MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetdiaglem Structured version   Visualization version   GIF version

Theorem mdetdiaglem 21947
Description: Lemma for mdetdiag 21948. Previously part of proof for mdet1 21950. (Contributed by SO, 10-Jul-2018.) (Revised by AV, 17-Aug-2019.)
Hypotheses
Ref Expression
mdetdiag.d 𝐷 = (𝑁 maDet 𝑅)
mdetdiag.a 𝐴 = (𝑁 Mat 𝑅)
mdetdiag.b 𝐵 = (Base‘𝐴)
mdetdiag.g 𝐺 = (mulGrp‘𝑅)
mdetdiag.0 0 = (0g𝑅)
mdetdiaglem.g 𝐻 = (Base‘(SymGrp‘𝑁))
mdetdiaglem.z 𝑍 = (ℤRHom‘𝑅)
mdetdiaglem.s 𝑆 = (pmSgn‘𝑁)
mdetdiaglem.t · = (.r𝑅)
Assertion
Ref Expression
mdetdiaglem (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) ∧ (𝑃𝐻𝑃 ≠ ( I ↾ 𝑁))) → (((𝑍𝑆)‘𝑃) · (𝐺 Σg (𝑘𝑁 ↦ ((𝑃𝑘)𝑀𝑘)))) = 0 )
Distinct variable groups:   𝐵,𝑘   𝑘,𝐺   𝑘,𝐻   𝑖,𝑀,𝑗,𝑘   𝑖,𝑁,𝑗,𝑘   𝑃,𝑖,𝑗,𝑘   𝑅,𝑘   0 ,𝑖,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑘)   𝐵(𝑖,𝑗)   𝐷(𝑖,𝑗,𝑘)   𝑅(𝑖,𝑗)   𝑆(𝑖,𝑗,𝑘)   · (𝑖,𝑗,𝑘)   𝐺(𝑖,𝑗)   𝐻(𝑖,𝑗)   𝑍(𝑖,𝑗,𝑘)

Proof of Theorem mdetdiaglem
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 mdetdiaglem.z . . . . . 6 𝑍 = (ℤRHom‘𝑅)
21a1i 11 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) ∧ (𝑃𝐻𝑃 ≠ ( I ↾ 𝑁))) → 𝑍 = (ℤRHom‘𝑅))
3 mdetdiaglem.s . . . . . 6 𝑆 = (pmSgn‘𝑁)
43a1i 11 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) ∧ (𝑃𝐻𝑃 ≠ ( I ↾ 𝑁))) → 𝑆 = (pmSgn‘𝑁))
52, 4coeq12d 5820 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) ∧ (𝑃𝐻𝑃 ≠ ( I ↾ 𝑁))) → (𝑍𝑆) = ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)))
65fveq1d 6844 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) ∧ (𝑃𝐻𝑃 ≠ ( I ↾ 𝑁))) → ((𝑍𝑆)‘𝑃) = (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑃))
7 eqid 2736 . . . . . . . . . . . 12 (SymGrp‘𝑁) = (SymGrp‘𝑁)
8 mdetdiaglem.g . . . . . . . . . . . 12 𝐻 = (Base‘(SymGrp‘𝑁))
97, 8symgbasf1o 19156 . . . . . . . . . . 11 (𝑃𝐻𝑃:𝑁1-1-onto𝑁)
10 f1ofn 6785 . . . . . . . . . . 11 (𝑃:𝑁1-1-onto𝑁𝑃 Fn 𝑁)
119, 10syl 17 . . . . . . . . . 10 (𝑃𝐻𝑃 Fn 𝑁)
12 fnnfpeq0 7124 . . . . . . . . . 10 (𝑃 Fn 𝑁 → (dom (𝑃 ∖ I ) = ∅ ↔ 𝑃 = ( I ↾ 𝑁)))
1311, 12syl 17 . . . . . . . . 9 (𝑃𝐻 → (dom (𝑃 ∖ I ) = ∅ ↔ 𝑃 = ( I ↾ 𝑁)))
1413adantl 482 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑃𝐻) → (dom (𝑃 ∖ I ) = ∅ ↔ 𝑃 = ( I ↾ 𝑁)))
1514bicomd 222 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑃𝐻) → (𝑃 = ( I ↾ 𝑁) ↔ dom (𝑃 ∖ I ) = ∅))
1615necon3bid 2988 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑃𝐻) → (𝑃 ≠ ( I ↾ 𝑁) ↔ dom (𝑃 ∖ I ) ≠ ∅))
17 n0 4306 . . . . . . 7 (dom (𝑃 ∖ I ) ≠ ∅ ↔ ∃𝑠 𝑠 ∈ dom (𝑃 ∖ I ))
18 eqid 2736 . . . . . . . . . . 11 (Base‘𝐺) = (Base‘𝐺)
19 mdetdiag.g . . . . . . . . . . . 12 𝐺 = (mulGrp‘𝑅)
20 eqid 2736 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
2119, 20mgpplusg 19900 . . . . . . . . . . 11 (.r𝑅) = (+g𝐺)
2219crngmgp 19972 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝐺 ∈ CMnd)
