MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetdiaglem Structured version   Visualization version   GIF version

Theorem mdetdiaglem 22516
Description: Lemma for mdetdiag 22517. Previously part of proof for mdet1 22519. (Contributed by SO, 10-Jul-2018.) (Revised by AV, 17-Aug-2019.)
Hypotheses
Ref Expression
mdetdiag.d 𝐷 = (𝑁 maDet 𝑅)
mdetdiag.a 𝐴 = (𝑁 Mat 𝑅)
mdetdiag.b 𝐵 = (Base‘𝐴)
mdetdiag.g 𝐺 = (mulGrp‘𝑅)
mdetdiag.0 0 = (0g𝑅)
mdetdiaglem.g 𝐻 = (Base‘(SymGrp‘𝑁))
mdetdiaglem.z 𝑍 = (ℤRHom‘𝑅)
mdetdiaglem.s 𝑆 = (pmSgn‘𝑁)
mdetdiaglem.t · = (.r𝑅)
Assertion
Ref Expression
mdetdiaglem (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) ∧ (𝑃𝐻𝑃 ≠ ( I ↾ 𝑁))) → (((𝑍𝑆)‘𝑃) · (𝐺 Σg (𝑘𝑁 ↦ ((𝑃𝑘)𝑀𝑘)))) = 0 )
Distinct variable groups:   𝐵,𝑘   𝑘,𝐺   𝑘,𝐻   𝑖,𝑀,𝑗,𝑘   𝑖,𝑁,𝑗,𝑘   𝑃,𝑖,𝑗,𝑘   𝑅,𝑘   0 ,𝑖,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑘)   𝐵(𝑖,𝑗)   𝐷(𝑖,𝑗,𝑘)   𝑅(𝑖,𝑗)   𝑆(𝑖,𝑗,𝑘)   · (𝑖,𝑗,𝑘)   𝐺(𝑖,𝑗)   𝐻(𝑖,𝑗)   𝑍(𝑖,𝑗,𝑘)

Proof of Theorem mdetdiaglem
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 mdetdiaglem.z . . . . . 6 𝑍 = (ℤRHom‘𝑅)
21a1i 11 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) ∧ (𝑃𝐻𝑃 ≠ ( I ↾ 𝑁))) → 𝑍 = (ℤRHom‘𝑅))
3 mdetdiaglem.s . . . . . 6 𝑆 = (pmSgn‘𝑁)
43a1i 11 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) ∧ (𝑃𝐻𝑃 ≠ ( I ↾ 𝑁))) → 𝑆 = (pmSgn‘𝑁))
52, 4coeq12d 5810 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) ∧ (𝑃𝐻𝑃 ≠ ( I ↾ 𝑁))) → (𝑍𝑆) = ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)))
65fveq1d 6832 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) ∧ (𝑃𝐻𝑃 ≠ ( I ↾ 𝑁))) → ((𝑍𝑆)‘𝑃) = (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑃))
7 eqid 2733 . . . . . . . . . . . 12 (SymGrp‘𝑁) = (SymGrp‘𝑁)
8 mdetdiaglem.g . . . . . . . . . . . 12 𝐻 = (Base‘(SymGrp‘𝑁))
97, 8symgbasf1o 19291 . . . . . . . . . . 11 (𝑃𝐻𝑃:𝑁1-1-onto𝑁)
10 f1ofn 6771 . . . . . . . . . . 11 (𝑃:𝑁1-1-onto𝑁𝑃 Fn 𝑁)
119, 10syl 17 . . . . . . . . . 10 (𝑃𝐻𝑃 Fn 𝑁)
12 fnnfpeq0 7120 . . . . . . . . . 10 (𝑃 Fn 𝑁 → (dom (𝑃 ∖ I ) = ∅ ↔ 𝑃 = ( I ↾ 𝑁)))
1311, 12syl 17 . . . . . . . . 9 (𝑃𝐻 → (dom (𝑃 ∖ I ) = ∅ ↔ 𝑃 = ( I ↾ 𝑁)))
1413adantl 481 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑃𝐻) → (dom (𝑃 ∖ I ) = ∅ ↔ 𝑃 = ( I ↾ 𝑁)))
1514bicomd 223 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑃𝐻) → (𝑃 = ( I ↾ 𝑁) ↔ dom (𝑃 ∖ I ) = ∅))
1615necon3bid 2973 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑃𝐻) → (𝑃 ≠ ( I ↾ 𝑁) ↔ dom (𝑃 ∖ I ) ≠ ∅))
17 n0 4302 . . . . . . 7 (dom (𝑃 ∖ I ) ≠ ∅ ↔ ∃𝑠 𝑠 ∈ dom (𝑃 ∖ I ))
18 eqid 2733 . . . . . . . . . . 11 (Base‘𝐺) = (Base‘𝐺)
19 mdetdiag.g . . . . . . . . . . . 12 𝐺 = (mulGrp‘𝑅)
20 eqid 2733 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
2119, 20mgpplusg 20066 . . . . . . . . . . 11 (.r𝑅) = (+g𝐺)
2219crngmgp 20163 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝐺 ∈ CMnd)
23223ad2ant1 1133 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) → 𝐺 ∈ CMnd)
