| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtnorec1 | Structured version Visualization version GIF version | ||
| Description: The first recurrence relation for Fermat numbers, see Wikipedia "Fermat number", https://en.wikipedia.org/wiki/Fermat_number#Basic_properties, 22-Jul-2021. (Contributed by AV, 22-Jul-2021.) |
| Ref | Expression |
|---|---|
| fmtnorec1 | ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = ((((FermatNo‘𝑁) − 1)↑2) + 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2nn0 12421 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | |
| 2 | fmtno 47568 | . . 3 ⊢ ((𝑁 + 1) ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = ((2↑(2↑(𝑁 + 1))) + 1)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = ((2↑(2↑(𝑁 + 1))) + 1)) |
| 4 | 2nn0 12398 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
| 5 | nn0expcl 13982 | . . . . . . . 8 ⊢ ((2 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℕ0) | |
| 6 | 4, 5 | mpan 690 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℕ0) |
| 7 | nn0expcl 13982 | . . . . . . . 8 ⊢ ((2 ∈ ℕ0 ∧ (2↑𝑁) ∈ ℕ0) → (2↑(2↑𝑁)) ∈ ℕ0) | |
| 8 | 7 | nn0cnd 12444 | . . . . . . 7 ⊢ ((2 ∈ ℕ0 ∧ (2↑𝑁) ∈ ℕ0) → (2↑(2↑𝑁)) ∈ ℂ) |
| 9 | 4, 6, 8 | sylancr 587 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (2↑(2↑𝑁)) ∈ ℂ) |
| 10 | pncan1 11541 | . . . . . 6 ⊢ ((2↑(2↑𝑁)) ∈ ℂ → (((2↑(2↑𝑁)) + 1) − 1) = (2↑(2↑𝑁))) | |
| 11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (((2↑(2↑𝑁)) + 1) − 1) = (2↑(2↑𝑁))) |
| 12 | 11 | oveq1d 7361 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((((2↑(2↑𝑁)) + 1) − 1)↑2) = ((2↑(2↑𝑁))↑2)) |
| 13 | 2cnne0 12330 | . . . . 5 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
| 14 | 6 | nn0zd 12494 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℤ) |
| 15 | 2z 12504 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 16 | 14, 15 | jctir 520 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((2↑𝑁) ∈ ℤ ∧ 2 ∈ ℤ)) |
| 17 | expmulz 14015 | . . . . 5 ⊢ (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((2↑𝑁) ∈ ℤ ∧ 2 ∈ ℤ)) → (2↑((2↑𝑁) · 2)) = ((2↑(2↑𝑁))↑2)) | |
| 18 | 13, 16, 17 | sylancr 587 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) · 2)) = ((2↑(2↑𝑁))↑2)) |
| 19 | 2cn 12200 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
| 20 | 2ne0 12229 | . . . . . . 7 ⊢ 2 ≠ 0 | |
| 21 | nn0z 12493 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
| 22 | expp1z 14018 | . . . . . . 7 ⊢ ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 𝑁 ∈ ℤ) → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2)) | |
| 23 | 19, 20, 21, 22 | mp3an12i 1467 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2)) |
| 24 | 23 | eqcomd 2737 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((2↑𝑁) · 2) = (2↑(𝑁 + 1))) |
| 25 | 24 | oveq2d 7362 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) · 2)) = (2↑(2↑(𝑁 + 1)))) |
| 26 | 12, 18, 25 | 3eqtr2rd 2773 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (2↑(2↑(𝑁 + 1))) = ((((2↑(2↑𝑁)) + 1) − 1)↑2)) |
| 27 | 26 | oveq1d 7361 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((2↑(2↑(𝑁 + 1))) + 1) = (((((2↑(2↑𝑁)) + 1) − 1)↑2) + 1)) |
| 28 | fmtno 47568 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1)) | |
| 29 | 28 | eqcomd 2737 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) = (FermatNo‘𝑁)) |
| 30 | 29 | oveq1d 7361 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (((2↑(2↑𝑁)) + 1) − 1) = ((FermatNo‘𝑁) − 1)) |
| 31 | 30 | oveq1d 7361 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((((2↑(2↑𝑁)) + 1) − 1)↑2) = (((FermatNo‘𝑁) − 1)↑2)) |
| 32 | 31 | oveq1d 7361 | . 2 ⊢ (𝑁 ∈ ℕ0 → (((((2↑(2↑𝑁)) + 1) − 1)↑2) + 1) = ((((FermatNo‘𝑁) − 1)↑2) + 1)) |
| 33 | 3, 27, 32 | 3eqtrd 2770 | 1 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = ((((FermatNo‘𝑁) − 1)↑2) + 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 0cc0 11006 1c1 11007 + caddc 11009 · cmul 11011 − cmin 11344 2c2 12180 ℕ0cn0 12381 ℤcz 12468 ↑cexp 13968 FermatNocfmtno 47566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-seq 13909 df-exp 13969 df-fmtno 47567 |
| This theorem is referenced by: fmtnorec3 47587 fmtno5 47596 |
| Copyright terms: Public domain | W3C validator |