23223ad2ant1 1133 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) → 𝐺 ∈ CMnd)
2423ad2antrr 724 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝐺 ∈ CMnd)
25 simpll2 1213 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝑁 ∈ Fin)
26 mdetdiag.a . . . . . . . . . . . . . . . . 17 𝐴 = (𝑁 Mat 𝑅)
27 eqid 2736 . . . . . . . . . . . . . . . . 17 (Base‘𝑅) = (Base‘𝑅)
28 mdetdiag.b . . . . . . . . . . . . . . . . 17 𝐵 = (Base‘𝐴)
2926, 27, 28matbas2i 21771 . . . . . . . . . . . . . . . 16 (𝑀𝐵𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
30293ad2ant3 1135 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) → 𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
31 elmapi 8787 . . . . . . . . . . . . . . 15 (𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
3230, 31syl 17 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
3319, 27mgpbas 19902 . . . . . . . . . . . . . . . . 17 (Base‘𝑅) = (Base‘𝐺)
3433eqcomi 2745 . . . . . . . . . . . . . . . 16 (Base‘𝐺) = (Base‘𝑅)
3534a1i 11 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) → (Base‘𝐺) = (Base‘𝑅))
3635feq3d 6655 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) → (𝑀:(𝑁 × 𝑁)⟶(Base‘𝐺) ↔ 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)))
3732, 36mpbird 256 . . . . . . . . . . . . 13 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝐺))
3837ad3antrrr 728 . . . . . . . . . . . 12 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) ∧ 𝑘𝑁) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝐺))
397, 8symgbasf 19157 . . . . . . . . . . . . . 14 (𝑃𝐻𝑃:𝑁𝑁)
4039ad2antrl 726 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝑃:𝑁𝑁)
4140ffvelcdmda 7035 . . . . . . . . . . . 12 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) ∧ 𝑘𝑁) → (𝑃𝑘) ∈ 𝑁)
42 simpr 485 . . . . . . . . . . . 12 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) ∧ 𝑘𝑁) → 𝑘𝑁)
4338, 41, 42fovcdmd 7526 . . . . . . . . . . 11 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) ∧ 𝑘𝑁) → ((𝑃𝑘)𝑀𝑘) ∈ (Base‘𝐺))
44 disjdif 4431 . . . . . . . . . . . 12 ({𝑠} ∩ (𝑁 ∖ {𝑠})) = ∅
4544a1i 11 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → ({𝑠} ∩ (𝑁 ∖ {𝑠})) = ∅)
46 difss 4091 . . . . . . . . . . . . . . . . . 18 (𝑃 ∖ I ) ⊆ 𝑃
47 dmss 5858 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∖ I ) ⊆ 𝑃 → dom (𝑃 ∖ I ) ⊆ dom 𝑃)
4846, 47ax-mp 5 . . . . . . . . . . . . . . . . 17 dom (𝑃 ∖ I ) ⊆ dom 𝑃
4939adantl 482 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑃𝐻) → 𝑃:𝑁𝑁)
5048, 49fssdm 6688 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑃𝐻) → dom (𝑃 ∖ I ) ⊆ 𝑁)
5150sseld 3943 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑃𝐻) → (𝑠 ∈ dom (𝑃 ∖ I ) → 𝑠𝑁))
5251impr 455 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝑠𝑁)
