MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetdiaglem Structured version   Visualization version   GIF version

Theorem mdetdiaglem 22625
Description: Lemma for mdetdiag 22626. Previously part of proof for mdet1 22628. (Contributed by SO, 10-Jul-2018.) (Revised by AV, 17-Aug-2019.)
Hypotheses
Ref Expression
mdetdiag.d 𝐷 = (𝑁 maDet 𝑅)
mdetdiag.a 𝐴 = (𝑁 Mat 𝑅)
mdetdiag.b 𝐵 = (Base‘𝐴)
mdetdiag.g 𝐺 = (mulGrp‘𝑅)
mdetdiag.0 0 = (0g𝑅)
mdetdiaglem.g 𝐻 = (Base‘(SymGrp‘𝑁))
mdetdiaglem.z 𝑍 = (ℤRHom‘𝑅)
mdetdiaglem.s 𝑆 = (pmSgn‘𝑁)
mdetdiaglem.t · = (.r𝑅)
Assertion
Ref Expression
mdetdiaglem (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) ∧ (𝑃𝐻𝑃 ≠ ( I ↾ 𝑁))) → (((𝑍𝑆)‘𝑃) · (𝐺 Σg (𝑘𝑁 ↦ ((𝑃𝑘)𝑀𝑘)))) = 0 )
Distinct variable groups:   𝐵,𝑘   𝑘,𝐺   𝑘,𝐻   𝑖,𝑀,𝑗,𝑘   𝑖,𝑁,𝑗,𝑘   𝑃,𝑖,𝑗,𝑘   𝑅,𝑘   0 ,𝑖,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑘)   𝐵(𝑖,𝑗)   𝐷(𝑖,𝑗,𝑘)   𝑅(𝑖,𝑗)   𝑆(𝑖,𝑗,𝑘)   · (𝑖,𝑗,𝑘)   𝐺(𝑖,𝑗)   𝐻(𝑖,𝑗)   𝑍(𝑖,𝑗,𝑘)

Proof of Theorem mdetdiaglem
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 mdetdiaglem.z . . . . . 6 𝑍 = (ℤRHom‘𝑅)
21a1i 11 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) ∧ (𝑃𝐻𝑃 ≠ ( I ↾ 𝑁))) → 𝑍 = (ℤRHom‘𝑅))
3 mdetdiaglem.s . . . . . 6 𝑆 = (pmSgn‘𝑁)
43a1i 11 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) ∧ (𝑃𝐻𝑃 ≠ ( I ↾ 𝑁))) → 𝑆 = (pmSgn‘𝑁))
52, 4coeq12d 5889 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) ∧ (𝑃𝐻𝑃 ≠ ( I ↾ 𝑁))) → (𝑍𝑆) = ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)))
65fveq1d 6922 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) ∧ (𝑃𝐻𝑃 ≠ ( I ↾ 𝑁))) → ((𝑍𝑆)‘𝑃) = (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑃))
7 eqid 2740 . . . . . . . . . . . 12 (SymGrp‘𝑁) = (SymGrp‘𝑁)
8 mdetdiaglem.g . . . . . . . . . . . 12 𝐻 = (Base‘(SymGrp‘𝑁))
97, 8symgbasf1o 19416 . . . . . . . . . . 11 (𝑃𝐻𝑃:𝑁1-1-onto𝑁)
10 f1ofn 6863 . . . . . . . . . . 11 (𝑃:𝑁1-1-onto𝑁𝑃 Fn 𝑁)
119, 10syl 17 . . . . . . . . . 10 (𝑃𝐻𝑃 Fn 𝑁)
12 fnnfpeq0 7212 . . . . . . . . . 10 (𝑃 Fn 𝑁 → (dom (𝑃 ∖ I ) = ∅ ↔ 𝑃 = ( I ↾ 𝑁)))
1311, 12syl 17 . . . . . . . . 9 (𝑃𝐻 → (dom (𝑃 ∖ I ) = ∅ ↔ 𝑃 = ( I ↾ 𝑁)))
1413adantl 481 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑃𝐻) → (dom (𝑃 ∖ I ) = ∅ ↔ 𝑃 = ( I ↾ 𝑁)))
1514bicomd 223 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑃𝐻) → (𝑃 = ( I ↾ 𝑁) ↔ dom (𝑃 ∖ I ) = ∅))
1615necon3bid 2991 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑃𝐻) → (𝑃 ≠ ( I ↾ 𝑁) ↔ dom (𝑃 ∖ I ) ≠ ∅))
17 n0 4376 . . . . . . 7 (dom (𝑃 ∖ I ) ≠ ∅ ↔ ∃𝑠 𝑠 ∈ dom (𝑃 ∖ I ))
18 eqid 2740 . . . . . . . . . . 11 (Base‘𝐺) = (Base‘𝐺)
19 mdetdiag.g . . . . . . . . . . . 12 𝐺 = (mulGrp‘𝑅)
20 eqid 2740 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
2119, 20mgpplusg 20165 . . . . . . . . . . 11 (.r𝑅) = (+g𝐺)
