MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnsnbg Structured version   Visualization version   GIF version

Theorem fnsnbg 7138
Description: A function's domain is a singleton iff the function is a singleton. (Contributed by Steven Nguyen, 18-Aug-2023.) Relax condition for being in the universal class. (Revised by Zhi Wang, 21-Oct-2025.)
Assertion
Ref Expression
fnsnbg (𝐴𝑉 → (𝐹 Fn {𝐴} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))

Proof of Theorem fnsnbg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fnsnr 7137 . . . . . . 7 (𝐹 Fn {𝐴} → (𝑥𝐹𝑥 = ⟨𝐴, (𝐹𝐴)⟩))
21adantl 481 . . . . . 6 ((𝐴𝑉𝐹 Fn {𝐴}) → (𝑥𝐹𝑥 = ⟨𝐴, (𝐹𝐴)⟩))
3 fnfun 6618 . . . . . . . 8 (𝐹 Fn {𝐴} → Fun 𝐹)
4 snidg 4624 . . . . . . . . . 10 (𝐴𝑉𝐴 ∈ {𝐴})
54adantr 480 . . . . . . . . 9 ((𝐴𝑉𝐹 Fn {𝐴}) → 𝐴 ∈ {𝐴})
6 fndm 6621 . . . . . . . . . 10 (𝐹 Fn {𝐴} → dom 𝐹 = {𝐴})
76adantl 481 . . . . . . . . 9 ((𝐴𝑉𝐹 Fn {𝐴}) → dom 𝐹 = {𝐴})
85, 7eleqtrrd 2831 . . . . . . . 8 ((𝐴𝑉𝐹 Fn {𝐴}) → 𝐴 ∈ dom 𝐹)
9 funfvop 7022 . . . . . . . 8 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
103, 8, 9syl2an2 686 . . . . . . 7 ((𝐴𝑉𝐹 Fn {𝐴}) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
11 eleq1 2816 . . . . . . 7 (𝑥 = ⟨𝐴, (𝐹𝐴)⟩ → (𝑥𝐹 ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹))
1210, 11syl5ibrcom 247 . . . . . 6 ((𝐴𝑉𝐹 Fn {𝐴}) → (𝑥 = ⟨𝐴, (𝐹𝐴)⟩ → 𝑥𝐹))
132, 12impbid 212 . . . . 5 ((𝐴𝑉𝐹 Fn {𝐴}) → (𝑥𝐹𝑥 = ⟨𝐴, (𝐹𝐴)⟩))
14 velsn 4605 . . . . 5 (𝑥 ∈ {⟨𝐴, (𝐹𝐴)⟩} ↔ 𝑥 = ⟨𝐴, (𝐹𝐴)⟩)
1513, 14bitr4di 289 . . . 4 ((𝐴𝑉𝐹 Fn {𝐴}) → (𝑥𝐹𝑥 ∈ {⟨𝐴, (𝐹𝐴)⟩}))
1615eqrdv 2727 . . 3 ((𝐴𝑉𝐹 Fn {𝐴}) → 𝐹 = {⟨𝐴, (𝐹𝐴)⟩})
1716ex 412 . 2 (𝐴𝑉 → (𝐹 Fn {𝐴} → 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
18 fvex 6871 . . . 4 (𝐹𝐴) ∈ V
19 fnsng 6568 . . . 4 ((𝐴𝑉 ∧ (𝐹𝐴) ∈ V) → {⟨𝐴, (𝐹𝐴)⟩} Fn {𝐴})
2018, 19mpan2 691 . . 3 (𝐴𝑉 → {⟨𝐴, (𝐹𝐴)⟩} Fn {𝐴})
21 fneq1 6609 . . 3 (𝐹 = {⟨𝐴, (𝐹𝐴)⟩} → (𝐹 Fn {𝐴} ↔ {⟨𝐴, (𝐹𝐴)⟩} Fn {𝐴}))
2220, 21syl5ibrcom 247 . 2 (𝐴𝑉 → (𝐹 = {⟨𝐴, (𝐹𝐴)⟩} → 𝐹 Fn {𝐴}))
2317, 22impbid 212 1 (𝐴𝑉 → (𝐹 Fn {𝐴} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  {csn 4589  cop 4595  dom cdm 5638  Fun wfun 6505   Fn wfn 6506  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519
This theorem is referenced by:  fnsnb  7139  frlmsnic  42528  termcnatval  49521
  Copyright terms: Public domain W3C validator