2423ad2antrr 726 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝐺 ∈ CMnd)
25 simpll2 1214 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝑁 ∈ Fin)
26 mdetdiag.a . . . . . . . . . . . . . . . . 17 𝐴 = (𝑁 Mat 𝑅)
27 eqid 2733 . . . . . . . . . . . . . . . . 17 (Base‘𝑅) = (Base‘𝑅)
28 mdetdiag.b . . . . . . . . . . . . . . . . 17 𝐵 = (Base‘𝐴)
2926, 27, 28matbas2i 22340 . . . . . . . . . . . . . . . 16 (𝑀𝐵𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
30293ad2ant3 1135 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) → 𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
31 elmapi 8781 . . . . . . . . . . . . . . 15 (𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
3230, 31syl 17 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
3319, 27mgpbas 20067 . . . . . . . . . . . . . . . . 17 (Base‘𝑅) = (Base‘𝐺)
3433eqcomi 2742 . . . . . . . . . . . . . . . 16 (Base‘𝐺) = (Base‘𝑅)
3534a1i 11 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) → (Base‘𝐺) = (Base‘𝑅))
3635feq3d 6643 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) → (𝑀:(𝑁 × 𝑁)⟶(Base‘𝐺) ↔ 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)))
3732, 36mpbird 257 . . . . . . . . . . . . 13 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝐺))
3837ad3antrrr 730 . . . . . . . . . . . 12 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) ∧ 𝑘𝑁) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝐺))
397, 8symgbasf 19292 . . . . . . . . . . . . . 14 (𝑃𝐻𝑃:𝑁𝑁)
4039ad2antrl 728 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝑃:𝑁𝑁)
4140ffvelcdmda 7025 . . . . . . . . . . . 12 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) ∧ 𝑘𝑁) → (𝑃𝑘) ∈ 𝑁)
42 simpr 484 . . . . . . . . . . . 12 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) ∧ 𝑘𝑁) → 𝑘𝑁)
4338, 41, 42fovcdmd 7526 . . . . . . . . . . 11 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) ∧ 𝑘𝑁) → ((𝑃𝑘)𝑀𝑘) ∈ (Base‘𝐺))
44 disjdif 4421 . . . . . . . . . . . 12 ({𝑠} ∩ (𝑁 ∖ {𝑠})) = ∅
4544a1i 11 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → ({𝑠} ∩ (𝑁 ∖ {𝑠})) = ∅)
46 difss 4085 . . . . . . . . . . . . . . . . . 18 (𝑃 ∖ I ) ⊆ 𝑃
47 dmss 5848 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∖ I ) ⊆ 𝑃 → dom (𝑃 ∖ I ) ⊆ dom 𝑃)
4846, 47ax-mp 5 . . . . . . . . . . . . . . . . 17 dom (𝑃 ∖ I ) ⊆ dom 𝑃
4939adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑃𝐻) → 𝑃:𝑁𝑁)
5048, 49fssdm 6677 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑃𝐻) → dom (𝑃 ∖ I ) ⊆ 𝑁)
5150sseld 3929 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑃𝐻) → (𝑠 ∈ dom (𝑃 ∖ I ) → 𝑠𝑁))
5251impr 454 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝑠𝑁)
5352snssd 4762 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → {𝑠} ⊆ 𝑁)
54 undif 4431 . . . . . . . . . . . . 13 ({𝑠} ⊆ 𝑁 ↔ ({𝑠} ∪ (𝑁 ∖ {𝑠})) = 𝑁)
5553, 54sylib 218 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → ({𝑠} ∪ (𝑁 ∖ {𝑠})) = 𝑁)