2219crngmgp 20268 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝐺 ∈ CMnd)
23223ad2ant1 1133 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) → 𝐺 ∈ CMnd)
2423ad2antrr 725 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝐺 ∈ CMnd)
25 simpll2 1213 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝑁 ∈ Fin)
26 mdetdiag.a . . . . . . . . . . . . . . . . 17 𝐴 = (𝑁 Mat 𝑅)
27 eqid 2740 . . . . . . . . . . . . . . . . 17 (Base‘𝑅) = (Base‘𝑅)
28 mdetdiag.b . . . . . . . . . . . . . . . . 17 𝐵 = (Base‘𝐴)
2926, 27, 28matbas2i 22449 . . . . . . . . . . . . . . . 16 (𝑀𝐵𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
30293ad2ant3 1135 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) → 𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
31 elmapi 8907 . . . . . . . . . . . . . . 15 (𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
3230, 31syl 17 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
3319, 27mgpbas 20167 . . . . . . . . . . . . . . . . 17 (Base‘𝑅) = (Base‘𝐺)
3433eqcomi 2749 . . . . . . . . . . . . . . . 16 (Base‘𝐺) = (Base‘𝑅)
3534a1i 11 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) → (Base‘𝐺) = (Base‘𝑅))
3635feq3d 6734 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) → (𝑀:(𝑁 × 𝑁)⟶(Base‘𝐺) ↔ 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)))
3732, 36mpbird 257 . . . . . . . . . . . . 13 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝐺))
3837ad3antrrr 729 . . . . . . . . . . . 12 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) ∧ 𝑘𝑁) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝐺))
397, 8symgbasf 19417 . . . . . . . . . . . . . 14 (𝑃𝐻𝑃:𝑁𝑁)
4039ad2antrl 727 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝑃:𝑁𝑁)
4140ffvelcdmda 7118 . . . . . . . . . . . 12 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) ∧ 𝑘𝑁) → (𝑃𝑘) ∈ 𝑁)
42 simpr 484 . . . . . . . . . . . 12 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) ∧ 𝑘𝑁) → 𝑘𝑁)
4338, 41, 42fovcdmd 7622 . . . . . . . . . . 11 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) ∧ 𝑘𝑁) → ((𝑃𝑘)𝑀𝑘) ∈ (Base‘𝐺))
44 disjdif 4495 . . . . . . . . . . . 12 ({𝑠} ∩ (𝑁 ∖ {𝑠})) = ∅
4544a1i 11 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → ({𝑠} ∩ (𝑁 ∖ {𝑠})) = ∅)
46 difss 4159 . . . . . . . . . . . . . . . . . 18 (𝑃 ∖ I ) ⊆ 𝑃
47 dmss 5927 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∖ I ) ⊆ 𝑃 → dom (𝑃 ∖ I ) ⊆ dom 𝑃)
4846, 47ax-mp 5 . . . . . . . . . . . . . . . . 17 dom (𝑃 ∖ I ) ⊆ dom 𝑃
4939adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑃𝐻) → 𝑃:𝑁𝑁)
5048, 49fssdm 6766 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑃𝐻) → dom (𝑃 ∖ I ) ⊆ 𝑁)
5150sseld 4007 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑃𝐻) → (𝑠 ∈ dom (𝑃 ∖ I ) → 𝑠𝑁))