5352snssd 4769 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → {𝑠} ⊆ 𝑁)
54 undif 4441 . . . . . . . . . . . . 13 ({𝑠} ⊆ 𝑁 ↔ ({𝑠} ∪ (𝑁 ∖ {𝑠})) = 𝑁)
5553, 54sylib 217 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → ({𝑠} ∪ (𝑁 ∖ {𝑠})) = 𝑁)
5655eqcomd 2742 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝑁 = ({𝑠} ∪ (𝑁 ∖ {𝑠})))
5718, 21, 24, 25, 43, 45, 56gsummptfidmsplit 19707 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → (𝐺 Σg (𝑘𝑁 ↦ ((𝑃𝑘)𝑀𝑘))) = ((𝐺 Σg (𝑘 ∈ {𝑠} ↦ ((𝑃𝑘)𝑀𝑘)))(.r𝑅)(𝐺 Σg (𝑘 ∈ (𝑁 ∖ {𝑠}) ↦ ((𝑃𝑘)𝑀𝑘)))))
58 crngring 19976 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
5958adantr 481 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝑅 ∈ Ring)
6019ringmgp 19970 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → 𝐺 ∈ Mnd)
6159, 60syl 17 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝐺 ∈ Mnd)
62613adant3 1132 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) → 𝐺 ∈ Mnd)
6362ad2antrr 724 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝐺 ∈ Mnd)
64 vex 3449 . . . . . . . . . . . . . 14 𝑠 ∈ V
6564a1i 11 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝑠 ∈ V)
6632ad2antrr 724 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
6740, 52ffvelcdmd 7036 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → (𝑃𝑠) ∈ 𝑁)
6866, 67, 52fovcdmd 7526 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → ((𝑃𝑠)𝑀𝑠) ∈ (Base‘𝑅))
69 fveq2 6842 . . . . . . . . . . . . . . 15 (𝑘 = 𝑠 → (𝑃𝑘) = (𝑃𝑠))
70 id 22 . . . . . . . . . . . . . . 15 (𝑘 = 𝑠𝑘 = 𝑠)
7169, 70oveq12d 7375 . . . . . . . . . . . . . 14 (𝑘 = 𝑠 → ((𝑃𝑘)𝑀𝑘) = ((𝑃𝑠)𝑀𝑠))
7233, 71gsumsn 19731 . . . . . . . . . . . . 13 ((𝐺 ∈ Mnd ∧ 𝑠 ∈ V ∧ ((𝑃𝑠)𝑀𝑠) ∈ (Base‘𝑅)) → (𝐺 Σg (𝑘 ∈ {𝑠} ↦ ((𝑃𝑘)𝑀𝑘))) = ((𝑃𝑠)𝑀𝑠))
7363, 65, 68, 72syl3anc 1371 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → (𝐺 Σg (𝑘 ∈ {𝑠} ↦ ((𝑃𝑘)𝑀𝑘))) = ((𝑃𝑠)𝑀𝑠))
74 simprr 771 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝑠 ∈ dom (𝑃 ∖ I ))
7511ad2antrl 726 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝑃 Fn 𝑁)
76 fnelnfp 7123 . . . . . . . . . . . . . . 15 ((𝑃 Fn 𝑁𝑠𝑁) → (𝑠 ∈ dom (𝑃 ∖ I ) ↔ (𝑃𝑠) ≠ 𝑠))
7775, 52, 76syl2anc 584 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → (𝑠 ∈ dom (𝑃 ∖ I ) ↔ (𝑃𝑠) ≠ 𝑠))
7874, 77mpbid 231 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → (𝑃𝑠) ≠ 𝑠)
7939ad2antrl 726 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝑃:𝑁𝑁)
8039adantl 482 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) → 𝑃:𝑁𝑁)
8148, 80fssdm 6688 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) → dom (𝑃 ∖ I ) ⊆ 𝑁)
8281sseld 3943 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) → (𝑠 ∈ dom (𝑃 ∖ I ) → 𝑠𝑁))
8382impr 455 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝑠𝑁)
8479, 83ffvelcdmd 7036 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → (𝑃𝑠) ∈ 𝑁)
