Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneifv1 Structured version   Visualization version   GIF version

Theorem ntrneifv1 43406
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the function value of 𝐹 is the neighborhood function. (Contributed by RP, 29-May-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneifv1 (𝜑 → (𝐹𝐼) = 𝑁)
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝜑,𝑖,𝑗,𝑘,𝑙
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐼(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑙)

Proof of Theorem ntrneifv1
StepHypRef Expression
1 ntrnei.r . 2 (𝜑𝐼𝐹𝑁)
2 ntrnei.o . . . . . 6 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
3 ntrnei.f . . . . . 6 𝐹 = (𝒫 𝐵𝑂𝐵)
42, 3, 1ntrneif1o 43402 . . . . 5 (𝜑𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
5 f1ofn 6828 . . . . 5 (𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) → 𝐹 Fn (𝒫 𝐵m 𝒫 𝐵))
64, 5syl 17 . . . 4 (𝜑𝐹 Fn (𝒫 𝐵m 𝒫 𝐵))
72, 3, 1ntrneiiex 43403 . . . 4 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
86, 7jca 511 . . 3 (𝜑 → (𝐹 Fn (𝒫 𝐵m 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)))
9 fnfun 6643 . . . . 5 (𝐹 Fn (𝒫 𝐵m 𝒫 𝐵) → Fun 𝐹)
109adantr 480 . . . 4 ((𝐹 Fn (𝒫 𝐵m 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → Fun 𝐹)
11 fndm 6646 . . . . . 6 (𝐹 Fn (𝒫 𝐵m 𝒫 𝐵) → dom 𝐹 = (𝒫 𝐵m 𝒫 𝐵))
1211eleq2d 2813 . . . . 5 (𝐹 Fn (𝒫 𝐵m 𝒫 𝐵) → (𝐼 ∈ dom 𝐹𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)))
1312biimpar 477 . . . 4 ((𝐹 Fn (𝒫 𝐵m 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → 𝐼 ∈ dom 𝐹)
1410, 13jca 511 . . 3 ((𝐹 Fn (𝒫 𝐵m 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (Fun 𝐹𝐼 ∈ dom 𝐹))
15 funbrfvb 6940 . . 3 ((Fun 𝐹𝐼 ∈ dom 𝐹) → ((𝐹𝐼) = 𝑁𝐼𝐹𝑁))
168, 14, 153syl 18 . 2 (𝜑 → ((𝐹𝐼) = 𝑁𝐼𝐹𝑁))
171, 16mpbird 257 1 (𝜑 → (𝐹𝐼) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  {crab 3426  Vcvv 3468  𝒫 cpw 4597   class class class wbr 5141  cmpt 5224  dom cdm 5669  Fun wfun 6531   Fn wfn 6532  1-1-ontowf1o 6536  cfv 6537  (class class class)co 7405  cmpo 7407  m cmap 8822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7974  df-2nd 7975  df-map 8824
This theorem is referenced by:  ntrneiel  43408
  Copyright terms: Public domain W3C validator