5251impr 454 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝑠𝑁)
5352snssd 4834 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → {𝑠} ⊆ 𝑁)
54 undif 4505 . . . . . . . . . . . . 13 ({𝑠} ⊆ 𝑁 ↔ ({𝑠} ∪ (𝑁 ∖ {𝑠})) = 𝑁)
5553, 54sylib 218 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → ({𝑠} ∪ (𝑁 ∖ {𝑠})) = 𝑁)
5655eqcomd 2746 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝑁 = ({𝑠} ∪ (𝑁 ∖ {𝑠})))
5718, 21, 24, 25, 43, 45, 56gsummptfidmsplit 19972 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → (𝐺 Σg (𝑘𝑁 ↦ ((𝑃𝑘)𝑀𝑘))) = ((𝐺 Σg (𝑘 ∈ {𝑠} ↦ ((𝑃𝑘)𝑀𝑘)))(.r𝑅)(𝐺 Σg (𝑘 ∈ (𝑁 ∖ {𝑠}) ↦ ((𝑃𝑘)𝑀𝑘)))))
58 crngring 20272 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
5958adantr 480 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝑅 ∈ Ring)
6019ringmgp 20266 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → 𝐺 ∈ Mnd)
6159, 60syl 17 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝐺 ∈ Mnd)
62613adant3 1132 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) → 𝐺 ∈ Mnd)
6362ad2antrr 725 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝐺 ∈ Mnd)
64 vex 3492 . . . . . . . . . . . . . 14 𝑠 ∈ V
6564a1i 11 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝑠 ∈ V)
6632ad2antrr 725 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
6740, 52ffvelcdmd 7119 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → (𝑃𝑠) ∈ 𝑁)
6866, 67, 52fovcdmd 7622 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → ((𝑃𝑠)𝑀𝑠) ∈ (Base‘𝑅))
69 fveq2 6920 . . . . . . . . . . . . . . 15 (𝑘 = 𝑠 → (𝑃𝑘) = (𝑃𝑠))
70 id 22 . . . . . . . . . . . . . . 15 (𝑘 = 𝑠𝑘 = 𝑠)
7169, 70oveq12d 7466 . . . . . . . . . . . . . 14 (𝑘 = 𝑠 → ((𝑃𝑘)𝑀𝑘) = ((𝑃𝑠)𝑀𝑠))
7233, 71gsumsn 19996 . . . . . . . . . . . . 13 ((𝐺 ∈ Mnd ∧ 𝑠 ∈ V ∧ ((𝑃𝑠)𝑀𝑠) ∈ (Base‘𝑅)) → (𝐺 Σg (𝑘 ∈ {𝑠} ↦ ((𝑃𝑘)𝑀𝑘))) = ((𝑃𝑠)𝑀𝑠))
7363, 65, 68, 72syl3anc 1371 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → (𝐺 Σg (𝑘 ∈ {𝑠} ↦ ((𝑃𝑘)𝑀𝑘))) = ((𝑃𝑠)𝑀𝑠))
74 simprr 772 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝑠 ∈ dom (𝑃 ∖ I ))
7511ad2antrl 727 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝑃 Fn 𝑁)
76 fnelnfp 7211 . . . . . . . . . . . . . . 15 ((𝑃 Fn 𝑁𝑠𝑁) → (𝑠 ∈ dom (𝑃 ∖ I ) ↔ (𝑃𝑠) ≠ 𝑠))
7775, 52, 76syl2anc 583 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → (𝑠 ∈ dom (𝑃 ∖ I ) ↔ (𝑃𝑠) ≠ 𝑠))
7874, 77mpbid 232 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → (𝑃𝑠) ≠ 𝑠)
7939ad2antrl 727 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝑃:𝑁𝑁)
8039adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) → 𝑃:𝑁𝑁)
8148, 80fssdm 6766 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) → dom (𝑃 ∖ I ) ⊆ 𝑁)
8281sseld 4007 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) → (𝑠 ∈ dom (𝑃 ∖ I ) → 𝑠𝑁))
8382impr 454 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝑠𝑁)
