Step | Hyp | Ref
| Expression |
1 | | peano2nn0 12511 |
. . 3
β’ (π β β0
β (π + 1) β
β0) |
2 | | fmtno 46187 |
. . 3
β’ ((π + 1) β β0
β (FermatNoβ(π +
1)) = ((2β(2β(π +
1))) + 1)) |
3 | 1, 2 | syl 17 |
. 2
β’ (π β β0
β (FermatNoβ(π +
1)) = ((2β(2β(π +
1))) + 1)) |
4 | | 2nn0 12488 |
. . . . . . 7
β’ 2 β
β0 |
5 | | nn0expcl 14040 |
. . . . . . . 8
β’ ((2
β β0 β§ π β β0) β
(2βπ) β
β0) |
6 | 4, 5 | mpan 688 |
. . . . . . 7
β’ (π β β0
β (2βπ) β
β0) |
7 | | nn0expcl 14040 |
. . . . . . . 8
β’ ((2
β β0 β§ (2βπ) β β0) β
(2β(2βπ)) β
β0) |
8 | 7 | nn0cnd 12533 |
. . . . . . 7
β’ ((2
β β0 β§ (2βπ) β β0) β
(2β(2βπ)) β
β) |
9 | 4, 6, 8 | sylancr 587 |
. . . . . 6
β’ (π β β0
β (2β(2βπ))
β β) |
10 | | pncan1 11637 |
. . . . . 6
β’
((2β(2βπ))
β β β (((2β(2βπ)) + 1) β 1) = (2β(2βπ))) |
11 | 9, 10 | syl 17 |
. . . . 5
β’ (π β β0
β (((2β(2βπ)) + 1) β 1) = (2β(2βπ))) |
12 | 11 | oveq1d 7423 |
. . . 4
β’ (π β β0
β ((((2β(2βπ)) + 1) β 1)β2) =
((2β(2βπ))β2)) |
13 | | 2cnne0 12421 |
. . . . 5
β’ (2 β
β β§ 2 β 0) |
14 | 6 | nn0zd 12583 |
. . . . . 6
β’ (π β β0
β (2βπ) β
β€) |
15 | | 2z 12593 |
. . . . . 6
β’ 2 β
β€ |
16 | 14, 15 | jctir 521 |
. . . . 5
β’ (π β β0
β ((2βπ) β
β€ β§ 2 β β€)) |
17 | | expmulz 14073 |
. . . . 5
β’ (((2
β β β§ 2 β 0) β§ ((2βπ) β β€ β§ 2 β β€))
β (2β((2βπ)
Β· 2)) = ((2β(2βπ))β2)) |
18 | 13, 16, 17 | sylancr 587 |
. . . 4
β’ (π β β0
β (2β((2βπ)
Β· 2)) = ((2β(2βπ))β2)) |
19 | | 2cn 12286 |
. . . . . . 7
β’ 2 β
β |
20 | | 2ne0 12315 |
. . . . . . 7
β’ 2 β
0 |
21 | | nn0z 12582 |
. . . . . . 7
β’ (π β β0
β π β
β€) |
22 | | expp1z 14076 |
. . . . . . 7
β’ ((2
β β β§ 2 β 0 β§ π β β€) β (2β(π + 1)) = ((2βπ) Β· 2)) |
23 | 19, 20, 21, 22 | mp3an12i 1465 |
. . . . . 6
β’ (π β β0
β (2β(π + 1)) =
((2βπ) Β·
2)) |
24 | 23 | eqcomd 2738 |
. . . . 5
β’ (π β β0
β ((2βπ) Β·
2) = (2β(π +
1))) |
25 | 24 | oveq2d 7424 |
. . . 4
β’ (π β β0
β (2β((2βπ)
Β· 2)) = (2β(2β(π + 1)))) |
26 | 12, 18, 25 | 3eqtr2rd 2779 |
. . 3
β’ (π β β0
β (2β(2β(π +
1))) = ((((2β(2βπ)) + 1) β 1)β2)) |
27 | 26 | oveq1d 7423 |
. 2
β’ (π β β0
β ((2β(2β(π
+ 1))) + 1) = (((((2β(2βπ)) + 1) β 1)β2) +
1)) |
28 | | fmtno 46187 |
. . . . . 6
β’ (π β β0
β (FermatNoβπ) =
((2β(2βπ)) +
1)) |
29 | 28 | eqcomd 2738 |
. . . . 5
β’ (π β β0
β ((2β(2βπ))
+ 1) = (FermatNoβπ)) |
30 | 29 | oveq1d 7423 |
. . . 4
β’ (π β β0
β (((2β(2βπ)) + 1) β 1) = ((FermatNoβπ) β 1)) |
31 | 30 | oveq1d 7423 |
. . 3
β’ (π β β0
β ((((2β(2βπ)) + 1) β 1)β2) =
(((FermatNoβπ)
β 1)β2)) |
32 | 31 | oveq1d 7423 |
. 2
β’ (π β β0
β (((((2β(2βπ)) + 1) β 1)β2) + 1) =
((((FermatNoβπ)
β 1)β2) + 1)) |
33 | 3, 27, 32 | 3eqtrd 2776 |
1
β’ (π β β0
β (FermatNoβ(π +
1)) = ((((FermatNoβπ)
β 1)β2) + 1)) |