑁 − 1))) + 1)↑2) = ((((2↑(2↑(𝑁 − 1)))↑2) + (2 · (2↑(2↑(𝑁 − 1))))) + 1))
1513, 14syl 17 . . . 4 (𝑁 ∈ (ℤ‘2) → (((2↑(2↑(𝑁 − 1))) + 1)↑2) = ((((2↑(2↑(𝑁 − 1)))↑2) + (2 · (2↑(2↑(𝑁 − 1))))) + 1))
16 2cn 12228 . . . . . . . . 9 2 ∈ ℂ
1716a1i 11 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℂ)
1817, 10, 11expmuld 14054 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (2↑((2↑(𝑁 − 1)) · 2)) = ((2↑(2↑(𝑁 − 1)))↑2))
1917, 3expp1d 14052 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (2↑((𝑁 − 1) + 1)) = ((2↑(𝑁 − 1)) · 2))
201nncnd 12169 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℂ)
21 npcan1 11580 . . . . . . . . . . 11 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
2220, 21syl 17 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → ((𝑁 − 1) + 1) = 𝑁)
2322oveq2d 7373 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (2↑((𝑁 − 1) + 1)) = (2↑𝑁))
2419, 23eqtr3d 2778 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ((2↑(𝑁 − 1)) · 2) = (2↑𝑁))
2524oveq2d 7373 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (2↑((2↑(𝑁 − 1)) · 2)) = (2↑(2↑𝑁)))
2618, 25eqtr3d 2778 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 1)))↑2) = (2↑(2↑𝑁)))
2726oveq1d 7372 . . . . 5 (𝑁 ∈ (ℤ‘2) → (((2↑(2↑(𝑁 − 1)))↑2) + (2 · (2↑(2↑(𝑁 − 1))))) = ((2↑(2↑𝑁)) + (2 · (2↑(2↑(𝑁 − 1))))))
2827oveq1d 7372 . . . 4 (𝑁 ∈ (ℤ‘2) → ((((2↑(2↑(𝑁 − 1)))↑2) + (2 · (2↑(2↑(𝑁 − 1))))) + 1) = (((2↑(2↑𝑁)) + (2 · (2↑(2↑(𝑁 − 1))))) + 1))
296, 15, 283eqtrd 2780 . . 3 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1))↑2) = (((2↑(2↑𝑁)) + (2 · (2↑(2↑(𝑁 − 1))))) + 1))
30 uznn0sub 12802 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 − 2) ∈ ℕ0)
31 fmtno 45711 . . . . . . . 8 ((𝑁 − 2) ∈ ℕ0 → (FermatNo‘(𝑁 − 2)) = ((2↑(2↑(𝑁 − 2))) + 1))
3230, 31syl 17 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (FermatNo‘(𝑁 − 2)) = ((2↑(2↑(𝑁 − 2))) + 1))
3332oveq1d 7372 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 2)) − 1) = (((2↑(2↑(𝑁 − 2))) + 1) − 1))
3433oveq1d 7372 . . . . 5 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 2)) − 1)↑2) = ((((2↑(2↑(𝑁 − 2))) + 1) − 1)↑2))
3510, 30nn0expcld 14149 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 − 2)) ∈ ℕ0)
368, 35nnexpcld 14148 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (2↑(2↑(𝑁 − 2))) ∈ ℕ)
3736nncnd 12169 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (2↑(2↑(𝑁 − 2))) ∈ ℂ)
38 peano2cn 11327 . . . . . . 7 ((2↑(2↑(𝑁 − 2))) ∈ ℂ → ((2↑(2↑(𝑁 − 2))) + 1) ∈ ℂ)
3937, 38syl 17 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 2))) + 1) ∈ ℂ)
40 binom2sub1 14124 . . . . . 6 (((2↑(2↑(𝑁 − 2))) + 1) ∈ ℂ → ((((2↑(2↑(𝑁 − 2))) + 1) − 1)↑2) = (((((2↑(2↑(𝑁 − 2))) + 1)↑2) − (2 · ((2↑(2↑(𝑁 − 2))) + 1))) + 1))
4139, 40syl 17 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((((2↑(2↑(𝑁 − 2))) + 1) − 1)↑2) = (((((2↑(2↑(𝑁 − 2))) + 1)↑2) − (2 · ((2↑(2↑(𝑁 − 2))) + 1))) + 1))
42 binom21 14122 . . . . . . . 8 ((2↑(2↑(𝑁 − 2))) ∈ ℂ → (((2↑(2↑(𝑁 − 2))) + 1)↑2) = ((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1))
4337, 42syl 17 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (((2↑(2↑(𝑁 − 2))) + 1)↑2) = ((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1))
4443oveq1d 7372 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((((2↑(2↑(𝑁 − 2))) + 1)↑2) − (2 · ((2↑(2↑(𝑁 − 2))) + 1))) = (((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1) − (2 · ((2↑(2↑(𝑁 − 2))) + 1))))
4544oveq1d 7372 . . . . 5 (𝑁 ∈ (ℤ‘2) → (((((2↑(2↑(𝑁 − 2))) + 1)↑2) − (2 · ((2↑(2↑(𝑁 − 2))) + 1))) + 1) = ((((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1) − (2 · ((2↑(2↑(𝑁 − 2))) + 1))) + 1))
4634, 41, 453eqtrd 2780 . . . 4 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 2)) − 1)↑2) = ((((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1) − (2 · ((2↑(2↑(𝑁 − 2))) + 1))) + 1))
4746oveq2d 7373 . . 3 (𝑁 ∈ (ℤ‘2) → (2 · (((FermatNo‘(𝑁 − 2)) − 1)↑2)) = (2 · ((((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1) − (2 · ((2↑(2↑(𝑁 − 2))) + 1))) + 1)))
4829, 47oveq12d 7375 . 2 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1))↑2) − (2 · (((FermatNo‘(𝑁 − 2)) − 1)↑2))) = ((((2↑(2↑𝑁)) + (2 · (2↑(2↑(𝑁 − 1))))) + 1) − (2 · ((((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1) − (2 · ((2↑(2↑(𝑁 − 2))) + 1))) + 1))))