5655eqcomd 2739 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝑁 = ({𝑠} ∪ (𝑁 ∖ {𝑠})))
5718, 21, 24, 25, 43, 45, 56gsummptfidmsplit 19846 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → (𝐺 Σg (𝑘𝑁 ↦ ((𝑃𝑘)𝑀𝑘))) = ((𝐺 Σg (𝑘 ∈ {𝑠} ↦ ((𝑃𝑘)𝑀𝑘)))(.r𝑅)(𝐺 Σg (𝑘 ∈ (𝑁 ∖ {𝑠}) ↦ ((𝑃𝑘)𝑀𝑘)))))
58 crngring 20167 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
5958adantr 480 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝑅 ∈ Ring)
6019ringmgp 20161 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → 𝐺 ∈ Mnd)
6159, 60syl 17 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝐺 ∈ Mnd)
62613adant3 1132 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) → 𝐺 ∈ Mnd)
6362ad2antrr 726 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝐺 ∈ Mnd)
64 vex 3441 . . . . . . . . . . . . . 14 𝑠 ∈ V
6564a1i 11 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝑠 ∈ V)
6632ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
6740, 52ffvelcdmd 7026 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → (𝑃𝑠) ∈ 𝑁)
6866, 67, 52fovcdmd 7526 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → ((𝑃𝑠)𝑀𝑠) ∈ (Base‘𝑅))
69 fveq2 6830 . . . . . . . . . . . . . . 15 (𝑘 = 𝑠 → (𝑃𝑘) = (𝑃𝑠))
70 id 22 . . . . . . . . . . . . . . 15 (𝑘 = 𝑠𝑘 = 𝑠)
7169, 70oveq12d 7372 . . . . . . . . . . . . . 14 (𝑘 = 𝑠 → ((𝑃𝑘)𝑀𝑘) = ((𝑃𝑠)𝑀𝑠))
7233, 71gsumsn 19870 . . . . . . . . . . . . 13 ((𝐺 ∈ Mnd ∧ 𝑠 ∈ V ∧ ((𝑃𝑠)𝑀𝑠) ∈ (Base‘𝑅)) → (𝐺 Σg (𝑘 ∈ {𝑠} ↦ ((𝑃𝑘)𝑀𝑘))) = ((𝑃𝑠)𝑀𝑠))
7363, 65, 68, 72syl3anc 1373 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → (𝐺 Σg (𝑘 ∈ {𝑠} ↦ ((𝑃𝑘)𝑀𝑘))) = ((𝑃𝑠)𝑀𝑠))
74 simprr 772 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝑠 ∈ dom (𝑃 ∖ I ))
7511ad2antrl 728 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝑃 Fn 𝑁)
76 fnelnfp 7119 . . . . . . . . . . . . . . 15 ((𝑃 Fn 𝑁𝑠𝑁) → (𝑠 ∈ dom (𝑃 ∖ I ) ↔ (𝑃𝑠) ≠ 𝑠))
7775, 52, 76syl2anc 584 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → (𝑠 ∈ dom (𝑃 ∖ I ) ↔ (𝑃𝑠) ≠ 𝑠))
7874, 77mpbid 232 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → (𝑃𝑠) ≠ 𝑠)
7939ad2antrl 728 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝑃:𝑁𝑁)
8039adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) → 𝑃:𝑁𝑁)
8148, 80fssdm 6677 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) → dom (𝑃 ∖ I ) ⊆ 𝑁)
8281sseld 3929 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) → (𝑠 ∈ dom (𝑃 ∖ I ) → 𝑠𝑁))
8382impr 454 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝑠𝑁)
8479, 83ffvelcdmd 7026 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → (𝑃𝑠) ∈ 𝑁)
85 neeq1 2991 . . . . . . . . . . . . . . . . . 18 (𝑖 = (𝑃𝑠) → (𝑖𝑗 ↔ (𝑃𝑠) ≠ 𝑗))
86 oveq1 7361 . . . . . . . . . . . . . . . . . . 19 (𝑖 = (𝑃𝑠) → (𝑖𝑀𝑗) = ((𝑃𝑠)𝑀𝑗))
8786eqeq1d 2735 . . . . . . . . . . . . . . . . . 18 (𝑖 = (𝑃𝑠) → ((𝑖𝑀𝑗) = 0 ↔ ((𝑃𝑠)𝑀𝑗) = 0 ))
8885, 87imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑃𝑠) → ((𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) ↔ ((𝑃𝑠) ≠ 𝑗 → ((𝑃𝑠)𝑀𝑗) = 0 )))
