Proof of Theorem fresunsn
| Step | Hyp | Ref
| Expression |
| 1 | | fnrel 6591 |
. . . . . 6
⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
| 2 | 1 | 3ad2ant1 1133 |
. . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) = 𝑌) → Rel 𝐹) |
| 3 | | resdmdfsn 5987 |
. . . . 5
⊢ (Rel
𝐹 → (𝐹 ↾ (V ∖ {𝑋})) = (𝐹 ↾ (dom 𝐹 ∖ {𝑋}))) |
| 4 | 2, 3 | syl 17 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) = 𝑌) → (𝐹 ↾ (V ∖ {𝑋})) = (𝐹 ↾ (dom 𝐹 ∖ {𝑋}))) |
| 5 | | fndm 6592 |
. . . . . . 7
⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
| 6 | 5 | 3ad2ant1 1133 |
. . . . . 6
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) = 𝑌) → dom 𝐹 = 𝐴) |
| 7 | 6 | difeq1d 4074 |
. . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) = 𝑌) → (dom 𝐹 ∖ {𝑋}) = (𝐴 ∖ {𝑋})) |
| 8 | 7 | reseq2d 5935 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) = 𝑌) → (𝐹 ↾ (dom 𝐹 ∖ {𝑋})) = (𝐹 ↾ (𝐴 ∖ {𝑋}))) |
| 9 | 4, 8 | eqtr2d 2769 |
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) = 𝑌) → (𝐹 ↾ (𝐴 ∖ {𝑋})) = (𝐹 ↾ (V ∖ {𝑋}))) |
| 10 | | simp3 1138 |
. . . . . 6
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) = 𝑌) → (𝐹‘𝑋) = 𝑌) |
| 11 | 10 | eqcomd 2739 |
. . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) = 𝑌) → 𝑌 = (𝐹‘𝑋)) |
| 12 | 11 | opeq2d 4833 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) = 𝑌) → 〈𝑋, 𝑌〉 = 〈𝑋, (𝐹‘𝑋)〉) |
| 13 | 12 | sneqd 4589 |
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) = 𝑌) → {〈𝑋, 𝑌〉} = {〈𝑋, (𝐹‘𝑋)〉}) |
| 14 | 9, 13 | uneq12d 4118 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) = 𝑌) → ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {〈𝑋, 𝑌〉}) = ((𝐹 ↾ (V ∖ {𝑋})) ∪ {〈𝑋, (𝐹‘𝑋)〉})) |
| 15 | | fnfun 6589 |
. . . 4
⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
| 16 | 15 | 3ad2ant1 1133 |
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) = 𝑌) → Fun 𝐹) |
| 17 | 5 | eleq2d 2819 |
. . . . 5
⊢ (𝐹 Fn 𝐴 → (𝑋 ∈ dom 𝐹 ↔ 𝑋 ∈ 𝐴)) |
| 18 | 17 | biimpar 477 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ dom 𝐹) |
| 19 | 18 | 3adant3 1132 |
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) = 𝑌) → 𝑋 ∈ dom 𝐹) |
| 20 | | funresdfunsn 7132 |
. . 3
⊢ ((Fun
𝐹 ∧ 𝑋 ∈ dom 𝐹) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {〈𝑋, (𝐹‘𝑋)〉}) = 𝐹) |
| 21 | 16, 19, 20 | syl2anc 584 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) = 𝑌) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {〈𝑋, (𝐹‘𝑋)〉}) = 𝐹) |
| 22 | 14, 21 | eqtrd 2768 |
1
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) = 𝑌) → ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {〈𝑋, 𝑌〉}) = 𝐹) |