Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtnorec1 | Structured version Visualization version GIF version |
Description: The first recurrence relation for Fermat numbers, see Wikipedia "Fermat number", https://en.wikipedia.org/wiki/Fermat_number#Basic_properties, 22-Jul-2021. (Contributed by AV, 22-Jul-2021.) |
Ref | Expression |
---|---|
fmtnorec1 | ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = ((((FermatNo‘𝑁) − 1)↑2) + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2nn0 11974 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | |
2 | fmtno 44414 | . . 3 ⊢ ((𝑁 + 1) ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = ((2↑(2↑(𝑁 + 1))) + 1)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = ((2↑(2↑(𝑁 + 1))) + 1)) |
4 | 2nn0 11951 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
5 | nn0expcl 13493 | . . . . . . . 8 ⊢ ((2 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℕ0) | |
6 | 4, 5 | mpan 689 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℕ0) |
7 | nn0expcl 13493 | . . . . . . . 8 ⊢ ((2 ∈ ℕ0 ∧ (2↑𝑁) ∈ ℕ0) → (2↑(2↑𝑁)) ∈ ℕ0) | |
8 | 7 | nn0cnd 11996 | . . . . . . 7 ⊢ ((2 ∈ ℕ0 ∧ (2↑𝑁) ∈ ℕ0) → (2↑(2↑𝑁)) ∈ ℂ) |
9 | 4, 6, 8 | sylancr 590 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (2↑(2↑𝑁)) ∈ ℂ) |
10 | pncan1 11102 | . . . . . 6 ⊢ ((2↑(2↑𝑁)) ∈ ℂ → (((2↑(2↑𝑁)) + 1) − 1) = (2↑(2↑𝑁))) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (((2↑(2↑𝑁)) + 1) − 1) = (2↑(2↑𝑁))) |
12 | 11 | oveq1d 7165 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((((2↑(2↑𝑁)) + 1) − 1)↑2) = ((2↑(2↑𝑁))↑2)) |
13 | 2cnne0 11884 | . . . . 5 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
14 | 6 | nn0zd 12124 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℤ) |
15 | 2z 12053 | . . . . . 6 ⊢ 2 ∈ ℤ | |
16 | 14, 15 | jctir 524 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((2↑𝑁) ∈ ℤ ∧ 2 ∈ ℤ)) |
17 | expmulz 13525 | . . . . 5 ⊢ (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((2↑𝑁) ∈ ℤ ∧ 2 ∈ ℤ)) → (2↑((2↑𝑁) · 2)) = ((2↑(2↑𝑁))↑2)) | |
18 | 13, 16, 17 | sylancr 590 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) · 2)) = ((2↑(2↑𝑁))↑2)) |
19 | 2cn 11749 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
20 | 2ne0 11778 | . . . . . . 7 ⊢ 2 ≠ 0 | |
21 | nn0z 12044 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
22 | expp1z 13528 | . . . . . . 7 ⊢ ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 𝑁 ∈ ℤ) → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2)) | |
23 | 19, 20, 21, 22 | mp3an12i 1462 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2)) |
24 | 23 | eqcomd 2764 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((2↑𝑁) · 2) = (2↑(𝑁 + 1))) |
25 | 24 | oveq2d 7166 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) · 2)) = (2↑(2↑(𝑁 + 1)))) |
26 | 12, 18, 25 | 3eqtr2rd 2800 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (2↑(2↑(𝑁 + 1))) = ((((2↑(2↑𝑁)) + 1) − 1)↑2)) |
27 | 26 | oveq1d 7165 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((2↑(2↑(𝑁 + 1))) + 1) = (((((2↑(2↑𝑁)) + 1) − 1)↑2) + 1)) |
28 | fmtno 44414 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1)) | |
29 | 28 | eqcomd 2764 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) = (FermatNo‘𝑁)) |
30 | 29 | oveq1d 7165 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (((2↑(2↑𝑁)) + 1) − 1) = ((FermatNo‘𝑁) − 1)) |
31 | 30 | oveq1d 7165 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((((2↑(2↑𝑁)) + 1) − 1)↑2) = (((FermatNo‘𝑁) − 1)↑2)) |
32 | 31 | oveq1d 7165 | . 2 ⊢ (𝑁 ∈ ℕ0 → (((((2↑(2↑𝑁)) + 1) − 1)↑2) + 1) = ((((FermatNo‘𝑁) − 1)↑2) + 1)) |
33 | 3, 27, 32 | 3eqtrd 2797 | 1 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = ((((FermatNo‘𝑁) − 1)↑2) + 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ‘cfv 6335 (class class class)co 7150 ℂcc 10573 0cc0 10575 1c1 10576 + caddc 10578 · cmul 10580 − cmin 10908 2c2 11729 ℕ0cn0 11934 ℤcz 12020 ↑cexp 13479 FermatNocfmtno 44412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-n0 11935 df-z 12021 df-uz 12283 df-seq 13419 df-exp 13480 df-fmtno 44413 |
This theorem is referenced by: fmtnorec3 44433 fmtno5 44442 |
Copyright terms: Public domain | W3C validator |