| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtnorec1 | Structured version Visualization version GIF version | ||
| Description: The first recurrence relation for Fermat numbers, see Wikipedia "Fermat number", https://en.wikipedia.org/wiki/Fermat_number#Basic_properties, 22-Jul-2021. (Contributed by AV, 22-Jul-2021.) |
| Ref | Expression |
|---|---|
| fmtnorec1 | ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = ((((FermatNo‘𝑁) − 1)↑2) + 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2nn0 12424 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | |
| 2 | fmtno 47513 | . . 3 ⊢ ((𝑁 + 1) ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = ((2↑(2↑(𝑁 + 1))) + 1)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = ((2↑(2↑(𝑁 + 1))) + 1)) |
| 4 | 2nn0 12401 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
| 5 | nn0expcl 13982 | . . . . . . . 8 ⊢ ((2 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℕ0) | |
| 6 | 4, 5 | mpan 690 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℕ0) |
| 7 | nn0expcl 13982 | . . . . . . . 8 ⊢ ((2 ∈ ℕ0 ∧ (2↑𝑁) ∈ ℕ0) → (2↑(2↑𝑁)) ∈ ℕ0) | |
| 8 | 7 | nn0cnd 12447 | . . . . . . 7 ⊢ ((2 ∈ ℕ0 ∧ (2↑𝑁) ∈ ℕ0) → (2↑(2↑𝑁)) ∈ ℂ) |
| 9 | 4, 6, 8 | sylancr 587 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (2↑(2↑𝑁)) ∈ ℂ) |
| 10 | pncan1 11544 | . . . . . 6 ⊢ ((2↑(2↑𝑁)) ∈ ℂ → (((2↑(2↑𝑁)) + 1) − 1) = (2↑(2↑𝑁))) | |
| 11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (((2↑(2↑𝑁)) + 1) − 1) = (2↑(2↑𝑁))) |
| 12 | 11 | oveq1d 7364 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((((2↑(2↑𝑁)) + 1) − 1)↑2) = ((2↑(2↑𝑁))↑2)) |
| 13 | 2cnne0 12333 | . . . . 5 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
| 14 | 6 | nn0zd 12497 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℤ) |
| 15 | 2z 12507 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 16 | 14, 15 | jctir 520 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((2↑𝑁) ∈ ℤ ∧ 2 ∈ ℤ)) |
| 17 | expmulz 14015 | . . . . 5 ⊢ (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((2↑𝑁) ∈ ℤ ∧ 2 ∈ ℤ)) → (2↑((2↑𝑁) · 2)) = ((2↑(2↑𝑁))↑2)) | |
| 18 | 13, 16, 17 | sylancr 587 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) · 2)) = ((2↑(2↑𝑁))↑2)) |
| 19 | 2cn 12203 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
| 20 | 2ne0 12232 | . . . . . . 7 ⊢ 2 ≠ 0 | |
| 21 | nn0z 12496 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
| 22 | expp1z 14018 | . . . . . . 7 ⊢ ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 𝑁 ∈ ℤ) → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2)) | |
| 23 | 19, 20, 21, 22 | mp3an12i 1467 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2)) |
| 24 | 23 | eqcomd 2735 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((2↑𝑁) · 2) = (2↑(𝑁 + 1))) |
| 25 | 24 | oveq2d 7365 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) · 2)) = (2↑(2↑(𝑁 + 1)))) |
| 26 | 12, 18, 25 | 3eqtr2rd 2771 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (2↑(2↑(𝑁 + 1))) = ((((2↑(2↑𝑁)) + 1) − 1)↑2)) |
| 27 | 26 | oveq1d 7364 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((2↑(2↑(𝑁 + 1))) + 1) = (((((2↑(2↑𝑁)) + 1) − 1)↑2) + 1)) |
| 28 | fmtno 47513 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1)) | |
| 29 | 28 | eqcomd 2735 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) = (FermatNo‘𝑁)) |
| 30 | 29 | oveq1d 7364 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (((2↑(2↑𝑁)) + 1) − 1) = ((FermatNo‘𝑁) − 1)) |
| 31 | 30 | oveq1d 7364 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((((2↑(2↑𝑁)) + 1) − 1)↑2) = (((FermatNo‘𝑁) − 1)↑2)) |
| 32 | 31 | oveq1d 7364 | . 2 ⊢ (𝑁 ∈ ℕ0 → (((((2↑(2↑𝑁)) + 1) − 1)↑2) + 1) = ((((FermatNo‘𝑁) − 1)↑2) + 1)) |
| 33 | 3, 27, 32 | 3eqtrd 2768 | 1 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = ((((FermatNo‘𝑁) − 1)↑2) + 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 0cc0 11009 1c1 11010 + caddc 11012 · cmul 11014 − cmin 11347 2c2 12183 ℕ0cn0 12384 ℤcz 12471 ↑cexp 13968 FermatNocfmtno 47511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-n0 12385 df-z 12472 df-uz 12736 df-seq 13909 df-exp 13969 df-fmtno 47512 |
| This theorem is referenced by: fmtnorec3 47532 fmtno5 47541 |
| Copyright terms: Public domain | W3C validator |