85 neeq1 3006 . . . . . . . . . . . . . . . . . 18 (𝑖 = (𝑃𝑠) → (𝑖𝑗 ↔ (𝑃𝑠) ≠ 𝑗))
86 oveq1 7364 . . . . . . . . . . . . . . . . . . 19 (𝑖 = (𝑃𝑠) → (𝑖𝑀𝑗) = ((𝑃𝑠)𝑀𝑗))
8786eqeq1d 2738 . . . . . . . . . . . . . . . . . 18 (𝑖 = (𝑃𝑠) → ((𝑖𝑀𝑗) = 0 ↔ ((𝑃𝑠)𝑀𝑗) = 0 ))
8885, 87imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑃𝑠) → ((𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) ↔ ((𝑃𝑠) ≠ 𝑗 → ((𝑃𝑠)𝑀𝑗) = 0 )))
89 neeq2 3007 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑠 → ((𝑃𝑠) ≠ 𝑗 ↔ (𝑃𝑠) ≠ 𝑠))
90 oveq2 7365 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑠 → ((𝑃𝑠)𝑀𝑗) = ((𝑃𝑠)𝑀𝑠))
9190eqeq1d 2738 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑠 → (((𝑃𝑠)𝑀𝑗) = 0 ↔ ((𝑃𝑠)𝑀𝑠) = 0 ))
9289, 91imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑠 → (((𝑃𝑠) ≠ 𝑗 → ((𝑃𝑠)𝑀𝑗) = 0 ) ↔ ((𝑃𝑠) ≠ 𝑠 → ((𝑃𝑠)𝑀𝑠) = 0 )))
9388, 92rspc2v 3590 . . . . . . . . . . . . . . . 16 (((𝑃𝑠) ∈ 𝑁𝑠𝑁) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) → ((𝑃𝑠) ≠ 𝑠 → ((𝑃𝑠)𝑀𝑠) = 0 )))
9484, 83, 93syl2anc 584 . . . . . . . . . . . . . . 15 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) → ((𝑃𝑠) ≠ 𝑠 → ((𝑃𝑠)𝑀𝑠) = 0 )))
9594impancom 452 . . . . . . . . . . . . . 14 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) → ((𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I )) → ((𝑃𝑠) ≠ 𝑠 → ((𝑃𝑠)𝑀𝑠) = 0 )))
9695imp 407 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → ((𝑃𝑠) ≠ 𝑠 → ((𝑃𝑠)𝑀𝑠) = 0 ))
9778, 96mpd 15 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → ((𝑃𝑠)𝑀𝑠) = 0 )
9873, 97eqtrd 2776 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → (𝐺 Σg (𝑘 ∈ {𝑠} ↦ ((𝑃𝑘)𝑀𝑘))) = 0 )
9998oveq1d 7372 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → ((𝐺 Σg (𝑘 ∈ {𝑠} ↦ ((𝑃𝑘)𝑀𝑘)))(.r𝑅)(𝐺 Σg (𝑘 ∈ (𝑁 ∖ {𝑠}) ↦ ((𝑃𝑘)𝑀𝑘)))) = ( 0 (.r𝑅)(𝐺 Σg (𝑘 ∈ (𝑁 ∖ {𝑠}) ↦ ((𝑃𝑘)𝑀𝑘)))))
100583ad2ant1 1133 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
101100ad2antrr 724 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → 𝑅 ∈ Ring)
10223adantr 481 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) → 𝐺 ∈ CMnd)
103 simpl2 1192 . . . . . . . . . . . . . 14 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) → 𝑁 ∈ Fin)
104 difss 4091 . . . . . . . . . . . . . 14 (𝑁 ∖ {𝑠}) ⊆ 𝑁
105 ssfi 9117 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ (𝑁 ∖ {𝑠}) ⊆ 𝑁) → (𝑁 ∖ {𝑠}) ∈ Fin)
106103, 104, 105sylancl 586 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) → (𝑁 ∖ {𝑠}) ∈ Fin)
10732ad2antrr 724 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) ∧ 𝑘 ∈ (𝑁 ∖ {𝑠})) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
10880adantr 481 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) ∧ 𝑘 ∈ (𝑁 ∖ {𝑠})) → 𝑃:𝑁𝑁)
109 eldifi 4086 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (𝑁 ∖ {𝑠}) → 𝑘𝑁)