8479, 83ffvelcdmd 7119 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → (𝑃𝑠) ∈ 𝑁)
85 neeq1 3009 . . . . . . . . . . . . . . . . . 18 (𝑖 = (𝑃𝑠) → (𝑖𝑗 ↔ (𝑃𝑠) ≠ 𝑗))
86 oveq1 7455 . . . . . . . . . . . . . . . . . . 19 (𝑖 = (𝑃𝑠) → (𝑖𝑀𝑗) = ((𝑃𝑠)𝑀𝑗))
8786eqeq1d 2742 . . . . . . . . . . . . . . . . . 18 (𝑖 = (𝑃𝑠) → ((𝑖𝑀𝑗) = 0 ↔ ((𝑃𝑠)𝑀𝑗) = 0 ))
8885, 87imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑃𝑠) → ((𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) ↔ ((𝑃𝑠) ≠ 𝑗 → ((𝑃𝑠)𝑀𝑗) = 0 )))
89 neeq2 3010 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑠 → ((𝑃𝑠) ≠ 𝑗 ↔ (𝑃𝑠) ≠ 𝑠))
90 oveq2 7456 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑠 → ((𝑃𝑠)𝑀𝑗) = ((𝑃𝑠)𝑀𝑠))
9190eqeq1d 2742 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑠 → (((𝑃𝑠)𝑀𝑗) = 0 ↔ ((𝑃𝑠)𝑀𝑠) = 0 ))
9289, 91imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑠 → (((𝑃𝑠) ≠ 𝑗 → ((𝑃𝑠)𝑀𝑗) = 0 ) ↔ ((𝑃𝑠) ≠ 𝑠 → ((𝑃𝑠)𝑀𝑠) = 0 )))
9388, 92rspc2v 3646 . . . . . . . . . . . . . . . 16 (((𝑃𝑠) ∈ 𝑁𝑠𝑁) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) → ((𝑃𝑠) ≠ 𝑠 → ((𝑃𝑠)𝑀𝑠) = 0 )))
9484, 83, 93syl2anc 583 . . . . . . . . . . . . . . 15 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) → ((𝑃𝑠) ≠ 𝑠 → ((𝑃𝑠)𝑀𝑠) = 0 )))
9594impancom 451 . . . . . . . . . . . . . 14 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) → ((𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I )) → ((𝑃𝑠) ≠ 𝑠 → ((𝑃𝑠)𝑀𝑠) = 0 )))
9695imp 406 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → ((𝑃𝑠) ≠ 𝑠 → ((𝑃𝑠)𝑀𝑠) = 0 ))
9778, 96mpd 15 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → ((𝑃𝑠)𝑀𝑠) = 0 )
9873, 97eqtrd 2780 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → (𝐺 Σg (𝑘 ∈ {𝑠} ↦ ((𝑃𝑘)𝑀𝑘))) = 0 )
9998oveq1d 7463 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → ((𝐺 Σg (𝑘 ∈ {𝑠} ↦ ((𝑃𝑘)𝑀𝑘)))(.r𝑅)(𝐺 Σg (𝑘 ∈ (𝑁 ∖ {𝑠}) ↦ ((𝑃𝑘)𝑀𝑘)))) = ( 0 (.r𝑅)(𝐺 Σg (𝑘 ∈ (𝑁 ∖ {𝑠}) ↦ ((𝑃𝑘)𝑀𝑘)))))
100583ad2ant1 1133 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
101100ad2antrr 725 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝑅 ∈ Ring)
10223adantr 480 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) → 𝐺 ∈ CMnd)
103 simpl2 1192 . . . . . . . . . . . . . 14 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) → 𝑁 ∈ Fin)
104 difss 4159 . . . . . . . . . . . . . 14 (𝑁 ∖ {𝑠}) ⊆ 𝑁
105 ssfi 9240 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ (𝑁 ∖ {𝑠}) ⊆ 𝑁) → (𝑁 ∖ {𝑠}) ∈ Fin)
106103, 104, 105sylancl 585 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) → (𝑁 ∖ {𝑠}) ∈ Fin)
10732ad2antrr 725 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) ∧ 𝑘 ∈ (𝑁 ∖ {𝑠})) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
10880adantr 480 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) ∧ 𝑘 ∈ (𝑁 ∖ {𝑠})) → 𝑃:𝑁𝑁)
