![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneifv2 | Structured version Visualization version GIF version |
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the function value of converse of 𝐹 is the interior function. (Contributed by RP, 29-May-2021.) |
Ref | Expression |
---|---|
ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
Ref | Expression |
---|---|
ntrneifv2 | ⊢ (𝜑 → (◡𝐹‘𝑁) = 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrnei.r | . 2 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
2 | ntrnei.o | . . . . . 6 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
3 | ntrnei.f | . . . . . 6 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
4 | 2, 3, 1 | ntrneif1o 43779 | . . . . 5 ⊢ (𝜑 → 𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
5 | 2, 3, 1 | ntrneinex 43781 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) |
6 | dff1o3 6841 | . . . . . . . 8 ⊢ (𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) ↔ (𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–onto→(𝒫 𝒫 𝐵 ↑m 𝐵) ∧ Fun ◡𝐹)) | |
7 | 6 | simprbi 495 | . . . . . . 7 ⊢ (𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) → Fun ◡𝐹) |
8 | 7 | adantr 479 | . . . . . 6 ⊢ ((𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) ∧ 𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) → Fun ◡𝐹) |
9 | df-rn 5685 | . . . . . . . . 9 ⊢ ran 𝐹 = dom ◡𝐹 | |
10 | f1ofo 6842 | . . . . . . . . . 10 ⊢ (𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) → 𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) | |
11 | forn 6810 | . . . . . . . . . 10 ⊢ (𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–onto→(𝒫 𝒫 𝐵 ↑m 𝐵) → ran 𝐹 = (𝒫 𝒫 𝐵 ↑m 𝐵)) | |
12 | 10, 11 | syl 17 | . . . . . . . . 9 ⊢ (𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) → ran 𝐹 = (𝒫 𝒫 𝐵 ↑m 𝐵)) |
13 | 9, 12 | eqtr3id 2780 | . . . . . . . 8 ⊢ (𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) → dom ◡𝐹 = (𝒫 𝒫 𝐵 ↑m 𝐵)) |
14 | 13 | eleq2d 2812 | . . . . . . 7 ⊢ (𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) → (𝑁 ∈ dom ◡𝐹 ↔ 𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵))) |
15 | 14 | biimpar 476 | . . . . . 6 ⊢ ((𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) ∧ 𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) → 𝑁 ∈ dom ◡𝐹) |
16 | 8, 15 | jca 510 | . . . . 5 ⊢ ((𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) ∧ 𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) → (Fun ◡𝐹 ∧ 𝑁 ∈ dom ◡𝐹)) |
17 | 4, 5, 16 | syl2anc 582 | . . . 4 ⊢ (𝜑 → (Fun ◡𝐹 ∧ 𝑁 ∈ dom ◡𝐹)) |
18 | funbrfvb 6948 | . . . 4 ⊢ ((Fun ◡𝐹 ∧ 𝑁 ∈ dom ◡𝐹) → ((◡𝐹‘𝑁) = 𝐼 ↔ 𝑁◡𝐹𝐼)) | |
19 | 17, 18 | syl 17 | . . 3 ⊢ (𝜑 → ((◡𝐹‘𝑁) = 𝐼 ↔ 𝑁◡𝐹𝐼)) |
20 | 2, 3, 1 | ntrneiiex 43780 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
21 | brcnvg 5878 | . . . 4 ⊢ ((𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) → (𝑁◡𝐹𝐼 ↔ 𝐼𝐹𝑁)) | |
22 | 5, 20, 21 | syl2anc 582 | . . 3 ⊢ (𝜑 → (𝑁◡𝐹𝐼 ↔ 𝐼𝐹𝑁)) |
23 | 19, 22 | bitrd 278 | . 2 ⊢ (𝜑 → ((◡𝐹‘𝑁) = 𝐼 ↔ 𝐼𝐹𝑁)) |
24 | 1, 23 | mpbird 256 | 1 ⊢ (𝜑 → (◡𝐹‘𝑁) = 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 {crab 3419 Vcvv 3462 𝒫 cpw 4597 class class class wbr 5145 ↦ cmpt 5228 ◡ccnv 5673 dom cdm 5674 ran crn 5675 Fun wfun 6540 –onto→wfo 6544 –1-1-onto→wf1o 6545 ‘cfv 6546 (class class class)co 7416 ∈ cmpo 7418 ↑m cmap 8847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-ov 7419 df-oprab 7420 df-mpo 7421 df-1st 7995 df-2nd 7996 df-map 8849 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |