![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneifv2 | Structured version Visualization version GIF version |
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the function value of converse of 𝐹 is the interior function. (Contributed by RP, 29-May-2021.) |
Ref | Expression |
---|---|
ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
Ref | Expression |
---|---|
ntrneifv2 | ⊢ (𝜑 → (◡𝐹‘𝑁) = 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrnei.r | . 2 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
2 | ntrnei.o | . . . . . 6 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
3 | ntrnei.f | . . . . . 6 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
4 | 2, 3, 1 | ntrneif1o 39214 | . . . . 5 ⊢ (𝜑 → 𝐹:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵)) |
5 | 2, 3, 1 | ntrneinex 39216 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝒫 𝐵 ↑𝑚 𝐵)) |
6 | dff1o3 6385 | . . . . . . . 8 ⊢ (𝐹:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵) ↔ (𝐹:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵) ∧ Fun ◡𝐹)) | |
7 | 6 | simprbi 492 | . . . . . . 7 ⊢ (𝐹:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵) → Fun ◡𝐹) |
8 | 7 | adantr 474 | . . . . . 6 ⊢ ((𝐹:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵) ∧ 𝑁 ∈ (𝒫 𝒫 𝐵 ↑𝑚 𝐵)) → Fun ◡𝐹) |
9 | df-rn 5354 | . . . . . . . . 9 ⊢ ran 𝐹 = dom ◡𝐹 | |
10 | f1ofo 6386 | . . . . . . . . . 10 ⊢ (𝐹:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵) → 𝐹:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵)) | |
11 | forn 6357 | . . . . . . . . . 10 ⊢ (𝐹:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵) → ran 𝐹 = (𝒫 𝒫 𝐵 ↑𝑚 𝐵)) | |
12 | 10, 11 | syl 17 | . . . . . . . . 9 ⊢ (𝐹:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵) → ran 𝐹 = (𝒫 𝒫 𝐵 ↑𝑚 𝐵)) |
13 | 9, 12 | syl5eqr 2876 | . . . . . . . 8 ⊢ (𝐹:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵) → dom ◡𝐹 = (𝒫 𝒫 𝐵 ↑𝑚 𝐵)) |
14 | 13 | eleq2d 2893 | . . . . . . 7 ⊢ (𝐹:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵) → (𝑁 ∈ dom ◡𝐹 ↔ 𝑁 ∈ (𝒫 𝒫 𝐵 ↑𝑚 𝐵))) |
15 | 14 | biimpar 471 | . . . . . 6 ⊢ ((𝐹:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵) ∧ 𝑁 ∈ (𝒫 𝒫 𝐵 ↑𝑚 𝐵)) → 𝑁 ∈ dom ◡𝐹) |
16 | 8, 15 | jca 509 | . . . . 5 ⊢ ((𝐹:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵) ∧ 𝑁 ∈ (𝒫 𝒫 𝐵 ↑𝑚 𝐵)) → (Fun ◡𝐹 ∧ 𝑁 ∈ dom ◡𝐹)) |
17 | 4, 5, 16 | syl2anc 581 | . . . 4 ⊢ (𝜑 → (Fun ◡𝐹 ∧ 𝑁 ∈ dom ◡𝐹)) |
18 | funbrfvb 6485 | . . . 4 ⊢ ((Fun ◡𝐹 ∧ 𝑁 ∈ dom ◡𝐹) → ((◡𝐹‘𝑁) = 𝐼 ↔ 𝑁◡𝐹𝐼)) | |
19 | 17, 18 | syl 17 | . . 3 ⊢ (𝜑 → ((◡𝐹‘𝑁) = 𝐼 ↔ 𝑁◡𝐹𝐼)) |
20 | 2, 3, 1 | ntrneiiex 39215 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) |
21 | brcnvg 5535 | . . . 4 ⊢ ((𝑁 ∈ (𝒫 𝒫 𝐵 ↑𝑚 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) → (𝑁◡𝐹𝐼 ↔ 𝐼𝐹𝑁)) | |
22 | 5, 20, 21 | syl2anc 581 | . . 3 ⊢ (𝜑 → (𝑁◡𝐹𝐼 ↔ 𝐼𝐹𝑁)) |
23 | 19, 22 | bitrd 271 | . 2 ⊢ (𝜑 → ((◡𝐹‘𝑁) = 𝐼 ↔ 𝐼𝐹𝑁)) |
24 | 1, 23 | mpbird 249 | 1 ⊢ (𝜑 → (◡𝐹‘𝑁) = 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1658 ∈ wcel 2166 {crab 3122 Vcvv 3415 𝒫 cpw 4379 class class class wbr 4874 ↦ cmpt 4953 ◡ccnv 5342 dom cdm 5343 ran crn 5344 Fun wfun 6118 –onto→wfo 6122 –1-1-onto→wf1o 6123 ‘cfv 6124 (class class class)co 6906 ↦ cmpt2 6908 ↑𝑚 cmap 8123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-ral 3123 df-rex 3124 df-reu 3125 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4660 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-id 5251 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-1st 7429 df-2nd 7430 df-map 8125 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |