Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneifv1 Structured version   Visualization version   GIF version

Theorem ntrneifv1 42815
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the function value of 𝐹 is the neighborhood function. (Contributed by RP, 29-May-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneifv1 (𝜑 → (𝐹𝐼) = 𝑁)
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝜑,𝑖,𝑗,𝑘,𝑙
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐼(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑙)

Proof of Theorem ntrneifv1
StepHypRef Expression
1 ntrnei.r . 2 (𝜑𝐼𝐹𝑁)
2 ntrnei.o . . . . . 6 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
3 ntrnei.f . . . . . 6 𝐹 = (𝒫 𝐵𝑂𝐵)
42, 3, 1ntrneif1o 42811 . . . . 5 (𝜑𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
5 f1ofn 6831 . . . . 5 (𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) → 𝐹 Fn (𝒫 𝐵m 𝒫 𝐵))
64, 5syl 17 . . . 4 (𝜑𝐹 Fn (𝒫 𝐵m 𝒫 𝐵))
72, 3, 1ntrneiiex 42812 . . . 4 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
86, 7jca 512 . . 3 (𝜑 → (𝐹 Fn (𝒫 𝐵m 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)))
9 fnfun 6646 . . . . 5 (𝐹 Fn (𝒫 𝐵m 𝒫 𝐵) → Fun 𝐹)
109adantr 481 . . . 4 ((𝐹 Fn (𝒫 𝐵m 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → Fun 𝐹)
11 fndm 6649 . . . . . 6 (𝐹 Fn (𝒫 𝐵m 𝒫 𝐵) → dom 𝐹 = (𝒫 𝐵m 𝒫 𝐵))
1211eleq2d 2819 . . . . 5 (𝐹 Fn (𝒫 𝐵m 𝒫 𝐵) → (𝐼 ∈ dom 𝐹𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)))
1312biimpar 478 . . . 4 ((𝐹 Fn (𝒫 𝐵m 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → 𝐼 ∈ dom 𝐹)
1410, 13jca 512 . . 3 ((𝐹 Fn (𝒫 𝐵m 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (Fun 𝐹𝐼 ∈ dom 𝐹))
15 funbrfvb 6943 . . 3 ((Fun 𝐹𝐼 ∈ dom 𝐹) → ((𝐹𝐼) = 𝑁𝐼𝐹𝑁))
168, 14, 153syl 18 . 2 (𝜑 → ((𝐹𝐼) = 𝑁𝐼𝐹𝑁))
171, 16mpbird 256 1 (𝜑 → (𝐹𝐼) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  {crab 3432  Vcvv 3474  𝒫 cpw 4601   class class class wbr 5147  cmpt 5230  dom cdm 5675  Fun wfun 6534   Fn wfn 6535  1-1-ontowf1o 6539  cfv 6540  (class class class)co 7405  cmpo 7407  m cmap 8816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-map 8818
This theorem is referenced by:  ntrneiel  42817
  Copyright terms: Public domain W3C validator