89 neeq2 2992 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑠 → ((𝑃𝑠) ≠ 𝑗 ↔ (𝑃𝑠) ≠ 𝑠))
90 oveq2 7362 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑠 → ((𝑃𝑠)𝑀𝑗) = ((𝑃𝑠)𝑀𝑠))
9190eqeq1d 2735 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑠 → (((𝑃𝑠)𝑀𝑗) = 0 ↔ ((𝑃𝑠)𝑀𝑠) = 0 ))
9289, 91imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑠 → (((𝑃𝑠) ≠ 𝑗 → ((𝑃𝑠)𝑀𝑗) = 0 ) ↔ ((𝑃𝑠) ≠ 𝑠 → ((𝑃𝑠)𝑀𝑠) = 0 )))
9388, 92rspc2v 3584 . . . . . . . . . . . . . . . 16 (((𝑃𝑠) ∈ 𝑁𝑠𝑁) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) → ((𝑃𝑠) ≠ 𝑠 → ((𝑃𝑠)𝑀𝑠) = 0 )))
9484, 83, 93syl2anc 584 . . . . . . . . . . . . . . 15 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) → ((𝑃𝑠) ≠ 𝑠 → ((𝑃𝑠)𝑀𝑠) = 0 )))
9594impancom 451 . . . . . . . . . . . . . 14 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) → ((𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I )) → ((𝑃𝑠) ≠ 𝑠 → ((𝑃𝑠)𝑀𝑠) = 0 )))
9695imp 406 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → ((𝑃𝑠) ≠ 𝑠 → ((𝑃𝑠)𝑀𝑠) = 0 ))
9778, 96mpd 15 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → ((𝑃𝑠)𝑀𝑠) = 0 )
9873, 97eqtrd 2768 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → (𝐺 Σg (𝑘 ∈ {𝑠} ↦ ((𝑃𝑘)𝑀𝑘))) = 0 )
9998oveq1d 7369 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → ((𝐺 Σg (𝑘 ∈ {𝑠} ↦ ((𝑃𝑘)𝑀𝑘)))(.r𝑅)(𝐺 Σg (𝑘 ∈ (𝑁 ∖ {𝑠}) ↦ ((𝑃𝑘)𝑀𝑘)))) = ( 0 (.r𝑅)(𝐺 Σg (𝑘 ∈ (𝑁 ∖ {𝑠}) ↦ ((𝑃𝑘)𝑀𝑘)))))
100583ad2ant1 1133 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
101100ad2antrr 726 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝑅 ∈ Ring)
10223adantr 480 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) → 𝐺 ∈ CMnd)
103 simpl2 1193 . . . . . . . . . . . . . 14 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) → 𝑁 ∈ Fin)
104 difss 4085 . . . . . . . . . . . . . 14 (𝑁 ∖ {𝑠}) ⊆ 𝑁
105 ssfi 9091 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ (𝑁 ∖ {𝑠}) ⊆ 𝑁) → (𝑁 ∖ {𝑠}) ∈ Fin)
106103, 104, 105sylancl 586 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) → (𝑁 ∖ {𝑠}) ∈ Fin)
10732ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) ∧ 𝑘 ∈ (𝑁 ∖ {𝑠})) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
10880adantr 480 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) ∧ 𝑘 ∈ (𝑁 ∖ {𝑠})) → 𝑃:𝑁𝑁)
109 eldifi 4080 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (𝑁 ∖ {𝑠}) → 𝑘𝑁)
110109adantl 481 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) ∧ 𝑘 ∈ (𝑁 ∖ {𝑠})) → 𝑘𝑁)
111108, 110ffvelcdmd 7026 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) ∧ 𝑘 ∈ (𝑁 ∖ {𝑠})) → (𝑃𝑘) ∈ 𝑁)
112107, 111, 110fovcdmd 7526 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) ∧ 𝑘 ∈ (𝑁 ∖ {𝑠})) → ((𝑃𝑘)𝑀𝑘) ∈ (Base‘𝑅))
113112ralrimiva 3125 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) → ∀𝑘 ∈ (𝑁 ∖ {𝑠})((𝑃𝑘)𝑀𝑘) ∈ (Base‘𝑅))
11433, 102, 106, 113gsummptcl 19883 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) → (𝐺 Σg (𝑘 ∈ (𝑁 ∖ {𝑠}) ↦ ((𝑃𝑘)𝑀𝑘))) ∈ (Base‘𝑅))
