| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnsnbg | Structured version Visualization version GIF version | ||
| Description: A function's domain is a singleton iff the function is a singleton. (Contributed by Steven Nguyen, 18-Aug-2023.) Relax condition for being in the universal class. (Revised by Zhi Wang, 21-Oct-2025.) |
| Ref | Expression |
|---|---|
| fnsnbg | ⊢ (𝐴 ∈ 𝑉 → (𝐹 Fn {𝐴} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnsnr 7160 | . . . . . . 7 ⊢ (𝐹 Fn {𝐴} → (𝑥 ∈ 𝐹 → 𝑥 = 〈𝐴, (𝐹‘𝐴)〉)) | |
| 2 | 1 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn {𝐴}) → (𝑥 ∈ 𝐹 → 𝑥 = 〈𝐴, (𝐹‘𝐴)〉)) |
| 3 | fnfun 6643 | . . . . . . . 8 ⊢ (𝐹 Fn {𝐴} → Fun 𝐹) | |
| 4 | snidg 4641 | . . . . . . . . . 10 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
| 5 | 4 | adantr 480 | . . . . . . . . 9 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn {𝐴}) → 𝐴 ∈ {𝐴}) |
| 6 | fndm 6646 | . . . . . . . . . 10 ⊢ (𝐹 Fn {𝐴} → dom 𝐹 = {𝐴}) | |
| 7 | 6 | adantl 481 | . . . . . . . . 9 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn {𝐴}) → dom 𝐹 = {𝐴}) |
| 8 | 5, 7 | eleqtrrd 2838 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn {𝐴}) → 𝐴 ∈ dom 𝐹) |
| 9 | funfvop 7045 | . . . . . . . 8 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹) | |
| 10 | 3, 8, 9 | syl2an2 686 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn {𝐴}) → 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹) |
| 11 | eleq1 2823 | . . . . . . 7 ⊢ (𝑥 = 〈𝐴, (𝐹‘𝐴)〉 → (𝑥 ∈ 𝐹 ↔ 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹)) | |
| 12 | 10, 11 | syl5ibrcom 247 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn {𝐴}) → (𝑥 = 〈𝐴, (𝐹‘𝐴)〉 → 𝑥 ∈ 𝐹)) |
| 13 | 2, 12 | impbid 212 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn {𝐴}) → (𝑥 ∈ 𝐹 ↔ 𝑥 = 〈𝐴, (𝐹‘𝐴)〉)) |
| 14 | velsn 4622 | . . . . 5 ⊢ (𝑥 ∈ {〈𝐴, (𝐹‘𝐴)〉} ↔ 𝑥 = 〈𝐴, (𝐹‘𝐴)〉) | |
| 15 | 13, 14 | bitr4di 289 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn {𝐴}) → (𝑥 ∈ 𝐹 ↔ 𝑥 ∈ {〈𝐴, (𝐹‘𝐴)〉})) |
| 16 | 15 | eqrdv 2734 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn {𝐴}) → 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) |
| 17 | 16 | ex 412 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐹 Fn {𝐴} → 𝐹 = {〈𝐴, (𝐹‘𝐴)〉})) |
| 18 | fvex 6894 | . . . 4 ⊢ (𝐹‘𝐴) ∈ V | |
| 19 | fnsng 6593 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ∈ V) → {〈𝐴, (𝐹‘𝐴)〉} Fn {𝐴}) | |
| 20 | 18, 19 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {〈𝐴, (𝐹‘𝐴)〉} Fn {𝐴}) |
| 21 | fneq1 6634 | . . 3 ⊢ (𝐹 = {〈𝐴, (𝐹‘𝐴)〉} → (𝐹 Fn {𝐴} ↔ {〈𝐴, (𝐹‘𝐴)〉} Fn {𝐴})) | |
| 22 | 20, 21 | syl5ibrcom 247 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐹 = {〈𝐴, (𝐹‘𝐴)〉} → 𝐹 Fn {𝐴})) |
| 23 | 17, 22 | impbid 212 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐹 Fn {𝐴} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 {csn 4606 〈cop 4612 dom cdm 5659 Fun wfun 6530 Fn wfn 6531 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 |
| This theorem is referenced by: fnsnb 7162 frlmsnic 42530 termcnatval 49387 |
| Copyright terms: Public domain | W3C validator |