![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneifv1 | Structured version Visualization version GIF version |
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the function value of 𝐹 is the neighborhood function. (Contributed by RP, 29-May-2021.) |
Ref | Expression |
---|---|
ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
Ref | Expression |
---|---|
ntrneifv1 | ⊢ (𝜑 → (𝐹‘𝐼) = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrnei.r | . 2 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
2 | ntrnei.o | . . . . . 6 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
3 | ntrnei.f | . . . . . 6 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
4 | 2, 3, 1 | ntrneif1o 43402 | . . . . 5 ⊢ (𝜑 → 𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
5 | f1ofn 6828 | . . . . 5 ⊢ (𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) → 𝐹 Fn (𝒫 𝐵 ↑m 𝒫 𝐵)) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 Fn (𝒫 𝐵 ↑m 𝒫 𝐵)) |
7 | 2, 3, 1 | ntrneiiex 43403 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
8 | 6, 7 | jca 511 | . . 3 ⊢ (𝜑 → (𝐹 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵))) |
9 | fnfun 6643 | . . . . 5 ⊢ (𝐹 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) → Fun 𝐹) | |
10 | 9 | adantr 480 | . . . 4 ⊢ ((𝐹 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) → Fun 𝐹) |
11 | fndm 6646 | . . . . . 6 ⊢ (𝐹 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) → dom 𝐹 = (𝒫 𝐵 ↑m 𝒫 𝐵)) | |
12 | 11 | eleq2d 2813 | . . . . 5 ⊢ (𝐹 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) → (𝐼 ∈ dom 𝐹 ↔ 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵))) |
13 | 12 | biimpar 477 | . . . 4 ⊢ ((𝐹 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) → 𝐼 ∈ dom 𝐹) |
14 | 10, 13 | jca 511 | . . 3 ⊢ ((𝐹 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) → (Fun 𝐹 ∧ 𝐼 ∈ dom 𝐹)) |
15 | funbrfvb 6940 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐼 ∈ dom 𝐹) → ((𝐹‘𝐼) = 𝑁 ↔ 𝐼𝐹𝑁)) | |
16 | 8, 14, 15 | 3syl 18 | . 2 ⊢ (𝜑 → ((𝐹‘𝐼) = 𝑁 ↔ 𝐼𝐹𝑁)) |
17 | 1, 16 | mpbird 257 | 1 ⊢ (𝜑 → (𝐹‘𝐼) = 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 {crab 3426 Vcvv 3468 𝒫 cpw 4597 class class class wbr 5141 ↦ cmpt 5224 dom cdm 5669 Fun wfun 6531 Fn wfn 6532 –1-1-onto→wf1o 6536 ‘cfv 6537 (class class class)co 7405 ∈ cmpo 7407 ↑m cmap 8822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7974 df-2nd 7975 df-map 8824 |
This theorem is referenced by: ntrneiel 43408 |
Copyright terms: Public domain | W3C validator |