115114ad2ant2r 747 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → (𝐺 Σg (𝑘 ∈ (𝑁 ∖ {𝑠}) ↦ ((𝑃𝑘)𝑀𝑘))) ∈ (Base‘𝑅))
116 mdetdiag.0 . . . . . . . . . . . 12 0 = (0g𝑅)
11727, 20, 116ringlz 20215 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝐺 Σg (𝑘 ∈ (𝑁 ∖ {𝑠}) ↦ ((𝑃𝑘)𝑀𝑘))) ∈ (Base‘𝑅)) → ( 0 (.r𝑅)(𝐺 Σg (𝑘 ∈ (𝑁 ∖ {𝑠}) ↦ ((𝑃𝑘)𝑀𝑘)))) = 0 )
118101, 115, 117syl2anc 584 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → ( 0 (.r𝑅)(𝐺 Σg (𝑘 ∈ (𝑁 ∖ {𝑠}) ↦ ((𝑃𝑘)𝑀𝑘)))) = 0 )
11957, 99, 1183eqtrd 2772 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → (𝐺 Σg (𝑘𝑁 ↦ ((𝑃𝑘)𝑀𝑘))) = 0 )
120119expr 456 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑃𝐻) → (𝑠 ∈ dom (𝑃 ∖ I ) → (𝐺 Σg (𝑘𝑁 ↦ ((𝑃𝑘)𝑀𝑘))) = 0 ))
121120exlimdv 1934 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑃𝐻) → (∃𝑠 𝑠 ∈ dom (𝑃 ∖ I ) → (𝐺 Σg (𝑘𝑁 ↦ ((𝑃𝑘)𝑀𝑘))) = 0 ))
12217, 121biimtrid 242 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑃𝐻) → (dom (𝑃 ∖ I ) ≠ ∅ → (𝐺 Σg (𝑘𝑁 ↦ ((𝑃𝑘)𝑀𝑘))) = 0 ))
12316, 122sylbid 240 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑃𝐻) → (𝑃 ≠ ( I ↾ 𝑁) → (𝐺 Σg (𝑘𝑁 ↦ ((𝑃𝑘)𝑀𝑘))) = 0 ))
124123expimpd 453 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) → ((𝑃𝐻𝑃 ≠ ( I ↾ 𝑁)) → (𝐺 Σg (𝑘𝑁 ↦ ((𝑃𝑘)𝑀𝑘))) = 0 ))
1251243impia 1117 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) ∧ (𝑃𝐻𝑃 ≠ ( I ↾ 𝑁))) → (𝐺 Σg (𝑘𝑁 ↦ ((𝑃𝑘)𝑀𝑘))) = 0 )
1266, 125oveq12d 7372 . 2 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) ∧ (𝑃𝐻𝑃 ≠ ( I ↾ 𝑁))) → (((𝑍𝑆)‘𝑃) · (𝐺 Σg (𝑘𝑁 ↦ ((𝑃𝑘)𝑀𝑘)))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑃) · 0 ))
127 3simpa 1148 . . . 4 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) → (𝑅 ∈ CRing ∧ 𝑁 ∈ Fin))
128 simpl 482 . . . 4 ((𝑃𝐻𝑃 ≠ ( I ↾ 𝑁)) → 𝑃𝐻)
12958ad2antrr 726 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑃𝐻) → 𝑅 ∈ Ring)
130 zrhpsgnmhm 21525 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
13158, 130sylan 580 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
132 eqid 2733 . . . . . . . 8 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
1338, 132mhmf 18701 . . . . . . 7 (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):𝐻⟶(Base‘(mulGrp‘𝑅)))
134131, 133syl 17 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):𝐻⟶(Base‘(mulGrp‘𝑅)))
135134ffvelcdmda 7025 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑃𝐻) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑃) ∈ (Base‘(mulGrp‘𝑅)))
136 eqid 2733 . . . . . . . 8 (mulGrp‘𝑅) = (mulGrp‘𝑅)
137136, 27mgpbas 20067 . . . . . . 7 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
138137eqcomi 2742 . . . . . 6 (Base‘(mulGrp‘𝑅)) = (Base‘𝑅)
139 mdetdiaglem.t . . . . . 6 · = (.r𝑅)
140138, 139, 116ringrz 20216 . . . . 5 ((𝑅 ∈ Ring ∧ (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑃) ∈ (Base‘(mulGrp‘𝑅))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑃) · 0 ) = 0 )
