| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnsnbg | Structured version Visualization version GIF version | ||
| Description: A function's domain is a singleton iff the function is a singleton. (Contributed by Steven Nguyen, 18-Aug-2023.) Relax condition for being in the universal class. (Revised by Zhi Wang, 21-Oct-2025.) |
| Ref | Expression |
|---|---|
| fnsnbg | ⊢ (𝐴 ∈ 𝑉 → (𝐹 Fn {𝐴} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnsnr 7092 | . . . . . . 7 ⊢ (𝐹 Fn {𝐴} → (𝑥 ∈ 𝐹 → 𝑥 = 〈𝐴, (𝐹‘𝐴)〉)) | |
| 2 | 1 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn {𝐴}) → (𝑥 ∈ 𝐹 → 𝑥 = 〈𝐴, (𝐹‘𝐴)〉)) |
| 3 | fnfun 6577 | . . . . . . . 8 ⊢ (𝐹 Fn {𝐴} → Fun 𝐹) | |
| 4 | snidg 4611 | . . . . . . . . . 10 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
| 5 | 4 | adantr 480 | . . . . . . . . 9 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn {𝐴}) → 𝐴 ∈ {𝐴}) |
| 6 | fndm 6580 | . . . . . . . . . 10 ⊢ (𝐹 Fn {𝐴} → dom 𝐹 = {𝐴}) | |
| 7 | 6 | adantl 481 | . . . . . . . . 9 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn {𝐴}) → dom 𝐹 = {𝐴}) |
| 8 | 5, 7 | eleqtrrd 2832 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn {𝐴}) → 𝐴 ∈ dom 𝐹) |
| 9 | funfvop 6978 | . . . . . . . 8 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹) | |
| 10 | 3, 8, 9 | syl2an2 686 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn {𝐴}) → 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹) |
| 11 | eleq1 2817 | . . . . . . 7 ⊢ (𝑥 = 〈𝐴, (𝐹‘𝐴)〉 → (𝑥 ∈ 𝐹 ↔ 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹)) | |
| 12 | 10, 11 | syl5ibrcom 247 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn {𝐴}) → (𝑥 = 〈𝐴, (𝐹‘𝐴)〉 → 𝑥 ∈ 𝐹)) |
| 13 | 2, 12 | impbid 212 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn {𝐴}) → (𝑥 ∈ 𝐹 ↔ 𝑥 = 〈𝐴, (𝐹‘𝐴)〉)) |
| 14 | velsn 4590 | . . . . 5 ⊢ (𝑥 ∈ {〈𝐴, (𝐹‘𝐴)〉} ↔ 𝑥 = 〈𝐴, (𝐹‘𝐴)〉) | |
| 15 | 13, 14 | bitr4di 289 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn {𝐴}) → (𝑥 ∈ 𝐹 ↔ 𝑥 ∈ {〈𝐴, (𝐹‘𝐴)〉})) |
| 16 | 15 | eqrdv 2728 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn {𝐴}) → 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) |
| 17 | 16 | ex 412 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐹 Fn {𝐴} → 𝐹 = {〈𝐴, (𝐹‘𝐴)〉})) |
| 18 | fvex 6830 | . . . 4 ⊢ (𝐹‘𝐴) ∈ V | |
| 19 | fnsng 6529 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ∈ V) → {〈𝐴, (𝐹‘𝐴)〉} Fn {𝐴}) | |
| 20 | 18, 19 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {〈𝐴, (𝐹‘𝐴)〉} Fn {𝐴}) |
| 21 | fneq1 6568 | . . 3 ⊢ (𝐹 = {〈𝐴, (𝐹‘𝐴)〉} → (𝐹 Fn {𝐴} ↔ {〈𝐴, (𝐹‘𝐴)〉} Fn {𝐴})) | |
| 22 | 20, 21 | syl5ibrcom 247 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐹 = {〈𝐴, (𝐹‘𝐴)〉} → 𝐹 Fn {𝐴})) |
| 23 | 17, 22 | impbid 212 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐹 Fn {𝐴} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 Vcvv 3434 {csn 4574 〈cop 4580 dom cdm 5614 Fun wfun 6471 Fn wfn 6472 ‘cfv 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 |
| This theorem is referenced by: fnsnb 7094 frlmsnic 42552 termcnatval 49546 |
| Copyright terms: Public domain | W3C validator |