109 eldifi 4154 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (𝑁 ∖ {𝑠}) → 𝑘𝑁)
110109adantl 481 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) ∧ 𝑘 ∈ (𝑁 ∖ {𝑠})) → 𝑘𝑁)
111108, 110ffvelcdmd 7119 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) ∧ 𝑘 ∈ (𝑁 ∖ {𝑠})) → (𝑃𝑘) ∈ 𝑁)
112107, 111, 110fovcdmd 7622 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) ∧ 𝑘 ∈ (𝑁 ∖ {𝑠})) → ((𝑃𝑘)𝑀𝑘) ∈ (Base‘𝑅))
113112ralrimiva 3152 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) → ∀𝑘 ∈ (𝑁 ∖ {𝑠})((𝑃𝑘)𝑀𝑘) ∈ (Base‘𝑅))
11433, 102, 106, 113gsummptcl 20009 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) → (𝐺 Σg (𝑘 ∈ (𝑁 ∖ {𝑠}) ↦ ((𝑃𝑘)𝑀𝑘))) ∈ (Base‘𝑅))
115114ad2ant2r 746 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → (𝐺 Σg (𝑘 ∈ (𝑁 ∖ {𝑠}) ↦ ((𝑃𝑘)𝑀𝑘))) ∈ (Base‘𝑅))
116 mdetdiag.0 . . . . . . . . . . . 12 0 = (0g𝑅)
11727, 20, 116ringlz 20316 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝐺 Σg (𝑘 ∈ (𝑁 ∖ {𝑠}) ↦ ((𝑃𝑘)𝑀𝑘))) ∈ (Base‘𝑅)) → ( 0 (.r𝑅)(𝐺 Σg (𝑘 ∈ (𝑁 ∖ {𝑠}) ↦ ((𝑃𝑘)𝑀𝑘)))) = 0 )
118101, 115, 117syl2anc 583 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → ( 0 (.r𝑅)(𝐺 Σg (𝑘 ∈ (𝑁 ∖ {𝑠}) ↦ ((𝑃𝑘)𝑀𝑘)))) = 0 )
11957, 99, 1183eqtrd 2784 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → (𝐺 Σg (𝑘𝑁 ↦ ((𝑃𝑘)𝑀𝑘))) = 0 )
120119expr 456 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑃𝐻) → (𝑠 ∈ dom (𝑃 ∖ I ) → (𝐺 Σg (𝑘𝑁 ↦ ((𝑃𝑘)𝑀𝑘))) = 0 ))
121120exlimdv 1932 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑃𝐻) → (∃𝑠 𝑠 ∈ dom (𝑃 ∖ I ) → (𝐺 Σg (𝑘𝑁 ↦ ((𝑃𝑘)𝑀𝑘))) = 0 ))
12217, 121biimtrid 242 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑃𝐻) → (dom (𝑃 ∖ I ) ≠ ∅ → (𝐺 Σg (𝑘𝑁 ↦ ((𝑃𝑘)𝑀𝑘))) = 0 ))
12316, 122sylbid 240 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑃𝐻) → (𝑃 ≠ ( I ↾ 𝑁) → (𝐺 Σg (𝑘𝑁 ↦ ((𝑃𝑘)𝑀𝑘))) = 0 ))
124123expimpd 453 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) → ((𝑃𝐻𝑃 ≠ ( I ↾ 𝑁)) → (𝐺 Σg (𝑘𝑁 ↦ ((𝑃𝑘)𝑀𝑘))) = 0 ))
1251243impia 1117 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) ∧ (𝑃𝐻𝑃 ≠ ( I ↾ 𝑁))) → (𝐺 Σg (𝑘𝑁 ↦ ((𝑃𝑘)𝑀𝑘))) = 0 )
1266, 125oveq12d 7466 . 2 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) ∧ (𝑃𝐻𝑃 ≠ ( I ↾ 𝑁))) → (((𝑍𝑆)‘𝑃) · (𝐺 Σg (𝑘𝑁 ↦ ((𝑃𝑘)𝑀𝑘)))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑃) · 0 ))
127 3simpa 1148 . . . 4 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) → (𝑅 ∈ CRing ∧ 𝑁 ∈ Fin))
128 simpl 482 . . . 4 ((𝑃𝐻𝑃 ≠ ( I ↾ 𝑁)) → 𝑃𝐻)
12958ad2antrr 725 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑃𝐻) → 𝑅 ∈ Ring)
130 zrhpsgnmhm 21625 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
13158, 130sylan 579 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
132 eqid 2740 . . . . . . . 8 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
