| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnsnbg | Structured version Visualization version GIF version | ||
| Description: A function's domain is a singleton iff the function is a singleton. (Contributed by Steven Nguyen, 18-Aug-2023.) Relax condition for being in the universal class. (Revised by Zhi Wang, 21-Oct-2025.) |
| Ref | Expression |
|---|---|
| fnsnbg | ⊢ (𝐴 ∈ 𝑉 → (𝐹 Fn {𝐴} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnsnr 7106 | . . . . . . 7 ⊢ (𝐹 Fn {𝐴} → (𝑥 ∈ 𝐹 → 𝑥 = 〈𝐴, (𝐹‘𝐴)〉)) | |
| 2 | 1 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn {𝐴}) → (𝑥 ∈ 𝐹 → 𝑥 = 〈𝐴, (𝐹‘𝐴)〉)) |
| 3 | fnfun 6589 | . . . . . . . 8 ⊢ (𝐹 Fn {𝐴} → Fun 𝐹) | |
| 4 | snidg 4614 | . . . . . . . . . 10 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
| 5 | 4 | adantr 480 | . . . . . . . . 9 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn {𝐴}) → 𝐴 ∈ {𝐴}) |
| 6 | fndm 6592 | . . . . . . . . . 10 ⊢ (𝐹 Fn {𝐴} → dom 𝐹 = {𝐴}) | |
| 7 | 6 | adantl 481 | . . . . . . . . 9 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn {𝐴}) → dom 𝐹 = {𝐴}) |
| 8 | 5, 7 | eleqtrrd 2836 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn {𝐴}) → 𝐴 ∈ dom 𝐹) |
| 9 | funfvop 6992 | . . . . . . . 8 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹) | |
| 10 | 3, 8, 9 | syl2an2 686 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn {𝐴}) → 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹) |
| 11 | eleq1 2821 | . . . . . . 7 ⊢ (𝑥 = 〈𝐴, (𝐹‘𝐴)〉 → (𝑥 ∈ 𝐹 ↔ 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹)) | |
| 12 | 10, 11 | syl5ibrcom 247 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn {𝐴}) → (𝑥 = 〈𝐴, (𝐹‘𝐴)〉 → 𝑥 ∈ 𝐹)) |
| 13 | 2, 12 | impbid 212 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn {𝐴}) → (𝑥 ∈ 𝐹 ↔ 𝑥 = 〈𝐴, (𝐹‘𝐴)〉)) |
| 14 | velsn 4593 | . . . . 5 ⊢ (𝑥 ∈ {〈𝐴, (𝐹‘𝐴)〉} ↔ 𝑥 = 〈𝐴, (𝐹‘𝐴)〉) | |
| 15 | 13, 14 | bitr4di 289 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn {𝐴}) → (𝑥 ∈ 𝐹 ↔ 𝑥 ∈ {〈𝐴, (𝐹‘𝐴)〉})) |
| 16 | 15 | eqrdv 2731 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn {𝐴}) → 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) |
| 17 | 16 | ex 412 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐹 Fn {𝐴} → 𝐹 = {〈𝐴, (𝐹‘𝐴)〉})) |
| 18 | fvex 6844 | . . . 4 ⊢ (𝐹‘𝐴) ∈ V | |
| 19 | fnsng 6541 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ∈ V) → {〈𝐴, (𝐹‘𝐴)〉} Fn {𝐴}) | |
| 20 | 18, 19 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {〈𝐴, (𝐹‘𝐴)〉} Fn {𝐴}) |
| 21 | fneq1 6580 | . . 3 ⊢ (𝐹 = {〈𝐴, (𝐹‘𝐴)〉} → (𝐹 Fn {𝐴} ↔ {〈𝐴, (𝐹‘𝐴)〉} Fn {𝐴})) | |
| 22 | 20, 21 | syl5ibrcom 247 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐹 = {〈𝐴, (𝐹‘𝐴)〉} → 𝐹 Fn {𝐴})) |
| 23 | 17, 22 | impbid 212 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐹 Fn {𝐴} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3438 {csn 4577 〈cop 4583 dom cdm 5621 Fun wfun 6483 Fn wfn 6484 ‘cfv 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 |
| This theorem is referenced by: fnsnb 7108 frlmsnic 42648 termcnatval 49650 |
| Copyright terms: Public domain | W3C validator |