4936, 10nnexpcld 14148 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 2)))↑2) ∈ ℕ)
5049nncnd 12169 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 2)))↑2) ∈ ℂ)
5117, 37mulcld 11175 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (2 · (2↑(2↑(𝑁 − 2)))) ∈ ℂ)
5250, 51addcld 11174 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) ∈ ℂ)
53 peano2cn 11327 . . . . . . 7 ((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) ∈ ℂ → ((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1) ∈ ℂ)
5452, 53syl 17 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1) ∈ ℂ)
5517, 39mulcld 11175 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (2 · ((2↑(2↑(𝑁 − 2))) + 1)) ∈ ℂ)
5654, 55subcld 11512 . . . . 5 (𝑁 ∈ (ℤ‘2) → (((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1) − (2 · ((2↑(2↑(𝑁 − 2))) + 1))) ∈ ℂ)
57 1cnd 11150 . . . . 5 (𝑁 ∈ (ℤ‘2) → 1 ∈ ℂ)
5817, 56, 57adddid 11179 . . . 4 (𝑁 ∈ (ℤ‘2) → (2 · ((((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1) − (2 · ((2↑(2↑(𝑁 − 2))) + 1))) + 1)) = ((2 · (((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1) − (2 · ((2↑(2↑(𝑁 − 2))) + 1)))) + (2 · 1)))
5952, 57addcld 11174 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → ((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1) ∈ ℂ)
6017, 59, 55subdid 11611 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (2 · (((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1) − (2 · ((2↑(2↑(𝑁 − 2))) + 1)))) = ((2 · ((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1)) − (2 · (2 · ((2↑(2↑(𝑁 − 2))) + 1)))))
6117, 52, 57adddid 11179 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (2 · ((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1)) = ((2 · (((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2)))))) + (2 · 1)))
6217, 50, 51adddid 11179 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (2 · (((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2)))))) = ((2 · ((2↑(2↑(𝑁 − 2)))↑2)) + (2 · (2 · (2↑(2↑(𝑁 − 2)))))))
6317, 10, 35expmuld 14054 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (2↑((2↑(𝑁 − 2)) · 2)) = ((2↑(2↑(𝑁 − 2)))↑2))
6417, 30expp1d 14052 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (2↑((𝑁 − 2) + 1)) = ((2↑(𝑁 − 2)) · 2))
6520, 17, 57subsubd 11540 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → (𝑁 − (2 − 1)) = ((𝑁 − 2) + 1))
6665eqcomd 2742 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → ((𝑁 − 2) + 1) = (𝑁 − (2 − 1)))
6766oveq2d 7373 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (2↑((𝑁 − 2) + 1)) = (2↑(𝑁 − (2 − 1))))
6864, 67eqtr3d 2778 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → ((2↑(𝑁 − 2)) · 2) = (2↑(𝑁 − (2 − 1))))
6968oveq2d 7373 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (2↑((2↑(𝑁 − 2)) · 2)) = (2↑(2↑(𝑁 − (2 − 1)))))
7063, 69eqtr3d 2778 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 2)))↑2) = (2↑(2↑(𝑁 − (2 − 1)))))
7170oveq2d 7373 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (2 · ((2↑(2↑(𝑁 − 2)))↑2)) = (2 · (2↑(2↑(𝑁 − (2 − 1))))))
72 2m1e1 12279 . . . . . . . . . . . . . . . . 17 (2 − 1) = 1
7372a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (2 − 1) = 1)
7473oveq2d 7373 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (𝑁 − (2 − 1)) = (𝑁 − 1))
7574oveq2d 7373 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 − (2 − 1))) = (2↑(𝑁 − 1)))
7675oveq2d 7373 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → (2↑(2↑(𝑁 − (2 − 1)))) = (2↑(2↑(𝑁 − 1))))
7776oveq2d 7373 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (2 · (2↑(2↑(𝑁 − (2 − 1))))) = (2 · (2↑(2↑(𝑁 − 1)))))
7871, 77eqtrd 2776 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (2 · ((2↑(2↑(𝑁 − 2)))↑2)) = (2 · (2↑(2↑(𝑁 − 1)))))
7917, 17, 37mulassd 11178 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → ((2 · 2) · (2↑(2↑(𝑁 − 2)))) = (2 · (2 · (2↑(2↑(𝑁 − 2))))))
8079eqcomd 2742 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (2 · (2 · (2↑(2↑(𝑁 − 2))))) = ((2 · 2) · (2↑(2↑(𝑁 − 2)))))
