Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneifv1 Structured version   Visualization version   GIF version

Theorem ntrneifv1 44069
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the function value of 𝐹 is the neighborhood function. (Contributed by RP, 29-May-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneifv1 (𝜑 → (𝐹𝐼) = 𝑁)
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝜑,𝑖,𝑗,𝑘,𝑙
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐼(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑙)

Proof of Theorem ntrneifv1
StepHypRef Expression
1 ntrnei.r . 2 (𝜑𝐼𝐹𝑁)
2 ntrnei.o . . . . . 6 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
3 ntrnei.f . . . . . 6 𝐹 = (𝒫 𝐵𝑂𝐵)
42, 3, 1ntrneif1o 44065 . . . . 5 (𝜑𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
5 f1ofn 6850 . . . . 5 (𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) → 𝐹 Fn (𝒫 𝐵m 𝒫 𝐵))
64, 5syl 17 . . . 4 (𝜑𝐹 Fn (𝒫 𝐵m 𝒫 𝐵))
72, 3, 1ntrneiiex 44066 . . . 4 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
86, 7jca 511 . . 3 (𝜑 → (𝐹 Fn (𝒫 𝐵m 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)))
9 fnfun 6669 . . . . 5 (𝐹 Fn (𝒫 𝐵m 𝒫 𝐵) → Fun 𝐹)
109adantr 480 . . . 4 ((𝐹 Fn (𝒫 𝐵m 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → Fun 𝐹)
11 fndm 6672 . . . . . 6 (𝐹 Fn (𝒫 𝐵m 𝒫 𝐵) → dom 𝐹 = (𝒫 𝐵m 𝒫 𝐵))
1211eleq2d 2825 . . . . 5 (𝐹 Fn (𝒫 𝐵m 𝒫 𝐵) → (𝐼 ∈ dom 𝐹𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)))
1312biimpar 477 . . . 4 ((𝐹 Fn (𝒫 𝐵m 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → 𝐼 ∈ dom 𝐹)
1410, 13jca 511 . . 3 ((𝐹 Fn (𝒫 𝐵m 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (Fun 𝐹𝐼 ∈ dom 𝐹))
15 funbrfvb 6962 . . 3 ((Fun 𝐹𝐼 ∈ dom 𝐹) → ((𝐹𝐼) = 𝑁𝐼𝐹𝑁))
168, 14, 153syl 18 . 2 (𝜑 → ((𝐹𝐼) = 𝑁𝐼𝐹𝑁))
171, 16mpbird 257 1 (𝜑 → (𝐹𝐼) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  {crab 3433  Vcvv 3478  𝒫 cpw 4605   class class class wbr 5148  cmpt 5231  dom cdm 5689  Fun wfun 6557   Fn wfn 6558  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  cmpo 7433  m cmap 8865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-map 8867
This theorem is referenced by:  ntrneiel  44071
  Copyright terms: Public domain W3C validator