MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnsnbg Structured version   Visualization version   GIF version

Theorem fnsnbg 7093
Description: A function's domain is a singleton iff the function is a singleton. (Contributed by Steven Nguyen, 18-Aug-2023.) Relax condition for being in the universal class. (Revised by Zhi Wang, 21-Oct-2025.)
Assertion
Ref Expression
fnsnbg (𝐴𝑉 → (𝐹 Fn {𝐴} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))

Proof of Theorem fnsnbg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fnsnr 7092 . . . . . . 7 (𝐹 Fn {𝐴} → (𝑥𝐹𝑥 = ⟨𝐴, (𝐹𝐴)⟩))
21adantl 481 . . . . . 6 ((𝐴𝑉𝐹 Fn {𝐴}) → (𝑥𝐹𝑥 = ⟨𝐴, (𝐹𝐴)⟩))
3 fnfun 6577 . . . . . . . 8 (𝐹 Fn {𝐴} → Fun 𝐹)
4 snidg 4611 . . . . . . . . . 10 (𝐴𝑉𝐴 ∈ {𝐴})
54adantr 480 . . . . . . . . 9 ((𝐴𝑉𝐹 Fn {𝐴}) → 𝐴 ∈ {𝐴})
6 fndm 6580 . . . . . . . . . 10 (𝐹 Fn {𝐴} → dom 𝐹 = {𝐴})
76adantl 481 . . . . . . . . 9 ((𝐴𝑉𝐹 Fn {𝐴}) → dom 𝐹 = {𝐴})
85, 7eleqtrrd 2832 . . . . . . . 8 ((𝐴𝑉𝐹 Fn {𝐴}) → 𝐴 ∈ dom 𝐹)
9 funfvop 6978 . . . . . . . 8 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
103, 8, 9syl2an2 686 . . . . . . 7 ((𝐴𝑉𝐹 Fn {𝐴}) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
11 eleq1 2817 . . . . . . 7 (𝑥 = ⟨𝐴, (𝐹𝐴)⟩ → (𝑥𝐹 ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹))
1210, 11syl5ibrcom 247 . . . . . 6 ((𝐴𝑉𝐹 Fn {𝐴}) → (𝑥 = ⟨𝐴, (𝐹𝐴)⟩ → 𝑥𝐹))
132, 12impbid 212 . . . . 5 ((𝐴𝑉𝐹 Fn {𝐴}) → (𝑥𝐹𝑥 = ⟨𝐴, (𝐹𝐴)⟩))
14 velsn 4590 . . . . 5 (𝑥 ∈ {⟨𝐴, (𝐹𝐴)⟩} ↔ 𝑥 = ⟨𝐴, (𝐹𝐴)⟩)
1513, 14bitr4di 289 . . . 4 ((𝐴𝑉𝐹 Fn {𝐴}) → (𝑥𝐹𝑥 ∈ {⟨𝐴, (𝐹𝐴)⟩}))
1615eqrdv 2728 . . 3 ((𝐴𝑉𝐹 Fn {𝐴}) → 𝐹 = {⟨𝐴, (𝐹𝐴)⟩})
1716ex 412 . 2 (𝐴𝑉 → (𝐹 Fn {𝐴} → 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
18 fvex 6830 . . . 4 (𝐹𝐴) ∈ V
19 fnsng 6529 . . . 4 ((𝐴𝑉 ∧ (𝐹𝐴) ∈ V) → {⟨𝐴, (𝐹𝐴)⟩} Fn {𝐴})
2018, 19mpan2 691 . . 3 (𝐴𝑉 → {⟨𝐴, (𝐹𝐴)⟩} Fn {𝐴})
21 fneq1 6568 . . 3 (𝐹 = {⟨𝐴, (𝐹𝐴)⟩} → (𝐹 Fn {𝐴} ↔ {⟨𝐴, (𝐹𝐴)⟩} Fn {𝐴}))
2220, 21syl5ibrcom 247 . 2 (𝐴𝑉 → (𝐹 = {⟨𝐴, (𝐹𝐴)⟩} → 𝐹 Fn {𝐴}))
2317, 22impbid 212 1 (𝐴𝑉 → (𝐹 Fn {𝐴} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  Vcvv 3434  {csn 4574  cop 4580  dom cdm 5614  Fun wfun 6471   Fn wfn 6472  cfv 6477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485
This theorem is referenced by:  fnsnb  7094  frlmsnic  42552  termcnatval  49546
  Copyright terms: Public domain W3C validator