110109adantl 482 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) ∧ 𝑘 ∈ (𝑁 ∖ {𝑠})) → 𝑘𝑁)
111108, 110ffvelcdmd 7036 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) ∧ 𝑘 ∈ (𝑁 ∖ {𝑠})) → (𝑃𝑘) ∈ 𝑁)
112107, 111, 110fovcdmd 7526 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) ∧ 𝑘 ∈ (𝑁 ∖ {𝑠})) → ((𝑃𝑘)𝑀𝑘) ∈ (Base‘𝑅))
113112ralrimiva 3143 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) → ∀𝑘 ∈ (𝑁 ∖ {𝑠})((𝑃𝑘)𝑀𝑘) ∈ (Base‘𝑅))
11433, 102, 106, 113gsummptcl 19744 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ 𝑃𝐻) → (𝐺 Σg (𝑘 ∈ (𝑁 ∖ {𝑠}) ↦ ((𝑃𝑘)𝑀𝑘))) ∈ (Base‘𝑅))
115114ad2ant2r 745 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → (𝐺 Σg (𝑘 ∈ (𝑁 ∖ {𝑠}) ↦ ((𝑃𝑘)𝑀𝑘))) ∈ (Base‘𝑅))
116 mdetdiag.0 . . . . . . . . . . . 12 0 = (0g𝑅)
11727, 20, 116ringlz 20011 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝐺 Σg (𝑘 ∈ (𝑁 ∖ {𝑠}) ↦ ((𝑃𝑘)𝑀𝑘))) ∈ (Base‘𝑅)) → ( 0 (.r𝑅)(𝐺 Σg (𝑘 ∈ (𝑁 ∖ {𝑠}) ↦ ((𝑃𝑘)𝑀𝑘)))) = 0 )
118101, 115, 117syl2anc 584 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → ( 0 (.r𝑅)(𝐺 Σg (𝑘 ∈ (𝑁 ∖ {𝑠}) ↦ ((𝑃𝑘)𝑀𝑘)))) = 0 )
11957, 99, 1183eqtrd 2780 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ (𝑃𝐻𝑠 ∈ dom (𝑃 ∖ I ))) → (𝐺 Σg (𝑘𝑁 ↦ ((𝑃𝑘)𝑀𝑘))) = 0 )
120119expr 457 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑃𝐻) → (𝑠 ∈ dom (𝑃 ∖ I ) → (𝐺 Σg (𝑘𝑁 ↦ ((𝑃𝑘)𝑀𝑘))) = 0 ))
121120exlimdv 1936 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑃𝐻) → (∃𝑠 𝑠 ∈ dom (𝑃 ∖ I ) → (𝐺 Σg (𝑘𝑁 ↦ ((𝑃𝑘)𝑀𝑘))) = 0 ))
12217, 121biimtrid 241 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑃𝐻) → (dom (𝑃 ∖ I ) ≠ ∅ → (𝐺 Σg (𝑘𝑁 ↦ ((𝑃𝑘)𝑀𝑘))) = 0 ))
12316, 122sylbid 239 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑃𝐻) → (𝑃 ≠ ( I ↾ 𝑁) → (𝐺 Σg (𝑘𝑁 ↦ ((𝑃𝑘)𝑀𝑘))) = 0 ))
124123expimpd 454 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) → ((𝑃𝐻𝑃 ≠ ( I ↾ 𝑁)) → (𝐺 Σg (𝑘𝑁 ↦ ((𝑃𝑘)𝑀𝑘))) = 0 ))
1251243impia 1117 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) ∧ (𝑃𝐻𝑃 ≠ ( I ↾ 𝑁))) → (𝐺 Σg (𝑘𝑁 ↦ ((𝑃𝑘)𝑀𝑘))) = 0 )
1266, 125oveq12d 7375 . 2 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) ∧ (𝑃𝐻𝑃 ≠ ( I ↾ 𝑁))) → (((𝑍𝑆)‘𝑃) · (𝐺 Σg (𝑘𝑁 ↦ ((𝑃𝑘)𝑀𝑘)))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑃) · 0 ))
127 3simpa 1148 . . . 4 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) → (𝑅 ∈ CRing ∧ 𝑁 ∈ Fin))
128 simpl 483 . . . 4 ((𝑃𝐻𝑃 ≠ ( I ↾ 𝑁)) → 𝑃𝐻)
12958ad2antrr 724 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑃𝐻) → 𝑅 ∈ Ring)
130 zrhpsgnmhm 20988 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
13158, 130sylan 580 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
132 eqid 2736 . . . . . . . 8 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
1338, 132mhmf 18607 . . . . . . 7 (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):𝐻⟶(Base‘(mulGrp‘𝑅)))
134131, 133syl 17 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):𝐻⟶(Base‘(mulGrp‘𝑅)))