141129, 135, 140syl2anc 584 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑃𝐻) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑃) · 0 ) = 0 )
142127, 128, 141syl2an 596 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ (𝑃𝐻𝑃 ≠ ( I ↾ 𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑃) · 0 ) = 0 )
1431423adant2 1131 . 2 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) ∧ (𝑃𝐻𝑃 ≠ ( I ↾ 𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑃) · 0 ) = 0 )
144126, 143eqtrd 2768 1 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) ∧ (𝑃𝐻𝑃 ≠ ( I ↾ 𝑁))) → (((𝑍𝑆)‘𝑃) · (𝐺 Σg (𝑘𝑁 ↦ ((𝑃𝑘)𝑀𝑘)))) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2113  wne 2929  wral 3048  Vcvv 3437  cdif 3895  cun 3896  cin 3897  wss 3898  c0 4282  {csn 4577  cmpt 5176   I cid 5515   × cxp 5619  dom cdm 5621  cres 5623  ccom 5625   Fn wfn 6483  wf 6484  1-1-ontowf1o 6487  cfv 6488  (class class class)co 7354  m cmap 8758  Fincfn 8877  Basecbs 17124  .rcmulr 17166  0gc0g 17347   Σg cgsu 17348  Mndcmnd 18646   MndHom cmhm 18693  SymGrpcsymg 19285  pmSgncpsgn 19405  CMndccmn 19696  mulGrpcmgp 20062  Ringcrg 20155  CRingccrg 20156  ℤRHomczrh 21440   Mat cmat 22325   maDet cmdat 22502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-addf 11094  ax-mulf 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1513  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7618  df-om 7805  df-1st 7929  df-2nd 7930  df-supp 8099  df-tpos 8164  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-er 8630  df-map 8760  df-ixp 8830  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-fsupp 9255  df-sup 9335  df-oi 9405  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-xnn0 12464  df-z 12478  df-dec 12597  df-uz 12741  df-rp 12895  df-fz 13412  df-fzo 13559  df-seq 13913  df-exp 13973  df-hash 14242  df-word 14425  df-lsw 14474  df-concat 14482  df-s1 14508  df-substr 14553  df-pfx 14583  df-splice 14661  df-reverse 14670  df-s2 14759  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-starv 17180  df-sca 17181  df-vsca 17182  df-ip 17183  df-tset 17184  df-ple 17185  df-ds 17187  df-unif 17188  df-hom 17189  df-cco 17190  df-0g 17349  df-gsum 17350  df-prds 17355  df-pws 17357  df-mre 17492  df-mrc 17493  df-acs 17495  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-mhm 18695  df-submnd 18696  df-efmnd 18781  df-grp 18853  df-minusg 18854  df-mulg 18985  df-subg 19040  df-ghm 19129  df-gim 19175  df-cntz 19233  df-oppg 19262  df-symg 19286  df-pmtr 19358  df-psgn 19407  df-cmn 19698  df-abl 19699  df-mgp 20063  df-rng 20075  df-ur 20104  df-ring 20157  df-cring 20158  df-oppr 20259  df-dvdsr 20279  df-unit 20280  df-invr 20310  df-dvr 20323  df-rhm 20394  df-subrng 20465  df-subrg 20489  df-drng 20650  df-sra 21111  df-rgmod 21112  df-cnfld 21296  df-zring 21388  df-zrh 21444  df-dsmm 21673  df-frlm 21688  df-mat 22326
This theorem is referenced by:  mdetdiag  22517
  Copyright terms: Public domain W3C validator