MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnsnbg Structured version   Visualization version   GIF version

Theorem fnsnbg 7107
Description: A function's domain is a singleton iff the function is a singleton. (Contributed by Steven Nguyen, 18-Aug-2023.) Relax condition for being in the universal class. (Revised by Zhi Wang, 21-Oct-2025.)
Assertion
Ref Expression
fnsnbg (𝐴𝑉 → (𝐹 Fn {𝐴} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))

Proof of Theorem fnsnbg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fnsnr 7106 . . . . . . 7 (𝐹 Fn {𝐴} → (𝑥𝐹𝑥 = ⟨𝐴, (𝐹𝐴)⟩))
21adantl 481 . . . . . 6 ((𝐴𝑉𝐹 Fn {𝐴}) → (𝑥𝐹𝑥 = ⟨𝐴, (𝐹𝐴)⟩))
3 fnfun 6589 . . . . . . . 8 (𝐹 Fn {𝐴} → Fun 𝐹)
4 snidg 4614 . . . . . . . . . 10 (𝐴𝑉𝐴 ∈ {𝐴})
54adantr 480 . . . . . . . . 9 ((𝐴𝑉𝐹 Fn {𝐴}) → 𝐴 ∈ {𝐴})
6 fndm 6592 . . . . . . . . . 10 (𝐹 Fn {𝐴} → dom 𝐹 = {𝐴})
76adantl 481 . . . . . . . . 9 ((𝐴𝑉𝐹 Fn {𝐴}) → dom 𝐹 = {𝐴})
85, 7eleqtrrd 2836 . . . . . . . 8 ((𝐴𝑉𝐹 Fn {𝐴}) → 𝐴 ∈ dom 𝐹)
9 funfvop 6992 . . . . . . . 8 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
103, 8, 9syl2an2 686 . . . . . . 7 ((𝐴𝑉𝐹 Fn {𝐴}) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
11 eleq1 2821 . . . . . . 7 (𝑥 = ⟨𝐴, (𝐹𝐴)⟩ → (𝑥𝐹 ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹))
1210, 11syl5ibrcom 247 . . . . . 6 ((𝐴𝑉𝐹 Fn {𝐴}) → (𝑥 = ⟨𝐴, (𝐹𝐴)⟩ → 𝑥𝐹))
132, 12impbid 212 . . . . 5 ((𝐴𝑉𝐹 Fn {𝐴}) → (𝑥𝐹𝑥 = ⟨𝐴, (𝐹𝐴)⟩))
14 velsn 4593 . . . . 5 (𝑥 ∈ {⟨𝐴, (𝐹𝐴)⟩} ↔ 𝑥 = ⟨𝐴, (𝐹𝐴)⟩)
1513, 14bitr4di 289 . . . 4 ((𝐴𝑉𝐹 Fn {𝐴}) → (𝑥𝐹𝑥 ∈ {⟨𝐴, (𝐹𝐴)⟩}))
1615eqrdv 2731 . . 3 ((𝐴𝑉𝐹 Fn {𝐴}) → 𝐹 = {⟨𝐴, (𝐹𝐴)⟩})
1716ex 412 . 2 (𝐴𝑉 → (𝐹 Fn {𝐴} → 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
18 fvex 6844 . . . 4 (𝐹𝐴) ∈ V
19 fnsng 6541 . . . 4 ((𝐴𝑉 ∧ (𝐹𝐴) ∈ V) → {⟨𝐴, (𝐹𝐴)⟩} Fn {𝐴})
2018, 19mpan2 691 . . 3 (𝐴𝑉 → {⟨𝐴, (𝐹𝐴)⟩} Fn {𝐴})
21 fneq1 6580 . . 3 (𝐹 = {⟨𝐴, (𝐹𝐴)⟩} → (𝐹 Fn {𝐴} ↔ {⟨𝐴, (𝐹𝐴)⟩} Fn {𝐴}))
2220, 21syl5ibrcom 247 . 2 (𝐴𝑉 → (𝐹 = {⟨𝐴, (𝐹𝐴)⟩} → 𝐹 Fn {𝐴}))
2317, 22impbid 212 1 (𝐴𝑉 → (𝐹 Fn {𝐴} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  Vcvv 3438  {csn 4577  cop 4583  dom cdm 5621  Fun wfun 6483   Fn wfn 6484  cfv 6489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2931  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497
This theorem is referenced by:  fnsnb  7108  frlmsnic  42648  termcnatval  49650
  Copyright terms: Public domain W3C validator