| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnsnbg | Structured version Visualization version GIF version | ||
| Description: A function's domain is a singleton iff the function is a singleton. (Contributed by Steven Nguyen, 18-Aug-2023.) Relax condition for being in the universal class. (Revised by Zhi Wang, 21-Oct-2025.) |
| Ref | Expression |
|---|---|
| fnsnbg | ⊢ (𝐴 ∈ 𝑉 → (𝐹 Fn {𝐴} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnsnr 7152 | . . . . . . 7 ⊢ (𝐹 Fn {𝐴} → (𝑥 ∈ 𝐹 → 𝑥 = 〈𝐴, (𝐹‘𝐴)〉)) | |
| 2 | 1 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn {𝐴}) → (𝑥 ∈ 𝐹 → 𝑥 = 〈𝐴, (𝐹‘𝐴)〉)) |
| 3 | fnfun 6635 | . . . . . . . 8 ⊢ (𝐹 Fn {𝐴} → Fun 𝐹) | |
| 4 | snidg 4634 | . . . . . . . . . 10 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
| 5 | 4 | adantr 480 | . . . . . . . . 9 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn {𝐴}) → 𝐴 ∈ {𝐴}) |
| 6 | fndm 6638 | . . . . . . . . . 10 ⊢ (𝐹 Fn {𝐴} → dom 𝐹 = {𝐴}) | |
| 7 | 6 | adantl 481 | . . . . . . . . 9 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn {𝐴}) → dom 𝐹 = {𝐴}) |
| 8 | 5, 7 | eleqtrrd 2836 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn {𝐴}) → 𝐴 ∈ dom 𝐹) |
| 9 | funfvop 7037 | . . . . . . . 8 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹) | |
| 10 | 3, 8, 9 | syl2an2 686 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn {𝐴}) → 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹) |
| 11 | eleq1 2821 | . . . . . . 7 ⊢ (𝑥 = 〈𝐴, (𝐹‘𝐴)〉 → (𝑥 ∈ 𝐹 ↔ 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹)) | |
| 12 | 10, 11 | syl5ibrcom 247 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn {𝐴}) → (𝑥 = 〈𝐴, (𝐹‘𝐴)〉 → 𝑥 ∈ 𝐹)) |
| 13 | 2, 12 | impbid 212 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn {𝐴}) → (𝑥 ∈ 𝐹 ↔ 𝑥 = 〈𝐴, (𝐹‘𝐴)〉)) |
| 14 | velsn 4615 | . . . . 5 ⊢ (𝑥 ∈ {〈𝐴, (𝐹‘𝐴)〉} ↔ 𝑥 = 〈𝐴, (𝐹‘𝐴)〉) | |
| 15 | 13, 14 | bitr4di 289 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn {𝐴}) → (𝑥 ∈ 𝐹 ↔ 𝑥 ∈ {〈𝐴, (𝐹‘𝐴)〉})) |
| 16 | 15 | eqrdv 2732 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn {𝐴}) → 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) |
| 17 | 16 | ex 412 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐹 Fn {𝐴} → 𝐹 = {〈𝐴, (𝐹‘𝐴)〉})) |
| 18 | fvex 6886 | . . . 4 ⊢ (𝐹‘𝐴) ∈ V | |
| 19 | fnsng 6585 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ∈ V) → {〈𝐴, (𝐹‘𝐴)〉} Fn {𝐴}) | |
| 20 | 18, 19 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {〈𝐴, (𝐹‘𝐴)〉} Fn {𝐴}) |
| 21 | fneq1 6626 | . . 3 ⊢ (𝐹 = {〈𝐴, (𝐹‘𝐴)〉} → (𝐹 Fn {𝐴} ↔ {〈𝐴, (𝐹‘𝐴)〉} Fn {𝐴})) | |
| 22 | 20, 21 | syl5ibrcom 247 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐹 = {〈𝐴, (𝐹‘𝐴)〉} → 𝐹 Fn {𝐴})) |
| 23 | 17, 22 | impbid 212 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐹 Fn {𝐴} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3457 {csn 4599 〈cop 4605 dom cdm 5652 Fun wfun 6522 Fn wfn 6523 ‘cfv 6528 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pr 5400 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-br 5118 df-opab 5180 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 |
| This theorem is referenced by: fnsnb 7154 frlmsnic 42495 termcnatval 49281 |
| Copyright terms: Public domain | W3C validator |