8178, 80oveq12d 7375 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → ((2 · ((2↑(2↑(𝑁 − 2)))↑2)) + (2 · (2 · (2↑(2↑(𝑁 − 2)))))) = ((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))))
8262, 81eqtrd 2776 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (2 · (((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2)))))) = ((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))))
83 2t1e2 12316 . . . . . . . . . 10 (2 · 1) = 2
8483a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (2 · 1) = 2)
8582, 84oveq12d 7375 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ((2 · (((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2)))))) + (2 · 1)) = (((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2))
8661, 85eqtrd 2776 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (2 · ((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1)) = (((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2))
8717, 37, 57adddid 11179 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (2 · ((2↑(2↑(𝑁 − 2))) + 1)) = ((2 · (2↑(2↑(𝑁 − 2)))) + (2 · 1)))
8884oveq2d 7373 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → ((2 · (2↑(2↑(𝑁 − 2)))) + (2 · 1)) = ((2 · (2↑(2↑(𝑁 − 2)))) + 2))
8987, 88eqtrd 2776 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (2 · ((2↑(2↑(𝑁 − 2))) + 1)) = ((2 · (2↑(2↑(𝑁 − 2)))) + 2))
9089oveq2d 7373 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (2 · (2 · ((2↑(2↑(𝑁 − 2))) + 1))) = (2 · ((2 · (2↑(2↑(𝑁 − 2)))) + 2)))
9117, 51, 17adddid 11179 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (2 · ((2 · (2↑(2↑(𝑁 − 2)))) + 2)) = ((2 · (2 · (2↑(2↑(𝑁 − 2))))) + (2 · 2)))
92 2t2e4 12317 . . . . . . . . . 10 (2 · 2) = 4
9392a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (2 · 2) = 4)
9480, 93oveq12d 7375 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ((2 · (2 · (2↑(2↑(𝑁 − 2))))) + (2 · 2)) = (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4))
9590, 91, 943eqtrd 2780 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (2 · (2 · ((2↑(2↑(𝑁 − 2))) + 1))) = (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4))
9686, 95oveq12d 7375 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((2 · ((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1)) − (2 · (2 · ((2↑(2↑(𝑁 − 2))) + 1)))) = ((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)))
9760, 96eqtrd 2776 . . . . 5 (𝑁 ∈ (ℤ‘2) → (2 · (((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1) − (2 · ((2↑(2↑(𝑁 − 2))) + 1)))) = ((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)))
9897, 84oveq12d 7375 . . . 4 (𝑁 ∈ (ℤ‘2) → ((2 · (((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1) − (2 · ((2↑(2↑(𝑁 − 2))) + 1)))) + (2 · 1)) = (((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)) + 2))
9958, 98eqtrd 2776 . . 3 (𝑁 ∈ (ℤ‘2) → (2 · ((((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1) − (2 · ((2↑(2↑(𝑁 − 2))) + 1))) + 1)) = (((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)) + 2))
10099oveq2d 7373 . 2 (𝑁 ∈ (ℤ‘2) → ((((2↑(2↑𝑁)) + (2 · (2↑(2↑(𝑁 − 1))))) + 1) − (2 · ((((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1) − (2 · ((2↑(2↑(𝑁 − 2))) + 1))) + 1))) = ((((2↑(2↑𝑁)) + (2 · (2↑(2↑(𝑁 − 1))))) + 1) − (((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)) + 2)))
10117, 13mulcld 11175 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (2 · (2↑(2↑(𝑁 − 1)))) ∈ ℂ)
10216, 16mulcli 11162 . . . . . . . . . . . . 13 (2 · 2) ∈ ℂ
103102a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (2 · 2) ∈ ℂ)
104103, 37mulcld 11175 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → ((2 · 2) · (2↑(2↑(𝑁 − 2)))) ∈ ℂ)
105101, 104addcld 11174 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → ((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) ∈ ℂ)
106105, 17addcld 11174 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) ∈ ℂ)
107 4cn 12238 . . . . . . . . . . 11 4 ∈ ℂ
108107a1i 11 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → 4 ∈ ℂ)
109104, 108addcld 11174 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4) ∈ ℂ)
