Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnorec1 Structured version   Visualization version   GIF version

Theorem fmtnorec1 47462
Description: The first recurrence relation for Fermat numbers, see Wikipedia "Fermat number", https://en.wikipedia.org/wiki/Fermat_number#Basic_properties, 22-Jul-2021. (Contributed by AV, 22-Jul-2021.)
Assertion
Ref Expression
fmtnorec1 (𝑁 ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = ((((FermatNo‘𝑁) − 1)↑2) + 1))

Proof of Theorem fmtnorec1
StepHypRef Expression
1 peano2nn0 12564 . . 3 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2 fmtno 47454 . . 3 ((𝑁 + 1) ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = ((2↑(2↑(𝑁 + 1))) + 1))
31, 2syl 17 . 2 (𝑁 ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = ((2↑(2↑(𝑁 + 1))) + 1))
4 2nn0 12541 . . . . . . 7 2 ∈ ℕ0
5 nn0expcl 14113 . . . . . . . 8 ((2 ∈ ℕ0𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℕ0)
64, 5mpan 690 . . . . . . 7 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℕ0)
7 nn0expcl 14113 . . . . . . . 8 ((2 ∈ ℕ0 ∧ (2↑𝑁) ∈ ℕ0) → (2↑(2↑𝑁)) ∈ ℕ0)
87nn0cnd 12587 . . . . . . 7 ((2 ∈ ℕ0 ∧ (2↑𝑁) ∈ ℕ0) → (2↑(2↑𝑁)) ∈ ℂ)
94, 6, 8sylancr 587 . . . . . 6 (𝑁 ∈ ℕ0 → (2↑(2↑𝑁)) ∈ ℂ)
10 pncan1 11685 . . . . . 6 ((2↑(2↑𝑁)) ∈ ℂ → (((2↑(2↑𝑁)) + 1) − 1) = (2↑(2↑𝑁)))
119, 10syl 17 . . . . 5 (𝑁 ∈ ℕ0 → (((2↑(2↑𝑁)) + 1) − 1) = (2↑(2↑𝑁)))
1211oveq1d 7446 . . . 4 (𝑁 ∈ ℕ0 → ((((2↑(2↑𝑁)) + 1) − 1)↑2) = ((2↑(2↑𝑁))↑2))
13 2cnne0 12474 . . . . 5 (2 ∈ ℂ ∧ 2 ≠ 0)
146nn0zd 12637 . . . . . 6 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℤ)
15 2z 12647 . . . . . 6 2 ∈ ℤ
1614, 15jctir 520 . . . . 5 (𝑁 ∈ ℕ0 → ((2↑𝑁) ∈ ℤ ∧ 2 ∈ ℤ))
17 expmulz 14146 . . . . 5 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((2↑𝑁) ∈ ℤ ∧ 2 ∈ ℤ)) → (2↑((2↑𝑁) · 2)) = ((2↑(2↑𝑁))↑2))
1813, 16, 17sylancr 587 . . . 4 (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) · 2)) = ((2↑(2↑𝑁))↑2))
19 2cn 12339 . . . . . . 7 2 ∈ ℂ
20 2ne0 12368 . . . . . . 7 2 ≠ 0
21 nn0z 12636 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
22 expp1z 14149 . . . . . . 7 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 𝑁 ∈ ℤ) → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2))
2319, 20, 21, 22mp3an12i 1464 . . . . . 6 (𝑁 ∈ ℕ0 → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2))
2423eqcomd 2741 . . . . 5 (𝑁 ∈ ℕ0 → ((2↑𝑁) · 2) = (2↑(𝑁 + 1)))
2524oveq2d 7447 . . . 4 (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) · 2)) = (2↑(2↑(𝑁 + 1))))
2612, 18, 253eqtr2rd 2782 . . 3 (𝑁 ∈ ℕ0 → (2↑(2↑(𝑁 + 1))) = ((((2↑(2↑𝑁)) + 1) − 1)↑2))
2726oveq1d 7446 . 2 (𝑁 ∈ ℕ0 → ((2↑(2↑(𝑁 + 1))) + 1) = (((((2↑(2↑𝑁)) + 1) − 1)↑2) + 1))
28 fmtno 47454 . . . . . 6 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))
2928eqcomd 2741 . . . . 5 (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) = (FermatNo‘𝑁))
3029oveq1d 7446 . . . 4 (𝑁 ∈ ℕ0 → (((2↑(2↑𝑁)) + 1) − 1) = ((FermatNo‘𝑁) − 1))
3130oveq1d 7446 . . 3 (𝑁 ∈ ℕ0 → ((((2↑(2↑𝑁)) + 1) − 1)↑2) = (((FermatNo‘𝑁) − 1)↑2))
3231oveq1d 7446 . 2 (𝑁 ∈ ℕ0 → (((((2↑(2↑𝑁)) + 1) − 1)↑2) + 1) = ((((FermatNo‘𝑁) − 1)↑2) + 1))
333, 27, 323eqtrd 2779 1 (𝑁 ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = ((((FermatNo‘𝑁) − 1)↑2) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  cfv 6563  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490  2c2 12319  0cn0 12524  cz 12611  cexp 14099  FermatNocfmtno 47452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-seq 14040  df-exp 14100  df-fmtno 47453
This theorem is referenced by:  fmtnorec3  47473  fmtno5  47482
  Copyright terms: Public domain W3C validator