1338, 132mhmf 18824 . . . . . . 7 (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):𝐻⟶(Base‘(mulGrp‘𝑅)))
134131, 133syl 17 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):𝐻⟶(Base‘(mulGrp‘𝑅)))
135134ffvelcdmda 7118 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑃𝐻) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑃) ∈ (Base‘(mulGrp‘𝑅)))
136 eqid 2740 . . . . . . . 8 (mulGrp‘𝑅) = (mulGrp‘𝑅)
137136, 27mgpbas 20167 . . . . . . 7 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
138137eqcomi 2749 . . . . . 6 (Base‘(mulGrp‘𝑅)) = (Base‘𝑅)
139 mdetdiaglem.t . . . . . 6 · = (.r𝑅)
140138, 139, 116ringrz 20317 . . . . 5 ((𝑅 ∈ Ring ∧ (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑃) ∈ (Base‘(mulGrp‘𝑅))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑃) · 0 ) = 0 )
141129, 135, 140syl2anc 583 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑃𝐻) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑃) · 0 ) = 0 )
142127, 128, 141syl2an 595 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ (𝑃𝐻𝑃 ≠ ( I ↾ 𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑃) · 0 ) = 0 )
1431423adant2 1131 . 2 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) ∧ (𝑃𝐻𝑃 ≠ ( I ↾ 𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑃) · 0 ) = 0 )
144126, 143eqtrd 2780 1 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) ∧ (𝑃𝐻𝑃 ≠ ( I ↾ 𝑁))) → (((𝑍𝑆)‘𝑃) · (𝐺 Σg (𝑘𝑁 ↦ ((𝑃𝑘)𝑀𝑘)))) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wne 2946  wral 3067  Vcvv 3488  cdif 3973  cun 3974  cin 3975  wss 3976  c0 4352  {csn 4648  cmpt 5249   I cid 5592   × cxp 5698  dom cdm 5700  cres 5702  ccom 5704   Fn wfn 6568  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  m cmap 8884  Fincfn 9003  Basecbs 17258  .rcmulr 17312  0gc0g 17499   Σg cgsu 17500  Mndcmnd 18772   MndHom cmhm 18816  SymGrpcsymg 19410  pmSgncpsgn 19531  CMndccmn 19822  mulGrpcmgp 20161  Ringcrg 20260  CRingccrg 20261  ℤRHomczrh 21533   Mat cmat 22432   maDet cmdat 22611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-xor 1509  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-word 14563  df-lsw 14611  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719  df-splice 14798  df-reverse 14807  df-s2 14897  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-efmnd 18904  df-grp 18976  df-minusg 18977  df-mulg 19108  df-subg 19163  df-ghm 19253  df-gim 19299  df-cntz 19357  df-oppg 19386  df-symg 19411  df-pmtr 19484  df-psgn 19533  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-drng 20753  df-sra 21195  df-rgmod 21196  df-cnfld 21388  df-zring 21481  df-zrh 21537  df-dsmm 21775  df-frlm 21790  df-mat 22433
This theorem is referenced by:  mdetdiag  22626
  Copyright terms: Public domain W3C validator