| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrclsfv1 | Structured version Visualization version GIF version | ||
| Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then there is a functional relation between them (Contributed by RP, 28-May-2021.) |
| Ref | Expression |
|---|---|
| ntrcls.o | ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) |
| ntrcls.d | ⊢ 𝐷 = (𝑂‘𝐵) |
| ntrcls.r | ⊢ (𝜑 → 𝐼𝐷𝐾) |
| Ref | Expression |
|---|---|
| ntrclsfv1 | ⊢ (𝜑 → (𝐷‘𝐼) = 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrcls.r | . 2 ⊢ (𝜑 → 𝐼𝐷𝐾) | |
| 2 | ntrcls.o | . . . . . . 7 ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) | |
| 3 | ntrcls.d | . . . . . . 7 ⊢ 𝐷 = (𝑂‘𝐵) | |
| 4 | 2, 3, 1 | ntrclsf1o 44040 | . . . . . 6 ⊢ (𝜑 → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 5 | f1ofn 6801 | . . . . . 6 ⊢ (𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵) → 𝐷 Fn (𝒫 𝐵 ↑m 𝒫 𝐵)) | |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐷 Fn (𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 7 | 2, 3, 1 | ntrclsiex 44042 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 8 | 6, 7 | jca 511 | . . . 4 ⊢ (𝜑 → (𝐷 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵))) |
| 9 | fnfun 6618 | . . . . . 6 ⊢ (𝐷 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) → Fun 𝐷) | |
| 10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝐷 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) → Fun 𝐷) |
| 11 | fndm 6621 | . . . . . . 7 ⊢ (𝐷 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) → dom 𝐷 = (𝒫 𝐵 ↑m 𝒫 𝐵)) | |
| 12 | 11 | eleq2d 2814 | . . . . . 6 ⊢ (𝐷 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) → (𝐼 ∈ dom 𝐷 ↔ 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵))) |
| 13 | 12 | biimpar 477 | . . . . 5 ⊢ ((𝐷 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) → 𝐼 ∈ dom 𝐷) |
| 14 | 10, 13 | jca 511 | . . . 4 ⊢ ((𝐷 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) → (Fun 𝐷 ∧ 𝐼 ∈ dom 𝐷)) |
| 15 | 8, 14 | syl 17 | . . 3 ⊢ (𝜑 → (Fun 𝐷 ∧ 𝐼 ∈ dom 𝐷)) |
| 16 | funbrfvb 6914 | . . 3 ⊢ ((Fun 𝐷 ∧ 𝐼 ∈ dom 𝐷) → ((𝐷‘𝐼) = 𝐾 ↔ 𝐼𝐷𝐾)) | |
| 17 | 15, 16 | syl 17 | . 2 ⊢ (𝜑 → ((𝐷‘𝐼) = 𝐾 ↔ 𝐼𝐷𝐾)) |
| 18 | 1, 17 | mpbird 257 | 1 ⊢ (𝜑 → (𝐷‘𝐼) = 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∖ cdif 3911 𝒫 cpw 4563 class class class wbr 5107 ↦ cmpt 5188 dom cdm 5638 Fun wfun 6505 Fn wfn 6506 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-map 8801 |
| This theorem is referenced by: ntrclsfv2 44045 ntrclscls00 44055 ntrclsiso 44056 ntrclsk2 44057 ntrclskb 44058 ntrclsk3 44059 ntrclsk13 44060 |
| Copyright terms: Public domain | W3C validator |