135134ffvelcdmda 7035 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑃𝐻) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑃) ∈ (Base‘(mulGrp‘𝑅)))
136 eqid 2736 . . . . . . . 8 (mulGrp‘𝑅) = (mulGrp‘𝑅)
137136, 27mgpbas 19902 . . . . . . 7 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
138137eqcomi 2745 . . . . . 6 (Base‘(mulGrp‘𝑅)) = (Base‘𝑅)
139 mdetdiaglem.t . . . . . 6 · = (.r𝑅)
140138, 139, 116ringrz 20012 . . . . 5 ((𝑅 ∈ Ring ∧ (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑃) ∈ (Base‘(mulGrp‘𝑅))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑃) · 0 ) = 0 )
141129, 135, 140syl2anc 584 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑃𝐻) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑃) · 0 ) = 0 )
142127, 128, 141syl2an 596 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ (𝑃𝐻𝑃 ≠ ( I ↾ 𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑃) · 0 ) = 0 )
1431423adant2 1131 . 2 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) ∧ (𝑃𝐻𝑃 ≠ ( I ↾ 𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑃) · 0 ) = 0 )
144126, 143eqtrd 2776 1 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) ∧ (𝑃𝐻𝑃 ≠ ( I ↾ 𝑁))) → (((𝑍𝑆)‘𝑃) · (𝐺 Σg (𝑘𝑁 ↦ ((𝑃𝑘)𝑀𝑘)))) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wne 2943  wral 3064  Vcvv 3445  cdif 3907  cun 3908  cin 3909  wss 3910  c0 4282  {csn 4586  cmpt 5188   I cid 5530   × cxp 5631  dom cdm 5633  cres 5635  ccom 5637   Fn wfn 6491  wf 6492  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  m cmap 8765  Fincfn 8883  Basecbs 17083  .rcmulr 17134  0gc0g 17321   Σg cgsu 17322  Mndcmnd 18556   MndHom cmhm 18599  SymGrpcsymg 19148  pmSgncpsgn 19271  CMndccmn 19562  mulGrpcmgp 19896  Ringcrg 19964  CRingccrg 19965  ℤRHomczrh 20900   Mat cmat 21754   maDet cmdat 21933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-xor 1510  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-ot 4595  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-word 14403  df-lsw 14451  df-concat 14459  df-s1 14484  df-substr 14529  df-pfx 14559  df-splice 14638  df-reverse 14647  df-s2 14737  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-0g 17323  df-gsum 17324  df-prds 17329  df-pws 17331  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-efmnd 18679  df-grp 18751  df-minusg 18752  df-mulg 18873  df-subg 18925  df-ghm 19006  df-gim 19049  df-cntz 19097  df-oppg 19124  df-symg 19149  df-pmtr 19224  df-psgn 19273  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-rnghom 20146  df-drng 20187  df-subrg 20220  df-sra 20633  df-rgmod 20634  df-cnfld 20797  df-zring 20870  df-zrh 20904  df-dsmm 21138  df-frlm 21153  df-mat 21755
This theorem is referenced by:  mdetdiag  21948
  Copyright terms: Public domain W3C validator