Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneifv2 Structured version   Visualization version   GIF version

Theorem ntrneifv2 44042
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the function value of converse of 𝐹 is the interior function. (Contributed by RP, 29-May-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneifv2 (𝜑 → (𝐹𝑁) = 𝐼)
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝜑,𝑖,𝑗,𝑘,𝑙
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐼(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑙)

Proof of Theorem ntrneifv2
StepHypRef Expression
1 ntrnei.r . 2 (𝜑𝐼𝐹𝑁)
2 ntrnei.o . . . . . 6 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
3 ntrnei.f . . . . . 6 𝐹 = (𝒫 𝐵𝑂𝐵)
42, 3, 1ntrneif1o 44037 . . . . 5 (𝜑𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
52, 3, 1ntrneinex 44039 . . . . 5 (𝜑𝑁 ∈ (𝒫 𝒫 𝐵m 𝐵))
6 dff1o3 6868 . . . . . . . 8 (𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) ↔ (𝐹:(𝒫 𝐵m 𝒫 𝐵)–onto→(𝒫 𝒫 𝐵m 𝐵) ∧ Fun 𝐹))
76simprbi 496 . . . . . . 7 (𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) → Fun 𝐹)
87adantr 480 . . . . . 6 ((𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) ∧ 𝑁 ∈ (𝒫 𝒫 𝐵m 𝐵)) → Fun 𝐹)
9 df-rn 5711 . . . . . . . . 9 ran 𝐹 = dom 𝐹
10 f1ofo 6869 . . . . . . . . . 10 (𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) → 𝐹:(𝒫 𝐵m 𝒫 𝐵)–onto→(𝒫 𝒫 𝐵m 𝐵))
11 forn 6837 . . . . . . . . . 10 (𝐹:(𝒫 𝐵m 𝒫 𝐵)–onto→(𝒫 𝒫 𝐵m 𝐵) → ran 𝐹 = (𝒫 𝒫 𝐵m 𝐵))
1210, 11syl 17 . . . . . . . . 9 (𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) → ran 𝐹 = (𝒫 𝒫 𝐵m 𝐵))
139, 12eqtr3id 2794 . . . . . . . 8 (𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) → dom 𝐹 = (𝒫 𝒫 𝐵m 𝐵))
1413eleq2d 2830 . . . . . . 7 (𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) → (𝑁 ∈ dom 𝐹𝑁 ∈ (𝒫 𝒫 𝐵m 𝐵)))
1514biimpar 477 . . . . . 6 ((𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) ∧ 𝑁 ∈ (𝒫 𝒫 𝐵m 𝐵)) → 𝑁 ∈ dom 𝐹)
168, 15jca 511 . . . . 5 ((𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) ∧ 𝑁 ∈ (𝒫 𝒫 𝐵m 𝐵)) → (Fun 𝐹𝑁 ∈ dom 𝐹))
174, 5, 16syl2anc 583 . . . 4 (𝜑 → (Fun 𝐹𝑁 ∈ dom 𝐹))
18 funbrfvb 6975 . . . 4 ((Fun 𝐹𝑁 ∈ dom 𝐹) → ((𝐹𝑁) = 𝐼𝑁𝐹𝐼))
1917, 18syl 17 . . 3 (𝜑 → ((𝐹𝑁) = 𝐼𝑁𝐹𝐼))
202, 3, 1ntrneiiex 44038 . . . 4 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
21 brcnvg 5904 . . . 4 ((𝑁 ∈ (𝒫 𝒫 𝐵m 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (𝑁𝐹𝐼𝐼𝐹𝑁))
225, 20, 21syl2anc 583 . . 3 (𝜑 → (𝑁𝐹𝐼𝐼𝐹𝑁))
2319, 22bitrd 279 . 2 (𝜑 → ((𝐹𝑁) = 𝐼𝐼𝐹𝑁))
241, 23mpbird 257 1 (𝜑 → (𝐹𝑁) = 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  𝒫 cpw 4622   class class class wbr 5166  cmpt 5249  ccnv 5699  dom cdm 5700  ran crn 5701  Fun wfun 6567  ontowfo 6571  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  cmpo 7450  m cmap 8884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator