Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > foelrni | Structured version Visualization version GIF version |
Description: A member of a surjective function's codomain is a value of the function. (Contributed by Thierry Arnoux, 23-Jan-2020.) |
Ref | Expression |
---|---|
foelrni | ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑌 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | forn 6636 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
2 | 1 | eleq2d 2823 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → (𝑌 ∈ ran 𝐹 ↔ 𝑌 ∈ 𝐵)) |
3 | fofn 6635 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) | |
4 | fvelrnb 6773 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝑌 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑌)) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → (𝑌 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑌)) |
6 | 2, 5 | bitr3d 284 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝑌 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑌)) |
7 | 6 | biimpa 480 | 1 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑌 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∃wrex 3062 ran crn 5552 Fn wfn 6375 –onto→wfo 6378 ‘cfv 6380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-fo 6386 df-fv 6388 |
This theorem is referenced by: mhmid 18484 mhmmnd 18485 ghmgrp 18487 symgmov2 18780 ghmcmn 19217 founiiun 42388 founiiun0 42401 sge0f1o 43595 isomenndlem 43743 ovnsubaddlem1 43783 f1oresf1o2 44455 |
Copyright terms: Public domain | W3C validator |