Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fresunsn Structured version   Visualization version   GIF version

Theorem fresunsn 32629
Description: Recover the original function from a point-added function. See also funresdfunsn 7132 and fsnunres 7131. (Contributed by Thierry Arnoux, 15-Feb-2026.)
Assertion
Ref Expression
fresunsn ((𝐹 Fn 𝐴𝑋𝐴 ∧ (𝐹𝑋) = 𝑌) → ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩}) = 𝐹)

Proof of Theorem fresunsn
StepHypRef Expression
1 fnrel 6591 . . . . . 6 (𝐹 Fn 𝐴 → Rel 𝐹)
213ad2ant1 1133 . . . . 5 ((𝐹 Fn 𝐴𝑋𝐴 ∧ (𝐹𝑋) = 𝑌) → Rel 𝐹)
3 resdmdfsn 5987 . . . . 5 (Rel 𝐹 → (𝐹 ↾ (V ∖ {𝑋})) = (𝐹 ↾ (dom 𝐹 ∖ {𝑋})))
42, 3syl 17 . . . 4 ((𝐹 Fn 𝐴𝑋𝐴 ∧ (𝐹𝑋) = 𝑌) → (𝐹 ↾ (V ∖ {𝑋})) = (𝐹 ↾ (dom 𝐹 ∖ {𝑋})))
5 fndm 6592 . . . . . . 7 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
653ad2ant1 1133 . . . . . 6 ((𝐹 Fn 𝐴𝑋𝐴 ∧ (𝐹𝑋) = 𝑌) → dom 𝐹 = 𝐴)
76difeq1d 4074 . . . . 5 ((𝐹 Fn 𝐴𝑋𝐴 ∧ (𝐹𝑋) = 𝑌) → (dom 𝐹 ∖ {𝑋}) = (𝐴 ∖ {𝑋}))
87reseq2d 5935 . . . 4 ((𝐹 Fn 𝐴𝑋𝐴 ∧ (𝐹𝑋) = 𝑌) → (𝐹 ↾ (dom 𝐹 ∖ {𝑋})) = (𝐹 ↾ (𝐴 ∖ {𝑋})))
94, 8eqtr2d 2769 . . 3 ((𝐹 Fn 𝐴𝑋𝐴 ∧ (𝐹𝑋) = 𝑌) → (𝐹 ↾ (𝐴 ∖ {𝑋})) = (𝐹 ↾ (V ∖ {𝑋})))
10 simp3 1138 . . . . . 6 ((𝐹 Fn 𝐴𝑋𝐴 ∧ (𝐹𝑋) = 𝑌) → (𝐹𝑋) = 𝑌)
1110eqcomd 2739 . . . . 5 ((𝐹 Fn 𝐴𝑋𝐴 ∧ (𝐹𝑋) = 𝑌) → 𝑌 = (𝐹𝑋))
1211opeq2d 4833 . . . 4 ((𝐹 Fn 𝐴𝑋𝐴 ∧ (𝐹𝑋) = 𝑌) → ⟨𝑋, 𝑌⟩ = ⟨𝑋, (𝐹𝑋)⟩)
1312sneqd 4589 . . 3 ((𝐹 Fn 𝐴𝑋𝐴 ∧ (𝐹𝑋) = 𝑌) → {⟨𝑋, 𝑌⟩} = {⟨𝑋, (𝐹𝑋)⟩})
149, 13uneq12d 4118 . 2 ((𝐹 Fn 𝐴𝑋𝐴 ∧ (𝐹𝑋) = 𝑌) → ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩}) = ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
15 fnfun 6589 . . . 4 (𝐹 Fn 𝐴 → Fun 𝐹)
16153ad2ant1 1133 . . 3 ((𝐹 Fn 𝐴𝑋𝐴 ∧ (𝐹𝑋) = 𝑌) → Fun 𝐹)
175eleq2d 2819 . . . . 5 (𝐹 Fn 𝐴 → (𝑋 ∈ dom 𝐹𝑋𝐴))
1817biimpar 477 . . . 4 ((𝐹 Fn 𝐴𝑋𝐴) → 𝑋 ∈ dom 𝐹)
19183adant3 1132 . . 3 ((𝐹 Fn 𝐴𝑋𝐴 ∧ (𝐹𝑋) = 𝑌) → 𝑋 ∈ dom 𝐹)
20 funresdfunsn 7132 . . 3 ((Fun 𝐹𝑋 ∈ dom 𝐹) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}) = 𝐹)
2116, 19, 20syl2anc 584 . 2 ((𝐹 Fn 𝐴𝑋𝐴 ∧ (𝐹𝑋) = 𝑌) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}) = 𝐹)
2214, 21eqtrd 2768 1 ((𝐹 Fn 𝐴𝑋𝐴 ∧ (𝐹𝑋) = 𝑌) → ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩}) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2113  Vcvv 3437  cdif 3895  cun 3896  {csn 4577  cop 4583  dom cdm 5621  cres 5623  Rel wrel 5626  Fun wfun 6483   Fn wfn 6484  cfv 6489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497
This theorem is referenced by:  evlextv  33635
  Copyright terms: Public domain W3C validator