110105, 17, 17addassd 11177 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → ((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) + 2) = (((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + (2 + 2)))
111 2p2e4 12288 . . . . . . . . . . . 12 (2 + 2) = 4
112111a1i 11 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (2 + 2) = 4)
113112oveq2d 7373 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + (2 + 2)) = (((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 4))
114101, 104, 108addassd 11177 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 4) = ((2 · (2↑(2↑(𝑁 − 1)))) + (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)))
115110, 113, 1143eqtrd 2780 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → ((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) + 2) = ((2 · (2↑(2↑(𝑁 − 1)))) + (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)))
116106, 17, 101, 109, 115subaddeqd 11570 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)) = ((2 · (2↑(2↑(𝑁 − 1)))) − 2))
117116eqcomd 2742 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → ((2 · (2↑(2↑(𝑁 − 1)))) − 2) = ((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)))
118106, 109subcld 11512 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)) ∈ ℂ)
119101, 17, 118subadd2d 11531 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (((2 · (2↑(2↑(𝑁 − 1)))) − 2) = ((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)) ↔ (((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)) + 2) = (2 · (2↑(2↑(𝑁 − 1))))))
120117, 119mpbid 231 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)) + 2) = (2 · (2↑(2↑(𝑁 − 1)))))
121120oveq2d 7373 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑𝑁)) + (((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)) + 2)) = ((2↑(2↑𝑁)) + (2 · (2↑(2↑(𝑁 − 1))))))
122 eluzge2nn0 12812 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
12310, 122nn0expcld 14149 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (2↑𝑁) ∈ ℕ0)
1248, 123nnexpcld 14148 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (2↑(2↑𝑁)) ∈ ℕ)
125124nncnd 12169 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (2↑(2↑𝑁)) ∈ ℂ)
126125, 101addcld 11174 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑𝑁)) + (2 · (2↑(2↑(𝑁 − 1))))) ∈ ℂ)
127118, 17addcld 11174 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)) + 2) ∈ ℂ)
128126, 127, 125subadd2d 11531 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((((2↑(2↑𝑁)) + (2 · (2↑(2↑(𝑁 − 1))))) − (((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)) + 2)) = (2↑(2↑𝑁)) ↔ ((2↑(2↑𝑁)) + (((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)) + 2)) = ((2↑(2↑𝑁)) + (2 · (2↑(2↑(𝑁 − 1)))))))
129121, 128mpbird 256 . . . 4 (𝑁 ∈ (ℤ‘2) → (((2↑(2↑𝑁)) + (2 · (2↑(2↑(𝑁 − 1))))) − (((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)) + 2)) = (2↑(2↑𝑁)))
130129oveq1d 7372 . . 3 (𝑁 ∈ (ℤ‘2) → ((((2↑(2↑𝑁)) + (2 · (2↑(2↑(𝑁 − 1))))) − (((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)) + 2)) + 1) = ((2↑(2↑𝑁)) + 1))
131126, 57, 127addsubd 11533 . . 3 (𝑁 ∈ (ℤ‘2) → ((((2↑(2↑𝑁)) + (2 · (2↑(2↑(𝑁 − 1))))) + 1) − (((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)) + 2)) = ((((2↑(2↑𝑁)) + (2 · (2↑(2↑(𝑁 − 1))))) − (((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)) + 2)) + 1))
132 fmtno 45711 . . . 4 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))
133122, 132syl 17 . . 3 (𝑁 ∈ (ℤ‘2) → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))
134130, 131, 1333eqtr4d 2786 . 2 (𝑁 ∈ (ℤ‘2) → ((((2↑(2↑𝑁)) + (2 · (2↑(2↑(𝑁 − 1))))) + 1) − (((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)) + 2)) = (FermatNo‘𝑁))
13548, 100, 1343eqtrrd 2781 1 (𝑁 ∈ (ℤ‘2) → (FermatNo‘𝑁) = (((FermatNo‘(𝑁 − 1))↑2) − (2 · (((FermatNo‘(𝑁 − 2)) − 1)↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  cfv 6496  (class class class)co 7357  cc 11049  1c1 11052   + caddc 11054   · cmul 11056  cmin 11385  cn 12153  2c2 12208  4c4 12210  0cn0 12413  cuz 12763  cexp 13967  FermatNocfmtno 45709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-n0 12414  df-z 12500  df-uz 12764  df-seq 13907  df-exp 13968  df-fmtno 45710
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator