Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneifv2 Structured version   Visualization version   GIF version

Theorem ntrneifv2 41579
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the function value of converse of 𝐹 is the interior function. (Contributed by RP, 29-May-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneifv2 (𝜑 → (𝐹𝑁) = 𝐼)
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝜑,𝑖,𝑗,𝑘,𝑙
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐼(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑙)

Proof of Theorem ntrneifv2
StepHypRef Expression
1 ntrnei.r . 2 (𝜑𝐼𝐹𝑁)
2 ntrnei.o . . . . . 6 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
3 ntrnei.f . . . . . 6 𝐹 = (𝒫 𝐵𝑂𝐵)
42, 3, 1ntrneif1o 41574 . . . . 5 (𝜑𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
52, 3, 1ntrneinex 41576 . . . . 5 (𝜑𝑁 ∈ (𝒫 𝒫 𝐵m 𝐵))
6 dff1o3 6706 . . . . . . . 8 (𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) ↔ (𝐹:(𝒫 𝐵m 𝒫 𝐵)–onto→(𝒫 𝒫 𝐵m 𝐵) ∧ Fun 𝐹))
76simprbi 496 . . . . . . 7 (𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) → Fun 𝐹)
87adantr 480 . . . . . 6 ((𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) ∧ 𝑁 ∈ (𝒫 𝒫 𝐵m 𝐵)) → Fun 𝐹)
9 df-rn 5591 . . . . . . . . 9 ran 𝐹 = dom 𝐹
10 f1ofo 6707 . . . . . . . . . 10 (𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) → 𝐹:(𝒫 𝐵m 𝒫 𝐵)–onto→(𝒫 𝒫 𝐵m 𝐵))
11 forn 6675 . . . . . . . . . 10 (𝐹:(𝒫 𝐵m 𝒫 𝐵)–onto→(𝒫 𝒫 𝐵m 𝐵) → ran 𝐹 = (𝒫 𝒫 𝐵m 𝐵))
1210, 11syl 17 . . . . . . . . 9 (𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) → ran 𝐹 = (𝒫 𝒫 𝐵m 𝐵))
139, 12eqtr3id 2793 . . . . . . . 8 (𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) → dom 𝐹 = (𝒫 𝒫 𝐵m 𝐵))
1413eleq2d 2824 . . . . . . 7 (𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) → (𝑁 ∈ dom 𝐹𝑁 ∈ (𝒫 𝒫 𝐵m 𝐵)))
1514biimpar 477 . . . . . 6 ((𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) ∧ 𝑁 ∈ (𝒫 𝒫 𝐵m 𝐵)) → 𝑁 ∈ dom 𝐹)
168, 15jca 511 . . . . 5 ((𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) ∧ 𝑁 ∈ (𝒫 𝒫 𝐵m 𝐵)) → (Fun 𝐹𝑁 ∈ dom 𝐹))
174, 5, 16syl2anc 583 . . . 4 (𝜑 → (Fun 𝐹𝑁 ∈ dom 𝐹))
18 funbrfvb 6806 . . . 4 ((Fun 𝐹𝑁 ∈ dom 𝐹) → ((𝐹𝑁) = 𝐼𝑁𝐹𝐼))
1917, 18syl 17 . . 3 (𝜑 → ((𝐹𝑁) = 𝐼𝑁𝐹𝐼))
202, 3, 1ntrneiiex 41575 . . . 4 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
21 brcnvg 5777 . . . 4 ((𝑁 ∈ (𝒫 𝒫 𝐵m 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (𝑁𝐹𝐼𝐼𝐹𝑁))
225, 20, 21syl2anc 583 . . 3 (𝜑 → (𝑁𝐹𝐼𝐼𝐹𝑁))
2319, 22bitrd 278 . 2 (𝜑 → ((𝐹𝑁) = 𝐼𝐼𝐹𝑁))
241, 23mpbird 256 1 (𝜑 → (𝐹𝑁) = 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422  𝒫 cpw 4530   class class class wbr 5070  cmpt 5153  ccnv 5579  dom cdm 5580  ran crn 5581  Fun wfun 6412  ontowfo 6416  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  cmpo 7257  m cmap 8573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator