MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foelrni Structured version   Visualization version   GIF version

Theorem foelrni 6723
Description: A member of a surjective function's codomain is a value of the function. (Contributed by Thierry Arnoux, 23-Jan-2020.)
Assertion
Ref Expression
foelrni ((𝐹:𝐴onto𝐵𝑌𝐵) → ∃𝑥𝐴 (𝐹𝑥) = 𝑌)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝑌

Proof of Theorem foelrni
StepHypRef Expression
1 forn 6589 . . . 4 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
21eleq2d 2902 . . 3 (𝐹:𝐴onto𝐵 → (𝑌 ∈ ran 𝐹𝑌𝐵))
3 fofn 6588 . . . 4 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
4 fvelrnb 6722 . . . 4 (𝐹 Fn 𝐴 → (𝑌 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝑌))
53, 4syl 17 . . 3 (𝐹:𝐴onto𝐵 → (𝑌 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝑌))
62, 5bitr3d 282 . 2 (𝐹:𝐴onto𝐵 → (𝑌𝐵 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝑌))
76biimpa 477 1 ((𝐹:𝐴onto𝐵𝑌𝐵) → ∃𝑥𝐴 (𝐹𝑥) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wrex 3143  ran crn 5554   Fn wfn 6346  ontowfo 6349  cfv 6351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pr 5325
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ral 3147  df-rex 3148  df-rab 3151  df-v 3501  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-fo 6357  df-fv 6359
This theorem is referenced by:  mhmid  18152  mhmmnd  18153  ghmgrp  18155  symgmov2  18443  ghmcmn  18874  founiiun  41302  founiiun0  41318  sge0f1o  42532  isomenndlem  42680  ovnsubaddlem1  42720  f1oresf1o2  43358
  Copyright terms: Public domain W3C validator