| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneifv1 | Structured version Visualization version GIF version | ||
| Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the function value of 𝐹 is the neighborhood function. (Contributed by RP, 29-May-2021.) |
| Ref | Expression |
|---|---|
| ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
| ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
| ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
| Ref | Expression |
|---|---|
| ntrneifv1 | ⊢ (𝜑 → (𝐹‘𝐼) = 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrnei.r | . 2 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
| 2 | ntrnei.o | . . . . . 6 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
| 3 | ntrnei.f | . . . . . 6 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
| 4 | 2, 3, 1 | ntrneif1o 44064 | . . . . 5 ⊢ (𝜑 → 𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
| 5 | f1ofn 6801 | . . . . 5 ⊢ (𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) → 𝐹 Fn (𝒫 𝐵 ↑m 𝒫 𝐵)) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 Fn (𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 7 | 2, 3, 1 | ntrneiiex 44065 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 8 | 6, 7 | jca 511 | . . 3 ⊢ (𝜑 → (𝐹 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵))) |
| 9 | fnfun 6618 | . . . . 5 ⊢ (𝐹 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) → Fun 𝐹) | |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝐹 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) → Fun 𝐹) |
| 11 | fndm 6621 | . . . . . 6 ⊢ (𝐹 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) → dom 𝐹 = (𝒫 𝐵 ↑m 𝒫 𝐵)) | |
| 12 | 11 | eleq2d 2814 | . . . . 5 ⊢ (𝐹 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) → (𝐼 ∈ dom 𝐹 ↔ 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵))) |
| 13 | 12 | biimpar 477 | . . . 4 ⊢ ((𝐹 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) → 𝐼 ∈ dom 𝐹) |
| 14 | 10, 13 | jca 511 | . . 3 ⊢ ((𝐹 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) → (Fun 𝐹 ∧ 𝐼 ∈ dom 𝐹)) |
| 15 | funbrfvb 6914 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐼 ∈ dom 𝐹) → ((𝐹‘𝐼) = 𝑁 ↔ 𝐼𝐹𝑁)) | |
| 16 | 8, 14, 15 | 3syl 18 | . 2 ⊢ (𝜑 → ((𝐹‘𝐼) = 𝑁 ↔ 𝐼𝐹𝑁)) |
| 17 | 1, 16 | mpbird 257 | 1 ⊢ (𝜑 → (𝐹‘𝐼) = 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 Vcvv 3447 𝒫 cpw 4563 class class class wbr 5107 ↦ cmpt 5188 dom cdm 5638 Fun wfun 6505 Fn wfn 6506 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 ↑m cmap 8799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-map 8801 |
| This theorem is referenced by: ntrneiel 44070 |
| Copyright terms: Public domain | W3C validator |