| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneifv2 | Structured version Visualization version GIF version | ||
| Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the function value of converse of 𝐹 is the interior function. (Contributed by RP, 29-May-2021.) |
| Ref | Expression |
|---|---|
| ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
| ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
| ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
| Ref | Expression |
|---|---|
| ntrneifv2 | ⊢ (𝜑 → (◡𝐹‘𝑁) = 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrnei.r | . 2 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
| 2 | ntrnei.o | . . . . . 6 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
| 3 | ntrnei.f | . . . . . 6 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
| 4 | 2, 3, 1 | ntrneif1o 44052 | . . . . 5 ⊢ (𝜑 → 𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
| 5 | 2, 3, 1 | ntrneinex 44054 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) |
| 6 | dff1o3 6770 | . . . . . . . 8 ⊢ (𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) ↔ (𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–onto→(𝒫 𝒫 𝐵 ↑m 𝐵) ∧ Fun ◡𝐹)) | |
| 7 | 6 | simprbi 496 | . . . . . . 7 ⊢ (𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) → Fun ◡𝐹) |
| 8 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) ∧ 𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) → Fun ◡𝐹) |
| 9 | df-rn 5630 | . . . . . . . . 9 ⊢ ran 𝐹 = dom ◡𝐹 | |
| 10 | f1ofo 6771 | . . . . . . . . . 10 ⊢ (𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) → 𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) | |
| 11 | forn 6739 | . . . . . . . . . 10 ⊢ (𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–onto→(𝒫 𝒫 𝐵 ↑m 𝐵) → ran 𝐹 = (𝒫 𝒫 𝐵 ↑m 𝐵)) | |
| 12 | 10, 11 | syl 17 | . . . . . . . . 9 ⊢ (𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) → ran 𝐹 = (𝒫 𝒫 𝐵 ↑m 𝐵)) |
| 13 | 9, 12 | eqtr3id 2778 | . . . . . . . 8 ⊢ (𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) → dom ◡𝐹 = (𝒫 𝒫 𝐵 ↑m 𝐵)) |
| 14 | 13 | eleq2d 2814 | . . . . . . 7 ⊢ (𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) → (𝑁 ∈ dom ◡𝐹 ↔ 𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵))) |
| 15 | 14 | biimpar 477 | . . . . . 6 ⊢ ((𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) ∧ 𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) → 𝑁 ∈ dom ◡𝐹) |
| 16 | 8, 15 | jca 511 | . . . . 5 ⊢ ((𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) ∧ 𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) → (Fun ◡𝐹 ∧ 𝑁 ∈ dom ◡𝐹)) |
| 17 | 4, 5, 16 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (Fun ◡𝐹 ∧ 𝑁 ∈ dom ◡𝐹)) |
| 18 | funbrfvb 6876 | . . . 4 ⊢ ((Fun ◡𝐹 ∧ 𝑁 ∈ dom ◡𝐹) → ((◡𝐹‘𝑁) = 𝐼 ↔ 𝑁◡𝐹𝐼)) | |
| 19 | 17, 18 | syl 17 | . . 3 ⊢ (𝜑 → ((◡𝐹‘𝑁) = 𝐼 ↔ 𝑁◡𝐹𝐼)) |
| 20 | 2, 3, 1 | ntrneiiex 44053 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 21 | brcnvg 5822 | . . . 4 ⊢ ((𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) → (𝑁◡𝐹𝐼 ↔ 𝐼𝐹𝑁)) | |
| 22 | 5, 20, 21 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑁◡𝐹𝐼 ↔ 𝐼𝐹𝑁)) |
| 23 | 19, 22 | bitrd 279 | . 2 ⊢ (𝜑 → ((◡𝐹‘𝑁) = 𝐼 ↔ 𝐼𝐹𝑁)) |
| 24 | 1, 23 | mpbird 257 | 1 ⊢ (𝜑 → (◡𝐹‘𝑁) = 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3394 Vcvv 3436 𝒫 cpw 4551 class class class wbr 5092 ↦ cmpt 5173 ◡ccnv 5618 dom cdm 5619 ran crn 5620 Fun wfun 6476 –onto→wfo 6480 –1-1-onto→wf1o 6481 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 ↑m cmap 8753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-map 8755 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |