![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrclsfv1 | Structured version Visualization version GIF version |
Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then there is a functional relation between them (Contributed by RP, 28-May-2021.) |
Ref | Expression |
---|---|
ntrcls.o | ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) |
ntrcls.d | ⊢ 𝐷 = (𝑂‘𝐵) |
ntrcls.r | ⊢ (𝜑 → 𝐼𝐷𝐾) |
Ref | Expression |
---|---|
ntrclsfv1 | ⊢ (𝜑 → (𝐷‘𝐼) = 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrcls.r | . 2 ⊢ (𝜑 → 𝐼𝐷𝐾) | |
2 | ntrcls.o | . . . . . . 7 ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) | |
3 | ntrcls.d | . . . . . . 7 ⊢ 𝐷 = (𝑂‘𝐵) | |
4 | 2, 3, 1 | ntrclsf1o 42792 | . . . . . 6 ⊢ (𝜑 → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) |
5 | f1ofn 6834 | . . . . . 6 ⊢ (𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵) → 𝐷 Fn (𝒫 𝐵 ↑m 𝒫 𝐵)) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐷 Fn (𝒫 𝐵 ↑m 𝒫 𝐵)) |
7 | 2, 3, 1 | ntrclsiex 42794 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
8 | 6, 7 | jca 512 | . . . 4 ⊢ (𝜑 → (𝐷 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵))) |
9 | fnfun 6649 | . . . . . 6 ⊢ (𝐷 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) → Fun 𝐷) | |
10 | 9 | adantr 481 | . . . . 5 ⊢ ((𝐷 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) → Fun 𝐷) |
11 | fndm 6652 | . . . . . . 7 ⊢ (𝐷 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) → dom 𝐷 = (𝒫 𝐵 ↑m 𝒫 𝐵)) | |
12 | 11 | eleq2d 2819 | . . . . . 6 ⊢ (𝐷 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) → (𝐼 ∈ dom 𝐷 ↔ 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵))) |
13 | 12 | biimpar 478 | . . . . 5 ⊢ ((𝐷 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) → 𝐼 ∈ dom 𝐷) |
14 | 10, 13 | jca 512 | . . . 4 ⊢ ((𝐷 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) → (Fun 𝐷 ∧ 𝐼 ∈ dom 𝐷)) |
15 | 8, 14 | syl 17 | . . 3 ⊢ (𝜑 → (Fun 𝐷 ∧ 𝐼 ∈ dom 𝐷)) |
16 | funbrfvb 6946 | . . 3 ⊢ ((Fun 𝐷 ∧ 𝐼 ∈ dom 𝐷) → ((𝐷‘𝐼) = 𝐾 ↔ 𝐼𝐷𝐾)) | |
17 | 15, 16 | syl 17 | . 2 ⊢ (𝜑 → ((𝐷‘𝐼) = 𝐾 ↔ 𝐼𝐷𝐾)) |
18 | 1, 17 | mpbird 256 | 1 ⊢ (𝜑 → (𝐷‘𝐼) = 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∖ cdif 3945 𝒫 cpw 4602 class class class wbr 5148 ↦ cmpt 5231 dom cdm 5676 Fun wfun 6537 Fn wfn 6538 –1-1-onto→wf1o 6542 ‘cfv 6543 (class class class)co 7408 ↑m cmap 8819 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-map 8821 |
This theorem is referenced by: ntrclsfv2 42797 ntrclscls00 42807 ntrclsiso 42808 ntrclsk2 42809 ntrclskb 42810 ntrclsk3 42811 ntrclsk13 42812 |
Copyright terms: Public domain | W3C validator |