| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrclsfv1 | Structured version Visualization version GIF version | ||
| Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then there is a functional relation between them (Contributed by RP, 28-May-2021.) |
| Ref | Expression |
|---|---|
| ntrcls.o | ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) |
| ntrcls.d | ⊢ 𝐷 = (𝑂‘𝐵) |
| ntrcls.r | ⊢ (𝜑 → 𝐼𝐷𝐾) |
| Ref | Expression |
|---|---|
| ntrclsfv1 | ⊢ (𝜑 → (𝐷‘𝐼) = 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrcls.r | . 2 ⊢ (𝜑 → 𝐼𝐷𝐾) | |
| 2 | ntrcls.o | . . . . . . 7 ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) | |
| 3 | ntrcls.d | . . . . . . 7 ⊢ 𝐷 = (𝑂‘𝐵) | |
| 4 | 2, 3, 1 | ntrclsf1o 44009 | . . . . . 6 ⊢ (𝜑 → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 5 | f1ofn 6830 | . . . . . 6 ⊢ (𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵) → 𝐷 Fn (𝒫 𝐵 ↑m 𝒫 𝐵)) | |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐷 Fn (𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 7 | 2, 3, 1 | ntrclsiex 44011 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 8 | 6, 7 | jca 511 | . . . 4 ⊢ (𝜑 → (𝐷 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵))) |
| 9 | fnfun 6649 | . . . . . 6 ⊢ (𝐷 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) → Fun 𝐷) | |
| 10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝐷 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) → Fun 𝐷) |
| 11 | fndm 6652 | . . . . . . 7 ⊢ (𝐷 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) → dom 𝐷 = (𝒫 𝐵 ↑m 𝒫 𝐵)) | |
| 12 | 11 | eleq2d 2819 | . . . . . 6 ⊢ (𝐷 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) → (𝐼 ∈ dom 𝐷 ↔ 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵))) |
| 13 | 12 | biimpar 477 | . . . . 5 ⊢ ((𝐷 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) → 𝐼 ∈ dom 𝐷) |
| 14 | 10, 13 | jca 511 | . . . 4 ⊢ ((𝐷 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) → (Fun 𝐷 ∧ 𝐼 ∈ dom 𝐷)) |
| 15 | 8, 14 | syl 17 | . . 3 ⊢ (𝜑 → (Fun 𝐷 ∧ 𝐼 ∈ dom 𝐷)) |
| 16 | funbrfvb 6943 | . . 3 ⊢ ((Fun 𝐷 ∧ 𝐼 ∈ dom 𝐷) → ((𝐷‘𝐼) = 𝐾 ↔ 𝐼𝐷𝐾)) | |
| 17 | 15, 16 | syl 17 | . 2 ⊢ (𝜑 → ((𝐷‘𝐼) = 𝐾 ↔ 𝐼𝐷𝐾)) |
| 18 | 1, 17 | mpbird 257 | 1 ⊢ (𝜑 → (𝐷‘𝐼) = 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3464 ∖ cdif 3930 𝒫 cpw 4582 class class class wbr 5125 ↦ cmpt 5207 dom cdm 5667 Fun wfun 6536 Fn wfn 6537 –1-1-onto→wf1o 6541 ‘cfv 6542 (class class class)co 7414 ↑m cmap 8849 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7997 df-2nd 7998 df-map 8851 |
| This theorem is referenced by: ntrclsfv2 44014 ntrclscls00 44024 ntrclsiso 44025 ntrclsk2 44026 ntrclskb 44027 ntrclsk3 44028 ntrclsk13 44029 |
| Copyright terms: Public domain | W3C validator |